9
Journal of Pharmaceutical and Biomedical Analysis 168 (2019) 181–188 Contents lists available at ScienceDirect Journal of Pharmaceutical and Biomedical Analysis j o ur na l ho mepage: www.elsevier.com/locate/jpba Solution degradant of mirabegron extended release tablets resulting from a Strecker-like reaction between mirabegron, minute amounts of hydrogen cyanide in acetonitrile, and formaldehyde in PEG during sample preparation Jinsheng Lin a , Tianpei Huang a , Mengxue Feng a , Dan Li a , Danna Zhao b , Jichao Wang a , Jianyang Jin a , Wenquan Zhu a , Min Li a,c,a Center of Excellence for Modern Analytical Technologies (CEMAT), Zhejiang Huahai Pharmaceutical Co. Ltd., Xunqiao, Linhai, Zhejiang, 317204, PR China b Quality Control Department of Formulation, Zhejiang Huahai Pharmaceutical Co. Ltd., Xunqiao, Linhai, Zhejiang, 317204, PR China c Huahai US, Inc. 700 Atrium Drive, Somerset, NJ 08873, USA a r t i c l e i n f o Article history: Received 2 December 2018 Received in revised form 22 January 2019 Accepted 26 January 2019 Available online 1 February 2019 Keywords: Mirabegron Cyanomethylation LC–MS PEG Acetonitrile Strecker-like reaction a b s t r a c t During the related substances testing of mirabegron extended release tablets, an unknown peak was observed in HPLC chromatograms in a level exceeding the identification threshold. By using a strategy that combines LC–PDA/UV-MS n with mechanism-based stress studies, the unknown peak was rapidly identified as cyanomethyl mirabegron, a solution degradant that is caused by a Strecker-like reaction between the API, formaldehyde (an impurity in PEG), and HCN (an impurity in HPLC grade acetoni- trile). The mechanism of the solution degradation chemistry was verified by stressing mirabegron with formaldehyde and trimethylsilyl cyanide (TMSCN, a synthetic reagent that generates HCN upon contact with water), in which the secondary amine group of mirabegron first reacts with formaldehyde to form the iminium ion intermediate; the latter then undergoes a nucleophilic attack by cyanide to yield the cyanomethyl mirabegron. The structure of the impurity was further confirmed through the synthesis of the impurity and subsequent structure characterization by 1D and 2D NMR. Due to the ubiquitous presence of formaldehyde in pharmaceutical excipients (e.g., PEG and polysorbate) and trace amount of HCN in HPLC grade acetonitrile, this type of solution degradation would likely occur in sample prepara- tions of pharmaceutical finished products containing APIs with primary and secondary amine moieties. In a GMP environment, such an event may trigger undesirable out-of-specification (OOS) investigations; the results of this paper should help resolve such OOS investigations or even prevent these events from happening in the first place. © 2019 Elsevier B.V. All rights reserved. 1. Introduction Mirabegron, chemically known as 2-(2-aminothiazol-4-yl) -N-[4-(2-{[(2R)- 2-hydroxy-2-phenylethyl]amino}ethyl)phenyl] acetamide, is the first-in-class, potent and selective ˇ 3 - adrenoceptor agonist for the treatment of overactive bladder (OAB) [1,2]. In the process of our pharmaceutical development for mirabegron extended release tablets, an unknown peak was observed at a relative retention time (RRT) of 1.76 during analysis Corresponding author at: Center of Excellent for Modern Analytical Technolo- gies (CEMAT), Zhejiang Huahai Pharmaceutical Co. Ltd., Xunqiao, Linhai, Zhejiang, 317204, PR China. E-mail address: [email protected] (M. Li). of certain tablet samples by the related substances method. Upon initial investigation, it was found that the amount of this unknown peak could vary from 0.08% to 0.29% for the very same batch of the tablets, dependent upon the sources of the HPLC grade acetonitrile (used as part of the sample diluent and mobile phase). Meanwhile, the same impurity was found to be below the detection limit of 0.02% in the corresponding API lot, when the latter sample was analyzed by the same related substances method for the tablets. In order to find out the root cause for the occurrence and associated inconsistency of this unknown impurity, its structure needed to be elucidated. In general, structure elucidation of pharmaceutical impurities at low levels (e.g., 0.1–0.2%) could be quite challenging due to a number of factors. One of such factors is the limited availability of a properly purified impurity sample, particularly from samples https://doi.org/10.1016/j.jpba.2019.01.045 0731-7085/© 2019 Elsevier B.V. All rights reserved.

Journal of Pharmaceutical and Biomedical Analysisdownload.xuebalib.com/6pk5CxO06hQn.pdf · the API, formaldehyde (an impurity in PEG), and HCN (an impurity in HPLC grade acetoni-trile)

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

  • Sfos

    JJa

    b

    c

    a

    ARRAA

    KMCLPAS

    1

    -aa(fo

    g3

    h0

    Journal of Pharmaceutical and Biomedical Analysis 168 (2019) 181–188

    Contents lists available at ScienceDirect

    Journal of Pharmaceutical and Biomedical Analysis

    j o ur na l ho mepage: www.elsev ier .com/ locate / jpba

    olution degradant of mirabegron extended release tablets resultingrom a Strecker-like reaction between mirabegron, minute amountsf hydrogen cyanide in acetonitrile, and formaldehyde in PEG duringample preparation

    insheng Lina, Tianpei Huanga, Mengxue Fenga, Dan Lia, Danna Zhaob, Jichao Wanga,ianyang Jina, Wenquan Zhua, Min Lia,c,∗

    Center of Excellence for Modern Analytical Technologies (CEMAT), Zhejiang Huahai Pharmaceutical Co. Ltd., Xunqiao, Linhai, Zhejiang, 317204, PR ChinaQuality Control Department of Formulation, Zhejiang Huahai Pharmaceutical Co. Ltd., Xunqiao, Linhai, Zhejiang, 317204, PR ChinaHuahai US, Inc. 700 Atrium Drive, Somerset, NJ 08873, USA

    r t i c l e i n f o

    rticle history:eceived 2 December 2018eceived in revised form 22 January 2019ccepted 26 January 2019vailable online 1 February 2019

    eywords:irabegron

    yanomethylationC–MSEGcetonitriletrecker-like reaction

    a b s t r a c t

    During the related substances testing of mirabegron extended release tablets, an unknown peak wasobserved in HPLC chromatograms in a level exceeding the identification threshold. By using a strategythat combines LC–PDA/UV-MSn with mechanism-based stress studies, the unknown peak was rapidlyidentified as cyanomethyl mirabegron, a solution degradant that is caused by a Strecker-like reactionbetween the API, formaldehyde (an impurity in PEG), and HCN (an impurity in HPLC grade acetoni-trile). The mechanism of the solution degradation chemistry was verified by stressing mirabegron withformaldehyde and trimethylsilyl cyanide (TMSCN, a synthetic reagent that generates HCN upon contactwith water), in which the secondary amine group of mirabegron first reacts with formaldehyde to formthe iminium ion intermediate; the latter then undergoes a nucleophilic attack by cyanide to yield thecyanomethyl mirabegron. The structure of the impurity was further confirmed through the synthesisof the impurity and subsequent structure characterization by 1D and 2D NMR. Due to the ubiquitouspresence of formaldehyde in pharmaceutical excipients (e.g., PEG and polysorbate) and trace amount of

    HCN in HPLC grade acetonitrile, this type of solution degradation would likely occur in sample prepara-tions of pharmaceutical finished products containing APIs with primary and secondary amine moieties.In a GMP environment, such an event may trigger undesirable out-of-specification (OOS) investigations;the results of this paper should help resolve such OOS investigations or even prevent these events fromhappening in the first place.

    © 2019 Elsevier B.V. All rights reserved.

    . Introduction

    Mirabegron, chemically known as 2-(2-aminothiazol-4-yl)N-[4-(2-{[(2R)- 2-hydroxy-2-phenylethyl]amino}ethyl)phenyl]cetamide, is the first-in-class, potent and selective ˇ3-drenoceptor agonist for the treatment of overactive bladder

    OAB) [1,2]. In the process of our pharmaceutical developmentor mirabegron extended release tablets, an unknown peak wasbserved at a relative retention time (RRT) of 1.76 during analysis

    ∗ Corresponding author at: Center of Excellent for Modern Analytical Technolo-ies (CEMAT), Zhejiang Huahai Pharmaceutical Co. Ltd., Xunqiao, Linhai, Zhejiang,17204, PR China.

    E-mail address: [email protected] (M. Li).

    ttps://doi.org/10.1016/j.jpba.2019.01.045731-7085/© 2019 Elsevier B.V. All rights reserved.

    of certain tablet samples by the related substances method. Uponinitial investigation, it was found that the amount of this unknownpeak could vary from 0.08% to 0.29% for the very same batch of thetablets, dependent upon the sources of the HPLC grade acetonitrile(used as part of the sample diluent and mobile phase). Meanwhile,the same impurity was found to be below the detection limit of0.02% in the corresponding API lot, when the latter sample wasanalyzed by the same related substances method for the tablets. Inorder to find out the root cause for the occurrence and associatedinconsistency of this unknown impurity, its structure needed to beelucidated.

    In general, structure elucidation of pharmaceutical impuritiesat low levels (e.g., ∼0.1–0.2%) could be quite challenging due to anumber of factors. One of such factors is the limited availabilityof a properly purified impurity sample, particularly from samples

    https://doi.org/10.1016/j.jpba.2019.01.045http://www.sciencedirect.com/science/journal/07317085http://www.elsevier.com/locate/jpbahttp://crossmark.crossref.org/dialog/?doi=10.1016/j.jpba.2019.01.045&domain=pdfmailto:[email protected]://doi.org/10.1016/j.jpba.2019.01.045

  • 1 ceutic

    o2abthltusbmwbrsttdirtci

    sciichHwqDtHtpml

    2

    2

    ta0KfcafwA(dCCciwM

    82 J. Lin, T. Huang, M. Feng, et al. / Journal of Pharma

    f a finished drug product, for structure determination via 1D andD NMR spectroscopy. Even in cases where the sample supply wasbundant, isolation of impurities at such minute amounts coulde very laborious and time-consuming. A strategy, developed athe former laboratories of the corresponding author of this paper,as been demonstrated to be capable of overcoming these chal-

    enges and rapidly elucidating the structures of these impurities atrace levels [3–8]. This strategy combines LC–PDA/UV-MSn (partic-larly MSn molecular fingerprinting) with mechanism-based stresstudies and in doing so, the structure of the impurity can usuallye inferred, within a very short period of time (very often in aater of a few days), with a very high confidence level. In caseshere the initially inferred structure needs additional assurance

    y 1D and 2D NMR spectroscopy, an ample supply of the impu-ity sample can generally be produced from the mechanism-basedtress studies, followed by isolation of the impurity via prepara-ive or semi-preparative chromatography. The key component ofhis strategy is the design of relevant stress studies (a.k.a. forcedegradation) based on the plausible formation mechanism of the

    mpurity, which may be revealed by the initial LC–PDA/UV-MSn

    esults. The mechanism-based stress studies typically can affordhe target impurity in amounts much higher than those that onean isolate from the samples of pharmaceutical finished productsn which the impurity was originally observed.

    In the present investigation of the RRT 1.76 impurity in theolutions of mirabegron extended release tablets, this strategy ofombining LC–PDA/UV-MSn with mechanism-based stress stud-es was adopted, and consequently the unknown peak was rapidlydentified as cyanomethyl mirabegron, a solution degradant that isaused by a Strecker-like reaction [9] between the API, formalde-yde (an impurity in PEG) [10–12], and HCN (an impurity inPLC grade acetonitrile) [13,14]. The structure of the impurityas further confirmed via synthesis of the impurity and subse-

    uent structure characterization by 1D and 2D NMR spectroscopy.ue to the ubiquitous presence of formaldehyde in pharmaceu-

    ical excipients (e.g., PEG and polysorbate) and trace amount ofCN in HPLC grade acetonitrile, such type of solution degrada-

    ion due to the Strecker-like reaction would likely occur in samplereparations of pharmaceutical finished products containing pri-ary and secondary amine APIs in other pharmaceutical testing

    aboratories.

    . Experimental

    .1. Materials

    Mirabegron API and its extended-release tablets were manufac-ured by Zhejiang Huahai Pharmaceutical Co., Ltd. PEG 6000 was

    product of Spectrum Chemical MFG Corp. (New Brunswick, NJ8901, USA). Acetonitrile and ethanol were purchased from MerckGaA (Pittsburgh, PA, USA), and acetonitrile was also purchased

    rom Sigma-Aldrich Corp. (St. Louis, MO, USA). Other reagents pro-ured from Sigma-Aldrich Corp included methanol, ammoniumcetate, and ammonia solution. Sodium acetate was purchasedrom Fisher Chemical Corp. Sodium hydroxide (extra pure, 50t% solution in water) was purchased from Acros Organics Corp.cetic acid was supplied by Hangzhou Chemical Reagent Co., Ltd

    Hangzhou, China). Aqueous formaldehyde solution (37%) was pro-uced by Shanghai Jiuyi Chemical Reagent Co., Ltd (Shanghai,hina). Bromoacetonitrile was purchased from Shanghai Ourchemhemical Reagent Co., Ltd (Shanghai, China) and trimethylsilyl

    yanide (TMSCN) was procured from Shanghai Aladdin Biochem-cal Technology Co., Ltd (Shanghai, China). Pre-coated TLC plates

    ith a layer of 0.25 mm silica gel (SIL G-25) were produced byacherey-Nagel GmbH & Co. KG.

    al and Biomedical Analysis 168 (2019) 181–188

    2.2. HPLC analyses

    2.2.1. Sample solution preparationTen extended release tablets of mirabegron, either 25 mg or

    50 mg, were randomly selected and then placed into a 200 mL vol-umetric flask, followed by the addition of 60 mL of the first samplediluent (MeOH/CH3CN = 1:1, v/v). The flask was vigorously shakento fully disintegrate the tablets and 60 mL of the second samplediluent (H2O/CH3CN = 4:1, v/v) was added. The sample prepara-tion mixture was then sonicated for a minimum of 20 min withthe temperature of the sonication bath set at 30◦, during whichprocess the mixture was occasionally shaken. After sonication, themixture was diluted to volume with the second sample diluent.Finally, the sample preparation mixture was filtered through a0.22 �m nylon membrane filter and the first 2 mL filtrate was dis-carded.

    2.2.2. HPLC conditionsA Thermo Scientific Dionex Ultimate 3000 HPLC system,

    equipped with a Waters Xterra MS C18 column (150 mm × 4.6 mm,3.5 �m) and a PDA/UV detector, was used for conducting therelated substances method. The mobile phase system consistedof A (water with 15 mM ammonium acetate) and B (acetonitrile),with the gradient varied according to the following program: 0 min(10% B), 2 min (10% B), 30 min (50% B), 30.1 min (10% B), and35 min (10% B). The analyses were performed at a flow rate of1.0 mL/min and a column temperature of 40◦. UV spectra werecollected from the PDA/UV detector with a wavelength range of190–400 nm.

    2.3. LC–PDA/UV–MSn analysis

    An Agilent HPLC instrument (1260 series, Agilent Technolo-gies, USA) equipped with a single quadrupole mass spectrometer(6120 series, Agilent Technologies) was used for the initial LC–MSanalysis. Another Agilent HPLC instrument (1260 series, AgilentTechnologies, USA) interfaced to a quadrupole time-of-flight (Q-TOF) mass spectrometer (6545 series, Agilent Technologies, USA)was used for comprehensive LC-PDA/UV-MSn (n = 1, 2) analyses ofsamples. The chromatographic conditions of the LC–MS methodwere the same as those of the related substances method. UV spec-tra were collected from 190 nm to 400 nm by the PDA detectors.The Q-TOF mass spectrometer was operated at positive ESI modewith the following source parameters: gas flow 6 L/min, nebulizerpressure 60 psi, source temperature 320◦, sheath gas temperature350◦, sheath gas flow 12 L/min and capillary voltage 3.5 kV. Reser-pine and purine were used as the reference compounds for accuratemass measurement. The mass acquisition range was 100–1700 Daand for the MS2 analyses, the collision energy was set at 10, 30, and45 eV, respectively.

    2.4. Stress studies, preparation, and purification of the RRT 1.76impurity

    For the mechanism-based stress study to generate thecyanomethylated impurity, a mixture of mirabegron (10 mg,0.025 mmol), 37% formaldehyde (50 �L, 1.8 mmol) and TMSCN(50 �L, 0.4 mmol) in methanol (1.0 mL) was shaken at 30 ◦C for 3 h.Aliquots of the reaction solution were analyzed by the HPLC andLC–MSn methods as described in Sections 2.2 and 2.3, respectively.The targeted impurity, cyanomethyl mirabegron, was obtained in∼49% yield. The same stress study was also performed in acetoni-

    trile, and the yield of cyanomethyl mirabegron increased to 67%.

    Because TMSCN is highly toxic, we chose an alternative syntheticroute to prepare a larger quantity of cyanomethyl mirabegron forNMR structure confirmation. In this alternate route, bromoacetoni-

  • J. Lin, T. Huang, M. Feng, et al. / Journal of Pharmaceutical and Biomedical Analysis 168 (2019) 181–188 183

    F e mira solut2 m the

    ttwbptoodmv

    2

    bdNAaesd

    ig. 1. (a) The original HPLC chromatogram at 254 nm of the sample solution from tht 22.918 min. (b) The UV chromatogram at 240 nm of the same mirabegron tablet4.177 min. (c) High resolution MS spectrum of the RRT 1.76 unknown impurity fro

    rile was reacted with mirabegron in the presence of triethylamine:o a solution of mirabegron (0.5 g, 1.26 mmol) in methanol (7 mL)as added bromoacetonitrile (0.105 mL, 1.50 mmol), followed

    y the addition of triethylamine (0.383 mL, 2.77 mmol) in oneortion. The mixture was allowed to stir overnight at roomemperature and approximately 1/3 of the mixture was loadednto three TLC plates for isolation. The target compound wasbtained (89 mg, 53% yield) with a solvent system containingichloromethane/methanol (10:1, v/v). The yield of cyanomethylirabegron decreased to 31% (HPLC yield) when the reaction sol-

    ent was changed from methanol to acetonitrile.

    .5. 1D and 2D NMR determination

    Approximately 15 mg of cyanomethyl mirabegron, preparedy the reaction between mirabegron and bromoacetonitrile asescribed in Section 2.4, was dissolved in 1 mL of CDCl3. 1H, 13CMR and 2D NMR spectra of the compound were acquired on agilent 400 MHz spectrometer at 25◦. 1H and 13C resonances were

    ssigned and confirmed by the results from the following 2D NMRxperiments: gCOSY, gHSQC, and gHMBC. The corresponding NMRpectra of mirabegron were recorded similarly, except that DMSO-6 was used as the solvent.

    abegron 50 mg extended release tablets; the RRT 1.76 unknown peak was observedion as in (a) from the initial LC-PDA/UV-MS analysis; the target impurity eluted at

    same mirabegron tablet solution as in (a).

    2.6. Different sources of HPLC grade acetonitrile and methanolversus the occurrence of the RRT 1.76 impurity; trace amount ofHCN in HPLC grade acetonitrile

    We have learned from our past experience that residual HCNmay exist in HPLC grade acetonitrile and the level seemed to varydependent upon the sources or vendors of the solvent [13]. On theother hand, HPLC grade methanol does not seem to contain HCN.Hence, HPLC grade acetonitrile and methanol from different ven-dors were used in the preparation of the sample diluent and mobilephase to examine the impact of different solvents or different ven-dors on the occurrence of the RRT 1.76 impurity.

    2.7. Ion chromatographic (IC) analysis

    A Thermo Scientific ICS-5000+ DP IC system equipped with anelectrochemical detector was used for analyzing residual HCN indifferent solvents. A Dionex IonPacTM AS7 ion exchange column(150 mm × 4 mm) was used for the analysis and a Dionex Ion-PacTM AG7 column (50 mm × 4 mm) was used as guard column.The mobile phase consisted of A (water with 0.5 M sodium acetate)

    and B (water with 0.1 M sodium hydroxide). The analyses were per-formed at a flow rate of 1.0 mL/min and a column temperature of30◦. Electrochemical spectra were collected from the electrochem-ical detector (mode: Integrated amperometric; waveform: silver,

  • 184 J. Lin, T. Huang, M. Feng, et al. / Journal of Pharmaceutical and Biomedical Analysis 168 (2019) 181–188

    Fig. 2. LC-ESI-MS/MS spectra of (a) [M+H]+ of the RRT 1.76 impurity (m/z 436) and (b) [M+H]+ of mirabegron (m/z 397) at the collision energy of 30 eV. The experimentsw ed in( obileg rom 2

    AA

    3

    3

    irtwtarshczdrtioff4tm

    ere performed on the Agilent LC-QTOF MS system with MS parameters describ150 mm × 4.6 mm, 5 �m) maintained at 40 ◦C and the elution was affected with mradient at flow rate of 1.0 mL/min: 10% B from 0 to 2 min and increasing to 50% B f

    g-AgCl RE, S-2, CN-, I-) equipped with working electrode andg/AgCl reference electrode.

    . Results and discussion

    .1. LC–PDA/UV–MSn (n = 1, 2) analysis

    The unknown peak was originally observed at 22.918 min dur-ng the analysis of certain samples of the mirabegron extendedelease tablets (Fig. 1a) and its relative retention time (RRT) versushat of mirabegron (13.008 min) was found to be 1.76. This peakas seen at 24.177 min in the initial LC–PDA/UV–MS analysis of

    he mirabegron tablets sample solution (Fig. 1b). For consistencynd simplicity, this unknown peak is referred to as RRT 1.76 impu-ity or species in this paper. The UV spectrum of the RRT 1.76pecies is essentially identical to that of mirabegron with bothaving a UV absorption peak at 250 nm, indicating that the twoompounds have the same chromophore, i.e., the 2-amino thia-ole moiety. The accurate MS spectrum of the RRT 1.76 speciesisplayed three m/z values at 409.1689, 436.1804, and 494.2333,espectively (Fig. 1c). Upon careful examination, it was determinedhat the m/z 436.1804 species is the protonated ion of RRT 1.76mpurity, while m/z 494.2333 is the gas phase acetonitrile adductf the ammoniated ion of RRT 1.76 impurity, and m/z 409.1689 is aragment of the ions of RRT 1.76 impurity resulting from in-source

    ragmentation. The m/z value of the protonated RRT 1.76 impurity,36.1804, matches a formula of C23H25N5O2S with an error of lesshan 1.6 ppm. By comparing with the formula of the protonated

    irabegron, C21H24N4O2S, the RRT 1.76 impurity has an additional

    Experimental section. The system was equipped with a Zorbax SB C18 column phases A (0.1% formic acid in water) and B (acetonitrile) according to the follow

    to 30 min.

    C2HN component. The MS/MS spectra of both the protonated RRT1.76 species (m/z 436) and mirabegron (m/z 397) showed severalcommon fragment ions at m/z 379, m/z 260, m/z 239, m/z 146, m/z120, and m/z 113 at the collision energy of 30 eV (Fig. 2a & b), sug-gesting that the RRT 1.76 species may have the same core structureas mirabegron.

    Based upon the fact that the RRT 1.76 unknown species hasextra C2HN component over the molecular formula of mirabegronbut essentially the same UV absorption spectrum as mirabegron,we surmised that the unknown species could result from theStrecker-like reaction (during the sample preparation step) inwhich the secondary amine moiety of mirabegron first condensedwith formaldehyde to form the iminium intermediate, followed bythe attack of HCN (Scheme 1). This hypothesis seemed to be reason-able as the two components of the reaction, formaldehyde and HCN,can be present in the excipients (PEG) [10–12] of the mirabegrontablets and sample diluent (acetonitrile) [13,14], respectively. Sucha cyanomethylation on the secondary amine group of mirabegrondoes not generate any new UV chromophore, which is consistentwith the observation that the UV spectra of the RRT 1.76 unknownspecies and mirabegron are essentially the same. With that pre-sumed structure in mind, we started to examine the fragmentationpatterns in the MS2 spectrum of the RRT 1.76 impurity versusthose of mirabegron (the latter was previously studied by Kalariya[15]), in order to uncover the fragmentation pathway indicative ofthe cyanomethylated amine moiety. The vast majority of the frag-

    ments are the same between the RRT 1.76 impurity and mirabegron(Fig. 2), which is not unexpected considering that the two structuresare very similar. On the other hand, the fragment ions at m/z 409 andm/z 391 are unique only to the cyanomethylated mirabegron. More

  • J. Lin, T. Huang, M. Feng, et al. / Journal of Pharmaceutical and Biomedical Analysis 168 (2019) 181–188 185

    Scheme 1. Proposed formation pathway of cynaomethyl mirabegron in mirabegron extended release tablets sample solution due to the Strecker-like reaction betweenmirabegron, trace amount of formaldehyde in PEG, and trace amount of HCN in acetonitrile.

    Scheme 2. Proposed fragmentation pathway of the protonated RRT 1.76 impurity observed in certain sample solutions of mirabegron extended release tablets.

  • 1 ceutical and Biomedical Analysis 168 (2019) 181–188

    immr

    3t

    fri(mtstaswwttMi

    trrmtosmrsmTegopb1

    3

    1iacdb(ptg2CF5Hs

    Table 11H and 13C NMR spectroscopic data of mirabegron (DMSO-d6) and the RRT 1.76impurity of mirabegron (CDCl3; ı in ppm).

    positionmirabegron1 RRT 1.76 impurity1

    H shifts C shifts H shifts C shifts

    1 N.A.2 144.7 N.A. 141.22 7.29 125.9 7.31 (1H, o3) 125.93 7.27 127.9 7.32 (1H, o) 128.64 7.19 126.8 7.27 (1H, m) 128.05 7.27 127.9 7.32 (1H, o) 128.66 7.29 125.9 7.31 (1H, o) 125.97 4.57 71.5 4.65 (1H, dd, J = 9.4, 2.5 Hz) 70.28a

    2.61 57.62.62 (1H, t, J = 12.0 Hz)

    62.58b 2.82 (1H, o)9a

    2.72 50.82.85 (1H, o)

    55.59b 2.93(1H, m)10 2.62 35.4 2.75 (1H, dd, J = 16.0, 4.0 Hz) 33.411 N.A. 135.1 N.A. 134.712 7.08 128.8 7.11 (1H, d, J = 8.0 Hz) 129.113 7.46 119.0 7.45 (1H, d, J = 8.0 Hz) 120.414 N.A. 137.2 N.A. 136.715 7.46 119.0 7.45 (1H, d, J = 8.0 Hz) 120.416 7.08 128.8 7.11 (1H, d, J = 8.0 Hz) 129.117 N.A. 167.8 N.A. 167.718 3.43 39.8 3.57 (1H, s) 40.119 N.A. 145.9 N.A. 145.120 6.27 102.6 6.30 (1H, s) 105.721 N.A. 168.2 N.A. 168.722a N.A. N.A. 3.59 (1H, d, J = 16.0 Hz)

    42.522b N.A. N.A. 3.72 (1H, d, J = 16.0 Hz)23 N.A. N.A. N.A. 115.1-NH 9.99 N.A. N.A. N.A.-NH2 6.89 N.A. 5.26 (2H, br s4) N.A.-OH —— N.A. 9.03 (1H, s) N.A.

    Notes: 1: The numbering of the carbon skeleton in the RRT 1.76 impurity in thesample solution‘n from the mirabegron extended release tablets is shown as follows.The numbering for mirabegron follows the same rule. 2: Abbreviations: N.A., notapplicable; o, overlap signals; br s, broad singlet signal.

    86 J. Lin, T. Huang, M. Feng, et al. / Journal of Pharma

    nterestingly, the accurate mass of m/z 132.0805 (Fig. 2a, Inset)atches a formula of C9H10N+, suggesting the m/z 132 fragment isost likely deriving from m/z 391 and still retaining the methylene

    esidue on the secondary amine moiety (Scheme 2).

    .2. Mechanism-based stress study, preparation and isolation ofhe RRT 1.76 impurity

    From the above LC-PDA/UV-MSn results, we had surmised theormation mechanism and likely structure of the RRT 1.76 impu-ity. In order to verify the mechanism, a stress study was designedn which mirabegron was reacted with formaldehyde and TMSCNa cyanide donor) [16] as outlined in Section 2.4. In the UV chro-

    atogram of the mirabegron drug substance sample solution afterhe addition of TMSCN and aqueous formaldehyde (hence the stressolution), a peak at 22.690 min was generated in ∼67% yield afterhe stress solution was allowed to stand at 30◦ for 3 h (Fig. 3). The UVbsorption spectrum and MS2 fingerprint of this stress-generatedpecies at 22.690 min matched those of the target impurity thatas originally observed at a relative retention time (RRT) of 1.76hen the original sample solution of mirabegron extended release

    ablets was analyzed by the related substances method (for the lat-er method, refer to Section 2.2.2; the comparison of the UV and

    S2 spectra between the stress-generated species and the targetmpurity is not shown).

    The above stress study provided further evidence to supporthe hypothesis that solution degradation due to the Strecker-likeeaction is responsible for the formation of the RRT 1.76 impu-ity (Scheme 1). Nevertheless, this forced degradation reactionay not be suitable for a somewhat larger scale preparation of

    he impurity for NMR structure confirmation, due to the toxicityf TMSCN (which gives off HCN upon contact with water). In aeparate study, Vivier et al. [17] reported that a secondary amineoiety can easily react with bromoacetonitrile to afford the cor-

    esponding cyanomethyl derivative. Thus, we decided to use thisynthetic approach to prepare a quantity of the cyanomethylatedirabegron that is sufficient for 1D and 2D NMR determination.

    he cyanomethylated mirabegron impurity thus prepared displaysssentially identical retention time, UV spectrum, and MS2 fin-erprint as compared to those of the RRT 1.76 unknown speciesbserved in the original mirabegron extended release tablets sam-le solution. Hence, we concluded that the RRT 1.76 impurity hadeen generated and we moved forward to verify its structure viaD and 2D NMR spectroscopy.

    .3. 1D and 2D NMR characterization of the RRT 1.76 impurity

    All the 1H NMR and 13C NMR data of mirabegron and the RRT.76 impurity are summarized in Table 1. The 1H and 13C chem-

    cal shifts of mirabegron were reported by Rajendiran et al [18],nd the NMR results of the in-house mirabegron API (Table 1) areonsistent with those reported in the literature mentioned above,espite the fact that different solvents were used. The NMR signalsetween mirabegron and the RRT 1.76 impurity are very similarTable 1), except for the H-22, C-22, and C-23 signals which are onlyresent in the RRT 1.76 impurity. Based on their chemical shifts,hese three sets of signals are very likely due to the cyanomethylroup. Indeed, the HMBC analysis revealed the correlation of H-2a/H-22b (�H 3.59, 1H, d, J = 16.0 Hz/�H 3.72, 1H, d, J = 16.0 Hz) with-22 (�C 42.5, t) and C-23 (�C 115.1, s), respectively (Fig. 4 HMBC).

    urthermore, the HMBC correlations of H-22a/H-22b with C-9 (ıC5.5, t), C-8 (ıC 62.5, t), and C-23 (ıC 115.1, s) are also present. TheseMBC results confirm that the cyanomethyl group is linked to the

    econdary amine moiety of mirabegron.

    3.4. Different sources of acetonitrile and methanol used ascomponent for sample diluent and mobile phase: correlation withthe formation and/or level of the RRT 1.76 impurity

    In the course of the investigation, we noticed that the levelof the RRT 1.76 impurity appeared to correlate with the sourcesof acetonitrile (they are referred to as Vendor 1 and Vendor 2,respectively). With the acetonitrile sourcing from Vendor 1 as thecomponent for sample diluent and mobile phase, we found thatup to 0.12% of the RRT 1.76 impurity was formed. On the con-trary, when the acetonitrile sourcing from Vendor 2 was used, only0.04% of this impurity was observed from the very same batchof mirabegron extended release tablets samples. Furthermore, wealso found that the content of the RRT 1.76 impurity was belowthe detection limit (∼0.02%) in the mirabegron API sample solutioneven when Vendor 1 acetonitrile was used as diluent.

    When the sample diluent component acetonitrile was replacedby methanol during the sample preparation, the RRT 1.76 specieswas essentially absent. It is also worth noting that replacing ace-tonitrile in the mobile phase with methanol had no meaningfulimpact on the formation of the RRT 1.76 species, indicating thatthis impurity should be formed mainly during the step of the sam-

    ple solution preparation, in which all the three components of theStrecker-like reaction, i.e., mirabegron, formaldehyde, and HCN, arepresent.

  • J. Lin, T. Huang, M. Feng, et al. / Journal of Pharmaceutical and Biomedical Analysis 168 (2019) 181–188 187

    Fig. 3. UV chromatogram at 240 nm of the stress mirabegron solution: a mirabegron drug substance solution in acetonitrile was added TMSCN and 37% formaldehyde aqueoussolution, and the resulting solution was allowed to stand at room temperature for 3 h. The HPLC yield of the RRT 1.76 impurity (22.690 min) was ∼67%.

    elation

    aet0

    3is

    t

    Fig. 4. The key gHMBC corr

    We also measured the quantities of residual HCN in HPLC gradecetonitrile from the two vendors using ion chromatography withlectrochemical detection. The amounts of HCN in HPLC grade ace-onitrile from Vendor 1 and 2 were observed at 0.65 �g/mL and.22 �g/mL, respectively.

    .5. Solution degradation due to the Strecker-like reaction and itsmplication toward drug molecules containing primary and

    econdary amine moiety

    All the evidence presented above clearly shows that duringhe sample preparation of mirabegron extended release tablets,

    s of the RRT 1.76 impurity.

    mirabegron undergoes solution degradation due to the Strecker-like reaction in which its secondary amine moiety was modifiedthrough cyanomethylation. One of the key components of theStrecker-like reaction, formaldehyde, is apparently from PEG, akey excipient of the drug product. It is well known that PEG canundergo oxidative degradation to form various impurities includ-ing formaldehyde [10]. On the other hand, HCN is an impurity inacetonitrile and its content in HPLC grade acetonitrile can vary

    among different vendors [13,14].

    Due to the ubiquitous presence of formaldehyde in pharmaceu-tical excipients (e.g., PEG and polysorbate) and trace amount of HCNin HPLC grade acetonitrile, this type of solution degradation would

  • 1 ceutic

    lpptlsgwtwrf

    4

    cwossshnmfistPaicGshf

    A

    mt

    R

    [

    [

    [

    [

    [

    [

    [

    [

    (2011) 5705–5710.

    88 J. Lin, T. Huang, M. Feng, et al. / Journal of Pharma

    ikely occur in sample preparations of pharmaceutical finishedroducts containing primary and secondary amine APIs in otherharmaceutical testing laboratories. It is somewhat surprising thathere seems to have no previous report on this type of cyanomethy-ated drug degradant, except for a forced oxidative degradationtudy of drug molecules that contains primary and secondary amineroups. In the latter study, the cyanomethylated drug degradantsere reported as the major artifactual degradants resulting from

    he reaction between the drug molecules, formaldehyde, and HCN,ith the last two components generated as byproducts from the

    adical initiator, 2,2’-azobis(2-methylpropionitrile) (AIBN), usedor the free radical–mediated oxidative stress [9].

    . Conclusions

    A solution degradation product observed in HPLC analysis ofertain sample solutions of mirabegron extended release tabletsas rapidly identified as cyanomethyl mirabegron via the strategy

    f using LC-PDA/UV-MSn in conjunction with mechanism-basedtress studies. The solution degradation product has been demon-trated to result from the Strecker-like reaction in which theecondary amine group of mirabegron first reacts with formalde-yde to form the iminium intermediate; the latter then undergoes aucleophilic attack by hydrogen cyanide to yield the cyanomethylirabegron. The structure of the impurity has been further con-

    rmed through the synthesis of the impurity and subsequenttructure characterization by 1D and 2D NMR. Due to the ubiqui-ous presence of formaldehyde in pharmaceutical excipients (e.g.,EG and polysorbate) and trace amount of HCN in HPLC gradecetonitrile, this type of solution degradation would likely occurn sample preparations of other pharmaceutical finished productsontaining APIs with primary and secondary amine moieties. In aMP environment, such an event may trigger undesirable out-of-pecification (OOS) investigations; the results of this paper shouldelp resolve such OOS investigations or even prevent these events

    rom happening in the first place.

    cknowledgment

    We gratefully acknowledge Quality Control Department of For-ulation of Zhejiang Huahai Pharmaceutical Co. Ltd for their

    echnical support during the course of this investigation.

    eferences

    [1] T. Takasu, M. Ukai, S. Sato, T. Matsui, I. Nagase, T. Maruyama, M. Sasamata, K.Miyata, H. Uchida, O. Yamaguchi, Effect of (R)-2-(2-aminothiazol-4-yl)-4′-{2-[(2-hydroxy-2-phenylethyl)amino]-ethyl}acetanilide (YM178), a novel

    selective beta3-adrenoceptor agonist, on bladder function, J. Pharmacol. Exp.Ther. 321 (2007) 642–647.

    [2] V. Nitti, S. Auerbach, N. Martin, A. Calhoun, M. Lee, S. Herschorn, Results of arandomized phase III trial of mirabegron in patients with overactive bladder,J. Urol. 4 (2013) 1388–1395.

    [

    al and Biomedical Analysis 168 (2019) 181–188

    [3] M. Li, B. Chen, M. Lin, A. Rustum, Application of LC-MSn in conjunction withmechanism based stress studies in the elucidation of drugimpurity/degradation product structures and degradation pathways, Am.Pharm. Rev. 1–2 (2008) 98–103.

    [4] X. Wang, Y. Peng, M. Li, A. Rustum, Use of high resolution LC–MSn analysis inconjunction with mechanism-based stress studies: identification of asarinin,an impurity from sesame oil in an animal health product, J. Pharm. Biomed.Anal. 50 (2009) 1015–1021.

    [5] M. Li, M. Lin, A. Rustum, Application of LC–MSn in conjunction withmechanism-based stress studies in the elucidation of drug impuritystructure: rapid identification of a process impurity in betamethasone17-valerate drug substance, J. Pharm. Biomed. Anal. 48 (2008) 1451–1456.

    [6] M. Li, X. Wang, B. Chen, T.-Z. Chan, A. Rustum, Forced degradation ofbetamethasone sodium phosphate under solid state: formation,characterization, and cechanistic study of all four 17,20-diastereomers ofbetamethasone 17-deoxy-20-hydroxy-21-oic acid, J. Pharm. Sci. 98 (2009)894–904.

    [7] M. Lin, M. Li, A. Buevich, R. Osterman, A. Rustum, Rapid structure elucidationof drug degradation products using mechanism-based stress studies inconjunction with LC–MSn and NMR spectroscopy: identification of aphotodegradation product of betamethasone dipropionate, J. Pharm. Biomed.Anal. 50 (2009) 275–280.

    [8] M. Li, Organic Chemistry of Drug Degradation, Chapter 8, Strategies forElucidation of Degradant Structures and Degradation Pathways, Royal Societyof Chemistry, London, UK, 2012, pp. 227–261.

    [9] M. Nefliu, T. Zelesky, P. Jansen, G.W. Sluggett, C. Foti, S.W. Baertschi, P.A.Harmon, Artifacts generated during azoalkane peroxy radical oxidative stresstesting of pharmaceuticals containing primary and secondary amines, J.Pharm. Sci. 104 (2015) 4287–4298.

    10] M. Li, Organic Chemistry of Drug Degradation, Chapter 5, Drug–ExcipientInteractions and Adduct Formation, Royal Society of Chemistry, London, UK,2012, pp. 150–164.

    11] M. delBarrio, J. Hu, P. Zhou, N. Cauchon, Simultaneous determination offormic acid and formaldehyde in pharmaceutical excipients using headspaceGC/MS, J. Pharm. Biomed. Anal. 3 (2006) 738–743.

    12] M. Nassar, V. Nesarikar, R. Lozano, W. Parker, P. Yande, V. Palaniswamy, W.Xu, N. Khaselev, Influence of formaldehyde impurity in polysorbate 80 andPEG-300 on the stability of a parenteral formulation of BMS-204352:identification and control of the degradation product, Pharm. Dev. Technol. 9(2004) 189–195.

    13] Several case studies on elucidation of “Mysterious peaks” by high resolutionLC-MS were presented by Bin Chen in an invited oral session at 2012 EasternAnalytical Symposium. One of the studies reported the presence of traceamount of HCN in HPLC grade acetonitrile, which caused on-line degradationof one key impurity that contains an activated aldehyde moiety: “Use of HighResolution LC-MS in Elucidation of Mysterious Peaks caused by TraceAmounts of Impurities in Mobile Phase, HPLC Vials, and Product Samples”http://www.eas.org/askeas/2012%20EAS%20Abstracts.pdf last accessed April21, 2017.

    14] It was disclosed that HCN is a process impurity during the manufacturing ofacetonitrile: US Patent 4,308,108 and European Patent Application83870142.3.

    15] P. Kalariya, M. Sharma, P. Garg, J. Thota, S. Ragampeta, M. Talluri,Characterization of stress degradation products of mirabegron usingUPLC-QTOF-MS/MS and in silico toxicity predictions of its degradationproducts, RSC Adv. 5 (2015) 31024–31038.

    16] R. Córdoba, A. Csákÿ, J. Plumet, Tetrabutylammonium cyanide catalyzes theaddition of TMSCN to aldehydes and ketones, Arkivoc IV (2004) 94–99.

    17] M. Vivier, M. Rapp, M. Galmier, A. Jarrousse, E. Noirault, F. Leal, V. Weber, J.Métin, J. Sauzière, J. Chezal, J. Madelmont, New aldehyde and vinylsulfoneproteasome inhibitors for targeted melanoma therapy, Eur. J. Med. Chem. 46

    18] C. Rajendiran, K. Reddy, J. Venkateswarlu, An improved process for thepreparation of2-(2-aminothazol-4-yl)-N-[4-(2-[[(2R)-2-hydroxy-2-phenylethyl]amino]ethyl)phenyl]acetamide. W.O. patents, 2015,155,664 A1.

    http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0005http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0010http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0015http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0020http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0025http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0030http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0035http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0040http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0045http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0050http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0055http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0060http://www.eas.org/askeas/2012 EAS Abstracts.pdfhttp://www.eas.org/askeas/2012 EAS Abstracts.pdfhttp://www.eas.org/askeas/2012 EAS Abstracts.pdfhttp://www.eas.org/askeas/2012 EAS Abstracts.pdfhttp://www.eas.org/askeas/2012 EAS Abstracts.pdfhttp://www.eas.org/askeas/2012 EAS Abstracts.pdfhttp://www.eas.org/askeas/2012 EAS Abstracts.pdfhttp://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0075http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0080http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085http://refhub.elsevier.com/S0731-7085(18)32696-7/sbref0085

  • 本文献由“学霸图书馆-文献云下载”收集自网络,仅供学习交流使用。

    学霸图书馆(www.xuebalib.com)是一个“整合众多图书馆数据库资源,

    提供一站式文献检索和下载服务”的24 小时在线不限IP

    图书馆。

    图书馆致力于便利、促进学习与科研,提供最强文献下载服务。

    图书馆导航:

    图书馆首页 文献云下载 图书馆入口 外文数据库大全 疑难文献辅助工具

    http://www.xuebalib.com/cloud/http://www.xuebalib.com/http://www.xuebalib.com/cloud/http://www.xuebalib.com/http://www.xuebalib.com/vip.htmlhttp://www.xuebalib.com/db.phphttp://www.xuebalib.com/zixun/2014-08-15/44.htmlhttp://www.xuebalib.com/

    Solution degradant of mirabegron extended release tablets resulting from a Strecker-like reaction between mirabegron, minu...1 Introduction2 Experimental2.1 Materials2.2 HPLC analyses2.2.1 Sample solution preparation2.2.2 HPLC conditions

    2.3 LC–PDA/UV–MSn analysis2.4 Stress studies, preparation, and purification of the RRT 1.76 impurity2.5 1D and 2D NMR determination2.6 Different sources of HPLC grade acetonitrile and methanol versus the occurrence of the RRT 1.76 impurity; trace amount...2.7 Ion chromatographic (IC) analysis

    3 Results and discussion3.1 LC–PDA/UV–MSn (n = 1, 2) analysis3.2 Mechanism-based stress study, preparation and isolation of the RRT 1.76 impurity3.3 1D and 2D NMR characterization of the RRT 1.76 impurity3.4 Different sources of acetonitrile and methanol used as component for sample diluent and mobile phase: correlation with...3.5 Solution degradation due to the Strecker-like reaction and its implication toward drug molecules containing primary an...

    4 ConclusionsAcknowledgmentReferences

    学霸图书馆link:学霸图书馆