103
Jump conditions across phase boundaries for the Navier- Stokes-Korteweg equations Dietmar Kröner, Freiburg Paris, Nov.2, 2009

Jump conditions across phase boundaries for the Navier-Stokes-Korteweg equations

Embed Size (px)

DESCRIPTION

Jump conditions across phase boundaries for the Navier-Stokes-Korteweg equations Dietmar Kröner, Freiburg Paris, Nov.2, 2009. TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A. Co-workers:. D. Diehl A. Dressel K. Hermsdörfer - PowerPoint PPT Presentation

Citation preview

Page 1: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Jump conditions across phase boundaries for the Navier-Stokes-

Korteweg equations

Dietmar Kröner, Freiburg

Paris, Nov.2, 2009

Page 2: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Co-workers:

• D. Diehl

• A. Dressel

• K. Hermsdörfer

• C. Kraus

Page 3: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Outline

• Introduction, numerical experiments for the NSK system• Jump conditions across the interface for NSK, static

case• The pressure jump for the incompressible Navier-Stokes

equations• Low Mach number limit for the compressible Navier-

Stokes system• Low Mach number limit for the NSK system• NSK system dynamical case• Phase field like scaling

Page 4: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 5: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Navier Stokes K orteweg system:

@t½+r ¢(½v) = 0

@t(½v) + r ¢(½vvt +p(½)I ) = ®¢ v+°"2½r ¢½

Page 6: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

ρψ(ρ)

Double well

p

β2

Pressure

β1 β2

β1 ρρ

= ~W(½)

p(½) :=½2Ã0(½)

Page 7: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

ρψ(ρ)

Double well

p

β2

Pressure

β1 β2

β1 ρρ

= ~W(½)

W(½)

p(½) :=½2Ã0(½)

Page 8: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

MinimizeZ

­W(½)+"2jr ½j2dx

Navier Stokes K orteweg system:

@t½+r ¢(½v) = 0

@t(½v) + r ¢(½vvt +p(½)I ) = ®¢ v+°"2½r ¢½

Page 9: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Initial­data

Long timebehaviour of ½;v?

MinimizeZ

­W(½)+"2jr ½j2dx

Navier Stokes K orteweg system:

@t½+r ¢(½v) = 0

@t(½v) + r ¢(½vvt +p(½)I ) = ®¢ v+°"2½r ¢½

Page 10: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Theoretical results

Page 11: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Danchin, Desjardin :Existence of solutions for compressible °uid models ofKorteweg type. Annales de l'IHP, Analysenon lineaire, 18,(2001), 97-133.

Global existence result for initial data close to stableequilibrium, d=2,3;

local in timeexistence for ½0 ¸ c> 0:

Bresch, Desjardin, Lin 1: Existenceof global weak solutions in energy spacesif ¹ ¢ u is replaced by ¹ div(½D(u));d= 2;3:

J .E. Dunn, J . Serrin: On the thermodynamics of interstitial work. Arch.Rat. Mech. Anal. 88 (1985), 95{133.

H. Hattori, D. Li: Theexistenceof global solutions toa °uid dynamicmodelfor materials for Korteweg type. J . Partial Di®erential Equations 9 (4) (1996)323-342.

H. Hattori, D. Li: Global solutions of a high-dimensional system for Ko-rtewegmaterials. J . Math. Anal. Appl. 198, No. 1, (1996), 84-97.

R. Danchin, B. Desjardin, : Existence of solutions for compressible °uidmodels of Korteweg type. Annales de l'IHP, Analyse non lineaire, 18,(2001),97-133. (­ = <n , isotherm)

D. Bresch, B. Desjardin, C.K.Lin: On some compressible °uid model: Ko-rteweg, lubrication and shallow water systems, 2001.

D. Bresch, B. Desjardins, C.-K. Lin. On some compressible °uid models:Korteweg, lubrication and shallow water systems. Commun. Partial Di®er.Equations, 28(3):843-868, Mars 2003.

S. Benzoni-Gavage, R.Danchin, S. Descombes: Well-posednessof one-dimensionalKortewegmodels, preprint 2004

S. Benzoni-Gavage, R. Danchin, S. Descombes: On the well-posedness fortheEuler-Kortewegmodel in several spacedimensions, preprint 2005

M. Kotschote: Strong well-posedness for a Korteweg-type model for thedynamicsof a compressiblenon-isothermal °uid. Preprint Leipzig2006. (Initialboundary value )

1D. Bresch, B. Desjardin, C.K .Lin: On some compressible °uid model:K orteweg, lubrica-tion and shallow water systems, 2001

Danchin, Desjardin :Existence of solutions for compressible °uid models ofKorteweg type. Annales de l'IHP, Analysenon lineaire, 18,(2001), 97-133.

Global existence result for initial data close to stableequilibrium, d=2,3;

local in timeexistence for ½0 ¸ c> 0:

Bresch, Desjardin, Lin 1: Existenceof global weak solutions in energy spacesif ¹ ¢ u is replaced by ¹ div(½D(u));d= 2;3:

J .E. Dunn, J . Serrin: On the thermodynamics of interstitial work. Arch.Rat. Mech. Anal. 88 (1985), 95{133.

H. Hattori, D. Li: Theexistenceof global solutions toa °uid dynamicmodelfor materials for Korteweg type. J . Partial Di®erential Equations 9 (4) (1996)323-342.

H. Hattori, D. Li: Global solutions of a high-dimensional system for Ko-rtewegmaterials. J . Math. Anal. Appl. 198, No. 1, (1996), 84-97.

R. Danchin, B. Desjardin, : Existence of solutions for compressible °uidmodels of Korteweg type. Annales de l'IHP, Analyse non lineaire, 18,(2001),97-133. (­ = <n , isotherm)

D. Bresch, B. Desjardin, C.K.Lin: On some compressible °uid model: Ko-rteweg, lubrication and shallow water systems, 2001.

D. Bresch, B. Desjardins, C.-K. Lin. On some compressible °uid models:Korteweg, lubrication and shallow water systems. Commun. Partial Di®er.Equations, 28(3):843-868, Mars 2003.

S. Benzoni-Gavage, R.Danchin, S. Descombes: Well-posednessof one-dimensionalKortewegmodels, preprint 2004

S. Benzoni-Gavage, R. Danchin, S. Descombes: On the well-posedness fortheEuler-Kortewegmodel in several spacedimensions, preprint 2005

M. Kotschote: Strong well-posedness for a Korteweg-type model for thedynamicsof a compressiblenon-isothermal °uid. Preprint Leipzig2006. (Initialboundary value )

1D. Bresch, B. Desjardin, C.K .Lin: On some compressible °uid model:K orteweg, lubrica-tion and shallow water systems, 2001

Danchin, Desjardin :Existence of solutions for compressible °uid models ofKorteweg type. Annales de l'IHP, Analysenon lineaire, 18,(2001), 97-133.

Global existence result for initial data close to stableequilibrium, d=2,3;

local in timeexistence for ½0 ¸ c> 0:

Bresch, Desjardin, Lin 1: Existenceof global weak solutions in energy spacesif ¹ ¢ u is replaced by ¹ div(½D(u));d= 2;3:

J .E. Dunn, J . Serrin: On the thermodynamics of interstitial work. Arch.Rat. Mech. Anal. 88 (1985), 95{133.

H. Hattori, D. Li: Theexistenceof global solutions toa °uid dynamicmodelfor materials for Korteweg type. J . Partial Di®erential Equations 9 (4) (1996)323-342.

H. Hattori, D. Li: Global solutions of a high-dimensional system for Ko-rtewegmaterials. J . Math. Anal. Appl. 198, No. 1, (1996), 84-97.

R. Danchin, B. Desjardin, : Existence of solutions for compressible °uidmodels of Korteweg type. Annales de l'IHP, Analyse non lineaire, 18,(2001),97-133. (­ = <n , isotherm)

D. Bresch, B. Desjardin, C.K.Lin: On some compressible °uid model: Ko-rteweg, lubrication and shallow water systems, 2001.

D. Bresch, B. Desjardins, C.-K. Lin. On some compressible °uid models:Korteweg, lubrication and shallow water systems. Commun. Partial Di®er.Equations, 28(3):843-868, Mars 2003.

S. Benzoni-Gavage, R.Danchin, S. Descombes: Well-posednessof one-dimensionalKortewegmodels, preprint 2004

S. Benzoni-Gavage, R. Danchin, S. Descombes: On the well-posedness fortheEuler-Kortewegmodel in several spacedimensions, preprint 2005

M. Kotschote: Strong well-posedness for a Korteweg-type model for thedynamicsof a compressiblenon-isothermal °uid. Preprint Leipzig2006. (Initialboundary value )

1D. Bresch, B. Desjardin, C.K .Lin: On some compressible °uid model:K orteweg, lubrica-tion and shallow water systems, 2001

Danchin, Desjardin :Existence of solutions for compressible °uid models ofKorteweg type. Annales de l'IHP, Analysenon lineaire, 18,(2001), 97-133.

Global existence result for initial data close to stableequilibrium, d=2,3;

local in timeexistence for ½0 ¸ c> 0:

Bresch, Desjardin, Lin 1: Existenceof global weak solutions in energy spacesif ¹ ¢ u is replaced by ¹ div(½D(u));d= 2;3:

J .E. Dunn, J . Serrin: On the thermodynamics of interstitial work. Arch.Rat. Mech. Anal. 88 (1985), 95{133.

H. Hattori, D. Li: Theexistenceof global solutions toa °uid dynamicmodelfor materials for Korteweg type. J . Partial Di®erential Equations 9 (4) (1996)323-342.

H. Hattori, D. Li: Global solutions of a high-dimensional system for Ko-rtewegmaterials. J . Math. Anal. Appl. 198, No. 1, (1996), 84-97.

R. Danchin, B. Desjardin, : Existence of solutions for compressible °uidmodels of Korteweg type. Annales de l'IHP, Analyse non lineaire, 18,(2001),97-133. (­ = <n , isotherm)

D. Bresch, B. Desjardin, C.K.Lin: On some compressible °uid model: Ko-rteweg, lubrication and shallow water systems, 2001.

D. Bresch, B. Desjardins, C.-K. Lin. On some compressible °uid models:Korteweg, lubrication and shallow water systems. Commun. Partial Di®er.Equations, 28(3):843-868, Mars 2003.

S. Benzoni-Gavage, R.Danchin, S. Descombes: Well-posednessof one-dimensionalKortewegmodels, preprint 2004

S. Benzoni-Gavage, R. Danchin, S. Descombes: On the well-posedness fortheEuler-Kortewegmodel in several spacedimensions, preprint 2005

M. Kotschote: Strong well-posedness for a Korteweg-type model for thedynamicsof a compressiblenon-isothermal °uid. Preprint Leipzig2006. (Initialboundary value )

1D. Bresch, B. Desjardin, C.K .Lin: On some compressible °uid model:K orteweg, lubrica-tion and shallow water systems, 2001Danchin,­Desjardin:­Existence­of­solutions­for­compressible­fluid­

models­of­Korteweg­type.­Annales­de­l'IHP,­Analyse­non­lineaire,­18,(2001),­97-133.­

Global­existence­result­for­initial­data­close­to­stable­equilibrium,­d=2,3;­local­in­time­existence­for­

Bresch,­Desjardin,­Lin:­Existence­of­global­weak­solutions­in­energy­spaces­if­­­­­­­­­­­­­­­­­­Preprint­2002­(?)

H.­Hattori,­D.­Li:­The­existence­of­global­solutions­to­a­fluid­dynamic­model­for­materials­for­Korteweg­type.­J.­Partial­Differential­Equations­9­(4)­(1996)­323-342.

H. Hattori, D. Li: Global solutions of a high-dimensional system for Korteweg materials. J. Math. Anal. Appl. 198, No. 1, (1996), 84-97.

R. Danchin, B. Desjardin, : Existence of solutions for compressible fluid models of Korteweg type. Annales de l'IHP, Analyse nonlineaire, 18,(2001), 97-133.

½0 ¸ c> 0:

¹ ¢ u is replaced by ¹ div(½D(u));d= 2;3

(­ = <n ; isotherm)

Page 12: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

D.­Bresch,­B.­Desjardins,­C.-K.­Lin.­On­some­compressible­fluidmodels:­Korteweg,­lubrication­and­shallow­water­systems.­Commun­Partial­Differ.­Equations,­28(3):843-868,­2003.

S.­Benzoni-Gavage,­R.­Danchin,­S.­Descombes:­Well-posedness­of­one-dimensional­Korteweg­models,­preprint­2004

S.­Benzoni-Gavage,­R.­Danchin,­S.­Descombes:­On­the­well-posedness­for­the­Euler-Korteweg­model­in­several­space­dimensions,­preprint­2005

M.­Kotschote:­Strong­well-posedness­for­a­Korteweg-type­model­for­the­dynamics­of­a­compressible­non-isothermal­fluid.­Preprint­Leipzig­2006.­(Initial­boundary­value)

Page 13: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Numerical results PhD Thesis Dennis Diehl

Page 14: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Navier Stokes K orteweg system:

@t½+r ¢(½v) = 0

@t(½v) + r ¢(½vvt +p(½)I ) = ®¢ v+°"2½r ¢½

Page 15: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Navier Stokes K orteweg system:

@t½+r ¢(½v) = 0

@t(½v) + r ¢(½vvt +p(½)I ) = ®¢ v+°"2½r ¢½

Stabilization:

@t½+r ¢(½v) = ±¢½

@t(½v) + r ¢(½vvt +p(½)I ) = ®¢ v+°"2½r ¢½

Page 16: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Navier Stokes K orteweg system:

@t½+r ¢(½v) = 0

@t(½v) + r ¢(½vvt +p(½)I ) = ®¢ v+°"2½r ¢½

Stabilization:

@t½+r ¢(½v) = ±¢½

@t(½v) + r ¢(½vvt +p(½)I ) = ®¢ v+°"2½r ¢½

Page 17: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

MinimizeZ

­W(½)+"2jr ½j2dx

Euler Lagrange equation static case: ¡ W0(½) +°"2¢½= const:

· = ¡ W0(½) +°"2¢½= const:

Stabilization:

@t½+r ¢(½v) = ±¢½

@t(½v) + r ¢(½vvt +p(½)I ) = ®¢ v+°"2½r ¢½

@t½+r ¢(½v) = ±¢ ·

@t(½v) + r ¢(½vvt +p(½)I ) = ®¢ v+°"2½r ¢½

Page 18: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 19: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 20: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Jump conditions across the interface (static case)

Page 21: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

pl ¡ pv = c· "

Navier Stokes K orteweg system:

@t½+r ¢(½v) = 0

@t(½v) + r ¢(½vvt +p(½)I ) = ®¢ v+°"2½r ¢½

(Luckhaus,­Modica,­Dreyer,­Kraus)

Stationary case:

Page 22: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 23: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 24: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 25: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 26: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 27: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 28: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 29: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 30: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 31: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 32: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 33: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 34: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 35: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 36: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 37: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 38: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations
Page 39: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Navier Stokes K orteweg system(dynamical case):

Page 40: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Jump­conditions:­??????

liquidvapor

Navier Stokes K orteweg system (dynamical case):

@t½+r ¢(½v) = 0

@t(½v) + r ¢(½vvt +p(½)I ) = ®¢ v+°"2½r ¢½

Page 41: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

A ssumptions For a sequence " ! 0weassume that

(1) ½" and v" are smooth solutions of theNSK in ­ T := ­ £ ]0;T[.

(2) ½"(¢;t) ! ½0(¢;t) for all t 2 [0;T] a.e. in ­ ; and inL1(­ ); j½"(x;t)j ·c for all (x;t) 2 ­ T and c does not depend on ".

(3) ½0 has only two values: ¯1;¯2. De neE0(t) := fx 2 ­ j½0(x;t) = ¯1g:

(4) v" ! v0 a.e. in ­ T and v0 is su±ciently smooth in E0 and ­ nE0.

(5) lim"1"

¡"2jr ½" j2+W(½")

¢dx exists uniformly in t.

Navier Stokes K orteweg system (dynamical case):

@t½+r ¢(½v) = 0

@t(½v) + r ¢(½vvt +p(½)I ) = ®¢ v+°"2½r ¢½

Page 42: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Navier Stokes K orteweg system:

@t½+r ¢(½v) = 0

@t(½v) + r ¢(½vvt +p(½)I ) = ¹ ¢ v+°"2½r ¢½

Multiply by a smooth testfunction ψ

Integration by partsZ T

0

Z

­(½"@tà +(½"v" )r Ã)dxdt = 0:

¡Z T

0

Z

­½"v"@tÃ+

¡½v"vt" +p(½")I )

¢r Ãdxdt:

=Z T

0

Z

­

¡¹ v"¢ Ã +°"2½"r ¢½"Ã

¢dxdt:

Z T

0

Z

­(@t½+r ¢(½v))Ãdxdt = 0

Z T

0

Z

­

¡@t(½v) + r ¢(½vvt +p(½)I )

¢Ãdxdt =

Z T

0

Z

­

¡¹ ¢ v+°"2½r ¢½

¢Ãdxdt:

Page 43: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½"@tÃ+(½"v" )r Ã)dxdt = 0:

¡Z T

0

Z

­½"v"@tÃ+

¡½v"vt" +p(½")I )

¢r Ãdxdt:

=Z T

0

Z

­

¡¹ v"¢Ã +°"2½"r ¢½"Ã

¢dxdt:

Page 44: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½"@tÃ+(½"v" )r Ã)dxdt = 0:

¡Z T

0

Z

­½"v"@tÃ+

¡½v"vt" +p(½")I )

¢r Ãdxdt:

=Z T

0

Z

­

¡¹ v"¢Ã +°"2½"r ¢½"Ã

¢dxdt:

RT0

R­ (½0@tà +(½0v0)r Ã) dxdt = 0;

Page 45: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½"@tÃ+(½"v" )r Ã)dxdt = 0:

¡Z T

0

Z

­½"v"@tÃ+

¡½v"vt" +p(½")I )

¢r Ãdxdt:

=Z T

0

Z

­

¡¹ v"¢Ã +°"2½"r ¢½"Ã

¢dxdt:

¡RT0

R­ ½0v0@tÃ+(½0v0vt0+p(½0)I )) r Ãdxdt

RT0

R­ (½0@tà +(½0v0)r Ã) dxdt = 0;

Page 46: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½"@tÃ+(½"v" )r Ã)dxdt = 0:

¡Z T

0

Z

­½"v"@tÃ+

¡½v"vt" +p(½")I )

¢r Ãdxdt:

=Z T

0

Z

­

¡¹ v"¢Ã +°"2½"r ¢½"Ã

¢dxdt:

¡RT0

R­ ½0v0@tÃ+(½0v0vt0+p(½0)I )) r Ãdxdt

RT0

R­ (½0@tà +(½0v0)r Ã) dxdt = 0;

RT0

R­ ¹ v0¢ Ãdxdt

Page 47: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½"@tÃ+(½"v" )r Ã)dxdt = 0:

¡Z T

0

Z

­½"v"@tÃ+

¡½v"vt" +p(½")I )

¢r Ãdxdt:

=Z T

0

Z

­

¡¹ v"¢Ã +°"2½"r ¢½"Ã

¢dxdt:

¡RT0

R­ ½0v0@tÃ+(½0v0vt0+p(½0)I )) r Ãdxdt

RT0

R­ (½0@tà +(½0v0)r Ã) dxdt = 0;

?

RT0

R­ ¹ v0¢ Ãdxdt

Page 48: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½"@tÃ+(½"v" )r Ã)dxdt = 0:

¡Z T

0

Z

­½"v"@tÃ+

¡½v"vt" +p(½")I )

¢r Ãdxdt:

=Z T

0

Z

­

¡¹ v"¢Ã +°"2½"r ¢½"Ã

¢dxdt:

¡RT0

R­ ½0v0@tÃ+(½0v0vt0+p(½0)I )) r Ãdxdt

RT0

R­ (½0@tà +(½0v0)r Ã) dxdt = 0;

=:R

RT0

R­ ¹ v0¢ Ãdxdt

Page 49: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

R : = "2Z T

0

Z

­(½"Ã)r ¢½"dxdt = ¡ "2

Z T

0

Z

­r ¢(½"Ã)¢½"dxdt

= ¡ "2Z T

0

Z

­(@j½"Ãj +½"@j Ãj )¢½"dxdt

= ¡ "2X

k

Z T

0

Z

­(@j½"Ãj +½"@j Ãj )@2k½"dxdt

= "2X

k

Z T

0

Z

­(@k@j½"Ãj +@j½"@kÃj +@k½"@j Ãj +½"@j@kÃj )@k½"dxdt

= "2X

k

Z T

0

Z

­(@k½"@k@j½"Ãj +@k½"@j½"@kÃj +(@k½")2@j Ãj +½"@k½"@j@kÃj )dxdt

Page 50: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

R : = "2X

k

Z T

0

Z

­(@k½"@k@j½"Ãj +@k½"@j½"@kÃj +(@k½")2@j Ãj +½"@k½"@j@kÃj )dxdt

Page 51: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

R : = "2X

k

Z T

0

Z

­(@k½"@k@j½"Ãj +@k½"@j½"@kÃj +(@k½")2@j Ãj +½"@k½"@j@kÃj )dxdt

= "2X

k

Z T

0

Z

­(@k½"@k@j½"Ãj +@k½"@j½"@kÃj +(@k½")2@j Ãj +

12@k½2"@j@kÃj )dxdt

= "2X

k

Z T

0

Z

­(@k½"@k@j½"Ãj +@k½"@j½"@kÃj +(@k½")2@j Ãj ¡

12½2"@j@

2kÃj )dxdt

= "2X

k

Z T

0

Z

­(¡

12(@k½")2@j Ãj +@k½"@j½"@kÃj +(@k½")2@j Ãj ¡

12½2"@j@

2kÃj )dxdt

= "2X

k

Z T

0

Z

­(@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32(@k½")2@j Ãj ¡

12½2"@j@

2kÃj )dxdt

= "2Z T

0

Z

­@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32

µ(@k½")2+

1"2W(½")

¶@j Ãj

¡32"2

W(½")@j Ãj ¡12½2"@j@

2kÃj dxdt

Page 52: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

= "2Z T

0

Z

­@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32

µ(@k½")2+

1"2W(½")

¶@j Ãj

¡32"2

W(½")@j Ãj ¡12½2"@j@

2kÃj dxdt

Page 53: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

= "2Z T

0

Z

­@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32

µ(@k½")2+

1"2W(½")

¶@j Ãj

¡32"2

W(½")@j Ãj ¡12½2"@j@

2kÃj dxdt

Remember the assumptions:

A ssumptions For a sequence " ! 0weassume that

(1) ½" and v" are smooth solutions of theNSK in ­ T := ­ £ ]0;T[.

(2) ½"(¢;t) ! ½0(¢;t) for all t 2 [0;T] a.e. in ­ ; and inL1(­ ); j½"(x;t)j ·c for all (x;t) 2 ­ T and c does not depend on ".

(3) De neE0(t) := fx 2 ­ j½0(x;t) = ¯1g. Thenwehave½0(¢;t) = ¯1 in E0(t)und ½0(¢;t) = ¯2 in ­ ¡ E0(t).

(4) v" ! v0 a.e. in ­ T and v0 is su±ciently smooth in E0 and ­ nE0.

(5) lim"1"

¡"2jr ½" j2+W(½")

¢dx exists uniformly in t.

Page 54: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

= "2Z T

0

Z

­@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32

µ(@k½")2+

1"2W(½")

¶@j Ãj

¡32"2

W(½")@j Ãj ¡12½2"@j@

2kÃj dxdt

Remember the assumptions:

A ssumptions For a sequence " ! 0weassume that

(1) ½" and v" are smooth solutions of theNSK in ­ T := ­ £ ]0;T[.

(2) ½"(¢;t) ! ½0(¢;t) for all t 2 [0;T] a.e. in ­ ; and inL1(­ ); j½"(x;t)j ·c for all (x;t) 2 ­ T and c does not depend on ".

(3) De neE0(t) := fx 2 ­ j½0(x;t) = ¯1g. Thenwehave½0(¢;t) = ¯1 in E0(t)und ½0(¢;t) = ¯2 in ­ ¡ E0(t).

(4) v" ! v0 a.e. in ­ T and v0 is su±ciently smooth in E0 and ­ nE0.

(5) lim"1"

¡"2jr ½" j2+W(½")

¢dx exists uniformly in t.

Page 55: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

= "2Z T

0

Z

­@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32

µ(@k½")2+

1"2W(½")

¶@j Ãj

¡32"2

W(½")@j Ãj ¡12½2"@j@

2kÃj dxdt

Remember the assumptions:

A ssumptions For a sequence " ! 0weassume that

(1) ½" and v" are smooth solutions of theNSK in ­ T := ­ £ ]0;T[.

(2) ½"(¢;t) ! ½0(¢;t) for all t 2 [0;T] a.e. in ­ ; and inL1(­ ); j½"(x;t)j ·c for all (x;t) 2 ­ T and c does not depend on ".

(3) De neE0(t) := fx 2 ­ j½0(x;t) = ¯1g. Thenwehave½0(¢;t) = ¯1 in E0(t)und ½0(¢;t) = ¯2 in ­ ¡ E0(t).

(4) v" ! v0 a.e. in ­ T and v0 is su±ciently smooth in E0 and ­ nE0.

(5) lim"1"

¡"2jr ½" j2+W(½")

¢dx exists uniformly in t.

Page 56: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

= "2Z T

0

Z

­@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32

µ(@k½")2+

1"2W(½")

¶@j Ãj

¡32"2

W(½")@j Ãj ¡12½2"@j@

2kÃj dxdt

Remember the assumptions:

A ssumptions For a sequence " ! 0weassume that

(1) ½" and v" are smooth solutions of theNSK in ­ T := ­ £ ]0;T[.

(2) ½"(¢;t) ! ½0(¢;t) for all t 2 [0;T] a.e. in ­ ; and inL1(­ ); j½"(x;t)j ·c for all (x;t) 2 ­ T and c does not depend on ".

(3) De neE0(t) := fx 2 ­ j½0(x;t) = ¯1g. Thenwehave½0(¢;t) = ¯1 in E0(t)und ½0(¢;t) = ¯2 in ­ ¡ E0(t).

(4) v" ! v0 a.e. in ­ T and v0 is su±ciently smooth in E0 and ­ nE0.

(5) lim"1"

¡"2jr ½" j2+W(½")

¢dx exists uniformly in t.

Page 57: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

= "2Z T

0

Z

­@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32

µ(@k½")2+

1"2W(½")

¶@j Ãj

¡32"2

W(½")@j Ãj ¡12½2"@j@

2kÃj dxdt

Remember the assumptions:

A ssumptions For a sequence " ! 0weassume that

(1) ½" and v" are smooth solutions of theNSK in ­ T := ­ £ ]0;T[.

(2) ½"(¢;t) ! ½0(¢;t) for all t 2 [0;T] a.e. in ­ ; and inL1(­ ); j½"(x;t)j ·c for all (x;t) 2 ­ T and c does not depend on ".

(3) De neE0(t) := fx 2 ­ j½0(x;t) = ¯1g. Thenwehave½0(¢;t) = ¯1 in E0(t)und ½0(¢;t) = ¯2 in ­ ¡ E0(t).

(4) v" ! v0 a.e. in ­ T and v0 is su±ciently smooth in E0 and ­ nE0.

(5) lim"1"

¡"2jr ½" j2+W(½")

¢dx exists uniformly in t.

Page 58: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Lemma (Luckhaus, M odica):

WehaveR ! 0 if " ! 0 and

"2Z T

0

Z

­@k½"@j½"@kÃj (¢;t) ¡ (@k½")2@j Ãj (¢;t)dxdt = "

Z T

0co

Z

¡ t· tÃ(¢;t)nxdHn¡ 1dt+o("):

(1)

R = "2Z T

0

Z

­@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32

µ(@k½")2+

1"2W(½")

¶@j Ãj

¡32"2

W(½")@j Ãj ¡12½2"@j@

2kÃj dxdt

Page 59: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Lemma (Luckhaus, M odica):

WehaveR ! 0 if " ! 0 and

"2Z T

0

Z

­@k½"@j½"@kÃj (¢;t) ¡ (@k½")2@j Ãj (¢;t)dxdt = "

Z T

0co

Z

¡ t· tÃ(¢;t)nxdHn¡ 1dt+o("):

(1)

R = "2Z T

0

Z

­@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32

µ(@k½")2+

1"2W(½")

¶@j Ãj

¡32"2

W(½")@j Ãj ¡12½2"@j@

2kÃj dxdt

Lemma (Luckhaus, M odica):

For " ! 0wehave

"2Z T

0

Z

­@k½"@j½"@kÃj (¢;t) ¡ (@k½")2@j Ãj (¢;t)dxdt

= "Z T

0co

Z

¡ t· tÃ(¢;t)nxdHn¡ 1dt+o(")

and thereforeR ! 0 for " ! 0:

Lemma (Luckhaus, M odica):

For " ! 0wehave

"2Z T

0

Z

­@k½"@j½"@kÃj (¢;t) ¡ (@k½")2@j Ãj (¢;t)dxdt

= "Z T

0co

Z

¡ t· tÃ(¢;t)nxdHn¡ 1dt+o(")

and thereforeR ! 0 for " ! 0:

Page 60: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½"@tÃ+(½"v" )r Ã)dxdt = 0:

¡Z T

0

Z

­½"v"@tÃ+

¡½v"vt" +p(½")I )

¢r Ãdxdt:

=Z T

0

Z

­

¡¹ v"¢Ã +°"2½"r ¢½"Ã

¢dxdt:

" ! 0

Z T

0

Z

­(½0@tÃ+(½0v0)r Ã) dxdt = 0:

¡Z T

0

Z

­½0v0@tÃ+

¡½v0vt0+p(½0)I )

¢r Ãdxdt:

=Z T

0

Z

­(¹ v0¢Ã) dxdt:

Page 61: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½0@tÃ+(½0v0)r Ã) dxdt = 0:

¡Z T

0

Z

­½0v0@tÃ+

¡½v0vt0+p(½0)I )

¢r Ãdxdt:

=Z T

0

Z

­(¹ v0¢Ã) dxdt:

liquidvapor

Page 62: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½0@tÃ+(½0v0)r Ã) dxdt = 0:

¡Z T

0

Z

­½0v0@tÃ+

¡½v0vt0+p(½0)I )

¢r Ãdxdt:

=Z T

0

Z

­(¹ v0¢Ã) dxdt:

liquidvapor

@t½0+r ¢(½0v0) = 0 in E0(t) and in ­ nE0(t)

localize

½0@tv0+r ¢¡½0v0vt0+p(½0)I )

¢= ¹ ¢ v0 in E0(t) and in ­ nE0(t):

Page 63: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½0@tÃ+(½0v0)r Ã) dxdt = 0:

¡Z T

0

Z

­½0v0@tÃ+

¡½v0vt0+p(½0)I )

¢r Ãdxdt:

=Z T

0

Z

­(¹ v0¢Ã) dxdt:

liquidvapor

@t½0+r ¢(½0v0) = 0 in E0(t) and in ­ nE0(t)

½0@tv0+r ¢¡½0v0vt0+p(½0)I )

¢= ¹ ¢ v0 in E0(t) and in ­ nE0(t):

(1)

localize

Jump conditions ????

Page 64: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

liquidvapor

Z T

0

Z

­(½0@tÃ+(½0v0)r Ã) dxdt = 0:

¡Z T

0

Z

­½0v0@tÃ+

¡½v0vt0+p(½0)I )

¢r Ãdxdt:

=Z T

0

Z

­(¹ v0¢Ã) dxdt:

Page 65: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

[½0]nt +[½0v0]nx =0 on ¡ :

liquidvapor

Z T

0

Z

­(½0@tÃ+(½0v0)r Ã) dxdt = 0:

¡Z T

0

Z

­½0v0@tÃ+

¡½v0vt0+p(½0)I )

¢r Ãdxdt:

=Z T

0

Z

­(¹ v0¢Ã) dxdt:

Page 66: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

[½0]nt +[½0v0]nx =0 on ¡ :

liquidvapor

Z T

0

Z

­(½0@tÃ+(½0v0)r Ã) dxdt = 0:

¡Z T

0

Z

­½0v0@tÃ+

¡½v0vt0+p(½0)I )

¢r Ãdxdt:

=Z T

0

Z

­(¹ v0¢Ã) dxdt:

Z

¡

¡[½0v0]ntÃ+[½0v0vt0+p(½0)]nxÃ

¢d¾

=Z

¡(¹ [v0]nxr à ¡ ¹ nx[r v0]Ã) d¾:

Page 67: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

[½0]nt +[½0v0]nx =0 on ¡ :Z

¡

¡[½0v0]ntÃ+[½0v0vt0+p(½0)]nxÃ

¢d¾

=Z

¡(¹ [v0]nxr à ¡ ¹ nx[r v0]Ã) d¾:

Page 68: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

[½0]nt +[½0v0]nx =0 on ¡ :Z

¡

¡[½0v0]ntÃ+[½0v0vt0+p(½0)]nxÃ

¢d¾

=Z

¡(¹ [v0]nxr à ¡ ¹ nx[r v0]Ã) d¾:

[½0v0]nt +[½0v0vt0+p(½0)]nx = ¡ ¹ nx[r v0] on ¡

Use any testfunction Á on ¡ and extend it to a function à on ­ such thatnxr à = 0 in a small layer around ¡ :

Page 69: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

[v0]= 0 on ¡ :

[½0]nt +[½0v0]nx =0 on ¡ :Z

¡

¡[½0v0]ntÃ+[½0v0vt0+p(½0)]nxÃ

¢d¾

=Z

¡(¹ [v0]nxr à ¡ ¹ nx[r v0]Ã) d¾:

[½0v0]nt +[½0v0vt0+p(½0)]nx = ¡ ¹ nx[r v0] on ¡

Use any testfunction Á on ¡ and extend it to a function à on ­ such thatnxr à = 0 in a small layer around ¡ :

Page 70: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Summary

NSK : @t(½v) + r ¢(½vvt +p(½)I ) = ¹ ¢ v+°"2½r ¢½

Page 71: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Summary

Jump conditions: liquid

vapor

NSK : @t(½v) + r ¢(½vvt +p(½)I ) = ¹ ¢ v+°"2½r ¢½

Page 72: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

[v0]= 0 on ¡ :

[½0]nt +[½0v0]nx =0 on ¡ :

[½0v0]nt +[½0v0vt0+p(½0)]nx = ¡ ¹ nx[r v0] on ¡

Summary

Jump conditions: liquid

vapor

NSK : @t(½v) + r ¢(½vvt +p(½)I ) = ¹ ¢ v+°"2½r ¢½

Page 73: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

[v0]= 0 on ¡ :

[½0]nt +[½0v0]nx =0 on ¡ :

[½0v0]nt +[½0v0vt0+p(½0)]nx = ¡ ¹ nx[r v0] on ¡

Summary

Jump conditions: liquid

vapor

No curvature term !

NSK : @t(½v) + r ¢(½vvt +p(½)I ) = ¹ ¢ v+°"2½r ¢½

Page 74: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Different scaling to get the curvature term

Phase field like scaling

Page 75: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

NSK : @t(½v) + r ¢(½vvt +p(½)I ) = ¹ ¢ v+°"2½r ¢½

Page 76: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

In thestatic caseNSK reduces to

r ¢(p(½)I ) = °"2½r ¢½:

NSK : @t(½v) + r ¢(½vvt +p(½)I ) = ¹ ¢ v+°"2½r ¢½

Page 77: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

In the static caseNSK reduces to

r ¢(p(½)I ) = °"2½r ¢½:

This is equivalent to

~W0(½) = °"2¢½+¸" :

Herewehaveused ~W(½) =½Ã(½) and p(½) =½2Ã0(½) .

NSK : @t(½v) + r ¢(½vvt +p(½)I ) = ¹ ¢ v+°"2½r ¢½

Page 78: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

In thestatic caseNSK reduces to

r ¢(p(½)I ) = °"2½r ¢½:

This is equivalent to

~W0(½) = °"2¢½+¸" :

Here we have used ~W(½) = ½Ã(½) and p(½) = ½2Ã0(½) . This is just the EulerLagrangeequationwith theLagrangemultiplier ¸ " of thefollowingminimizationproblem: Minimize

~J "(½) :=Z

­

µ~W(½) +°"2

jr ½j2

2

¶dx (total energy)

under the constraintR­ ½dx =M0 (conservation of mass):

NSK : @t(½v) + r ¢(½vvt +p(½)I ) = ¹ ¢ v+°"2½r ¢½

Page 79: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

In thestatic caseNSK reduces to

r ¢(p(½)I ) = °"2½r ¢½:

This is equivalent to

~W0(½) = °"2¢½+¸" :

Here we have used ~W(½) = ½Ã(½) and p(½) = ½2Ã0(½) . This is just the EulerLagrangeequationwith theLagrangemultiplier ¸ " of thefollowingminimizationproblem: Minimize

~J "(½) :=Z

­

µ~W(½) +°"2

jr ½j2

2

¶dx (total energy)

under the constraintR­ ½dx =M0 (conservation of mass):

d‘Alambert variation principle

NSK : @t(½v) + r ¢(½vvt +p(½)I ) = ¹ ¢ v+°"2½r ¢½

Page 80: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Minimize

~J "(½) :=Z

­

µ~W(½) +°"2

jr ½j2

2

¶dx (total energy)

under the constraintR­ ½dx =M0 (conservation of mass):

New scaling: Instead of

Page 81: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Minimize

~J "(½) :=Z

­

µ~W(½) +°"2

jr ½j2

2

¶dx (total energy)

under the constraintR­ ½dx =M0 (conservation of mass):

New scaling: Instead of

consider

Minimize

J "(½) :=1"

Z

­

µ~W(½) +°"2

jr ½j2

2

¶dx (total energy)

under the constraintR­ ½dx =M0 (conservation of mass):

Page 82: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

~J "(½) :=Z

­

µ~W(½) +°"2

jr ½j2

2

¶dx (total energy)

NSK : @t(½v) + r ¢(½vvt +p(½)I ) = ¹ ¢ v+°"2½r ¢½

d‘Alambert variation principle

Page 83: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

~J "(½) :=Z

­

µ~W(½) +°"2

jr ½j2

2

¶dx (total energy)

J "(½) :=1"

Z

­

µ~W(½) +°"2

jr ½j2

2

¶dx (total energy)

d‘Alambert variation principle

d‘Alambert variation principle

NSK : @t(½v) + r ¢(½vvt +p(½)I ) = ¹ ¢ v+°"2½r ¢½

NSK : @t(½v) + r ¢(½vvt +p"(½)I ) = ¹ ¢ v+°"½r ¢½

Page 84: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

~J "(½) :=Z

­

µ~W(½) +°"2

jr ½j2

2

¶dx (total energy)

J "(½) :=1"

Z

­

µ~W(½) +°"2

jr ½j2

2

¶dx (total energy)

d‘Alambert variation principle

d‘Alambert variation principle

p"(½) := 1"p(½) +

1¡ "" d1

NSK : @t(½v) + r ¢(½vvt +p(½)I ) = ¹ ¢ v+°"2½r ¢½

NSK : @t(½v) + r ¢(½vvt +p"(½)I ) = ¹ ¢ v+°"½r ¢½

Page 85: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

@t½+r ¢(½v) = 0

@t(½v) + r ¢(½vvt +p"(½)I ) = ¹ ¢ v+°"½r ¢½:

Variational formulation:Z T

0

Z

­(@t½+r ¢(½v))Ãdxdt = 0

Z T

0

Z

­

¡@t(½v) + r ¢(½vvt +p"(½)I )

¢Ãdxdt =

Z T

0

Z

­(¹ ¢ v+°"½r ¢½)Ãdxdt:

Now consider for " ! 0 :

Z T

0

Z

­(½"@tà +(½"v")r Ã) dxdt = 0:

¡Z T

0

Z

­½"v"@tÃ+

¡½v"vt" +p"(½")I )

¢r Ãdxdt:

=Z T

0

Z

­(¹ v"¢ Ã +°"½"r ¢½"Ã)dxdt:

Integration by parts:

Page 86: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½"@tà +(½"v")r Ã) dxdt = 0:

¡Z T

0

Z

­½"v"@tÃ+

¡½v"vt" +p"(½")I )

¢r Ãdxdt:

=Z T

0

Z

­(¹ v"¢ Ã +°"½"r ¢½"Ã)dxdt:

RT0

R­ (½0@tà +(½0v0)r Ã) dxdt = 0;

Page 87: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½"@tà +(½"v")r Ã) dxdt = 0:

¡Z T

0

Z

­½"v"@tÃ+

¡½v"vt" +p"(½")I )

¢r Ãdxdt:

=Z T

0

Z

­(¹ v"¢ Ã +°"½"r ¢½"Ã)dxdt:

RT0

R­ (½0@tà +(½0v0)r Ã) dxdt = 0;

Page 88: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½"@tà +(½"v")r Ã) dxdt = 0:

¡Z T

0

Z

­½"v"@tÃ+

¡½v"vt" +p"(½")I )

¢r Ãdxdt:

=Z T

0

Z

­(¹ v"¢ Ã +°"½"r ¢½"Ã)dxdt:

RT0

R­ (½0@tà +(½0v0)r Ã) dxdt = 0;

?

?

Page 89: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½"@tà +(½"v")r Ã) dxdt = 0:

¡Z T

0

Z

­½"v"@tÃ+

¡½v"vt" +p"(½")I )

¢r Ãdxdt:

=Z T

0

Z

­(¹ v"¢ Ã +°"½"r ¢½"Ã)dxdt:

1"R : =

Z T

0

Z

­°"½"r ¢½"Ã dxdt

= "Z T

0

Z

­@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32

µ(@k½")2 ¡

1"2W(½")

¶@j Ãj

+32"2

W(½")@j Ãj ¡12½2"@j@

2kÃj dxdt:

As before:

Page 90: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

1"R : =

Z T

0

Z

­°"½"r ¢½"Ã dxdt

= "Z T

0

Z

­@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32

µ(@k½")2 ¡

1"2W(½")

¶@j Ãj

+32"2

W(½")@j Ãj ¡12½2"@j@

2kÃj dxdt:

Page 91: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Lemma (Luckhaus, M odica):

For " ! 0wehave

"2Z T

0

Z

­@k½"@j½"@kÃj (¢;t) ¡ (@k½")2@j Ãj (¢;t)dxdt

= "Z T

0co

Z

¡ t· tÃ(¢;t)nxdHn¡ 1dt+o(")

and thereforeR ! 0:

1"R : =

Z T

0

Z

­°"½"r ¢½"Ã dxdt

= "Z T

0

Z

­@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32

µ(@k½")2 ¡

1"2W(½")

¶@j Ãj

+32"2

W(½")@j Ãj ¡12½2"@j@

2kÃj dxdt:

Page 92: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Lemma (Luckhaus, M odica):

For " ! 0wehave

"2Z T

0

Z

­@k½"@j½"@kÃj (¢;t) ¡ (@k½")2@j Ãj (¢;t)dxdt

= "Z T

0co

Z

¡ t· tÃ(¢;t)nxdHn¡ 1dt+o(")

and thereforeR ! 0:

1"R : =

Z T

0

Z

­°"½"r ¢½"Ã dxdt

= "Z T

0

Z

­@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32

µ(@k½")2 ¡

1"2W(½")

¶@j Ãj

+32"2

W(½")@j Ãj ¡12½2"@j@

2kÃj dxdt:

o(1)

Lemma Luckhaus Modica

Page 93: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Lemma (Luckhaus, M odica):

For " ! 0wehave

"2Z T

0

Z

­@k½"@j½"@kÃj (¢;t) ¡ (@k½")2@j Ãj (¢;t)dxdt

= "Z T

0co

Z

¡ t· tÃ(¢;t)nxdHn¡ 1dt+o(")

and thereforeR ! 0:

1"R : =

Z T

0

Z

­°"½"r ¢½"Ã dxdt

= "Z T

0

Z

­@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32

µ(@k½")2 ¡

1"2W(½")

¶@j Ãj

+32"2

W(½")@j Ãj ¡12½2"@j@

2kÃj dxdt:

o(1)

Lemma Luckhaus Modica

o(1)

Page 94: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Lemma (Luckhaus, M odica):

For " ! 0wehave

"2Z T

0

Z

­@k½"@j½"@kÃj (¢;t) ¡ (@k½")2@j Ãj (¢;t)dxdt

= "Z T

0co

Z

¡ t· tÃ(¢;t)nxdHn¡ 1dt+o(")

(and thereforeR ! 0:)

1"R : =

Z T

0

Z

­°"½"r ¢½"Ã dxdt

= "Z T

0

Z

­@k½"@j½"@kÃj ¡ (@k½")2@j Ãj +

32

µ(@k½")2 ¡

1"2W(½")

¶@j Ãj

+32"2

W(½")@j Ãj ¡12½2"@j@

2kÃj dxdt:

o(1)

Lemma Luckhaus Modica

O(ε)

?

Page 95: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Consider:Z T

0

Z

­

32"W(½")@j Ãj dxdt

We need several steps:

² Á(s) =Rs0

qW (r )2 dr, w" = Á±½" and w0 =Á±½0:

² lim"! 0R­

1"W(½"(x;t))Ãdx = lim"! 0

"2jr ½"(x;t)j

2Ãdx

= lim"! 0R­ jr w" jÃdx (HT)

² lim"! 0R­ Ãr w"dx = ¡ lim"! 0

R­ r Ãw"dx = ¡

R­ w0r Ãdx

= c0R¡ Ã(x)º0dHn¡ 1

² lim"! 0R­ Ã(x)jr w"(x)jdx = lim"! 0

R­ F (x;r w"(x))dx =

R­ F (x;w0(x))djDw0j

=R­ Ã(x)jw0(x)jdjDw0j = c0

R¡ tÃ(x)jnjdHn¡ 1 = c0

R¡ tÃ(x)dHn¡ 1: (LM)

² lim"! 0R­

32"W(½")@j Ãj dxdt = 3

2c0R¡ t@j Ãj (x)dHn¡ 1:

Page 96: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

lim"! 0

Z T

0

Z

­°"½"r ¢½"Ã dxdt =

Z T

0co

Z

¡ t· tÃ(¢;t)nxdHn¡ 1dt+

32c0

Z T

0

Z

¡ t@j Ãj (x)dHn¡ 1:

SummaryZ T

0

Z

­(½"@tà +(½"v")r Ã) dxdt = 0:

¡Z T

0

Z

­½"v"@tÃ+

¡½v"vt" +p"(½")I )

¢r Ãdxdt:

=Z T

0

Z

­(¹ v"¢ Ã +°"½"r ¢½"Ã)dxdt:

By an additional assumption wehave

Z T

0

Z

­p"(½")r Ãdxdt !

Z T

0

Z

­p(x;t)r Ãdxdt

for somep which is smooth in each phase.

Thereforewecan go to the limit " ! 0:

Page 97: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½0@tà +(½0v0)r Ã)dxdt = 0

¡Z T

0

Z

­½0v0@tà +

¡½v0vt0+p(x;t)I )

¢r Ãdxdt =

Z T

0

Z

­¹ v0¢Ãdxdt+

=Z T

0co

Z

¡ t

· tÃ(¢;t)nxdHn¡ 1dt+32c0

Z T

0

Z

¡ t

@j Ãj (x)dHn¡ 1:

liquidvapor

@t½0+r ¢(½0v0) = 0 in E0(t) and in ­ nE0(t)

localize

½0@tv0+r ¢¡½0v0vt0+p(½0)I )

¢= ¹ ¢ v0 in E0(t) and in ­ nE0(t):

[½0]nt +[½0v0]nx = 0 on ¡ :

Page 98: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

­(½0@tà +(½0v0)r Ã)dxdt = 0

¡Z T

0

Z

­½0v0@tà +

¡½v0vt0+p(x;t)I )

¢r Ãdxdt =

Z T

0

Z

­¹ v0¢Ãdxdt+

=Z T

0co

Z

¡ t

· tÃ(¢;t)nxdHn¡ 1dt+32c0

Z T

0

Z

¡ t

@j Ãj (x)dHn¡ 1:

liquidvapor

localize

Z T

0

Z

¡ t

¡[½0v0]ntÃ+[½0v0vt0+p(x;t)]nxÃ

¢d¾

=Z T

0

Z

¡ t(¹ [v0]nxr à ¡ ¹ nx[r v0]Ã) d¾+

Z T

0co

Z

¡ t· tÃ(¢;t)nxdHn¡ 1dt

+32c0

Z T

0

Z

¡ t

@j Ãj (x)dHn¡ 1:

Page 99: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

¡ t

¡[½0v0]ntÃ+[½0v0vt0+p(x;t)]nxÃ

¢d¾

=Z T

0

Z

¡ t(¹ [v0]nxr à ¡ ¹ nx[r v0]Ã) d¾+

Z T

0co

Z

¡ t· tÃ(¢;t)nxdHn¡ 1dt

+32c0

Z T

0

Z

¡ t

@j Ãj (x)dHn¡ 1:

Sincer à = (nxr Ã)nx +(¿xr Ã)¿x

wealso have@iÃk = nxj@j Ãknxi +¿xj@j Ãk¿xi

and therefore

r ¢Ã = @iÃi =nxj@j Ãinxi +¿xj@j Ãi¿xi = nxr Ãinxi +(¿r Ãi )¿xi= nxr Ãinxi +r ¡ t ¢Ã

wherer ¡ t ¢Ã := (¿r Ãi )¿xi denotes thetangential divergenceto thesurface¡ t.

Page 100: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

32c0

Z T

0

Z

¡ t@j Ãj (x)dHn¡ 1:

r ¢Ã = @iÃi =nxj@j Ãinxi +¿xj@j Ãi¿xi = nxr Ãinxi +(¿r Ãi )¿xi= nxr Ãinxi +r ¡ t ¢Ã

wherer ¡ t ¢Ã := (¿r Ãi )¿xi denotes thetangential divergenceto thesurface¡ t.Due to thespecial choiceof the testfunction à wehavenxr Ãi = 0and

@iÃi = r ¡ t ¢Ã:

Using theGauss theoremon surfaces weobtainZ

¡ t@j Ãj (x)dHn¡ 1 =

Z

¡ tr ¡ t ¢ÃdHn¡ 1 =

Z

¡ tr ¡ t ¢nxÃnxdHn¡ 1

=Z

¡ t· tÃnxdHn¡ 1:

Page 101: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

¡ t

¡[½0v0]ntà +[½0v0vt0+p(x;t)]nxÃ

¢d¾

=Z T

0

Z

¡ t

(¹ [v0]nxr à ¡ ¹ nx[r v0]Ã) d¾+Z T

0co

Z

¡ t

· tÃ(¢;t)nxdHn¡ 1dt

+32c0

Z T

0

Z

¡ t

@j Ãj (x)dHn¡ 1:

Z

¡ t@j Ãj (x)dHn¡ 1 =

Z

¡ tr ¡ t ¢ÃdHn¡ 1 =

Z

¡ tr ¡ t ¢nxÃnxdHn¡ 1

=Z

¡ t· tÃnxdHn¡ 1:

Z T

0

Z

¡ t

¡[½0v0]ntÃ+[½0v0vt0+p(x;t)]nxÃ

¢d¾

= ¡Z T

0

Z

¡ t¹ nx[r v0]Ãd¾+

52c0

Z T

0

Z

¡ t· tÃnxdHn¡ 1

Page 102: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Z T

0

Z

¡ t

¡[½0v0]ntÃ+[½0v0vt0+p(x;t)]nxÃ

¢d¾

= ¡Z T

0

Z

¡ t¹ nx[r v0]Ãd¾+

52c0

Z T

0

Z

¡ t· tÃnxdHn¡ 1

[½0v0]nt +[½0v0vt0+p(x;t)]nx = ¡ ¹ nx[r v0]+52co· tnx

Page 103: Jump conditions across  phase boundaries for the Navier-Stokes-Korteweg equations

Conclusion

• Introduction, numerical experiments for the NSK system

• Jump conditions across the interface for NSK, static case: no curvature term

• The pressure jump for the incompressible Navier-Stokes equations: curvature term

• Low Mach number limit for the NSK system: curvature term

• NSK system dynamical case: no curvature term• Phase field like scaling: curvature term