21
K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING V p + v nxv

K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Embed Size (px)

DESCRIPTION

Outlook ITER - fusion energy Why? Methods of the analysis C lassical treatment of the collision problem - Trajectory Monte Carlo method Search for Fermi-shuttle ionization Search for Fermi-shuttle ionization Hot electron generation - Examples - C + + Ne - Al q+ + He - N + + Ar - Universal functionl form? Summary

Citation preview

Page 1: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

K. Tőkési

1Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU

ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING 

V

p

+

vnxv

Page 2: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Collaborators

D. Tskhakaya D. Coster

Max-Planck-Institut für Plasmaphysik, Garching, German, EU

Institute for Theoretical Physics University of Innsbruck, Innsbruck, Austria, EU

Page 3: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Outlook• ITER - fusion energy • Why?• Methods of the analysis Classical treatment of the collision problem - Trajectory Monte Carlo method• Search for Fermi-shuttle ionizationSearch for Fermi-shuttle ionizationHot electron generationHot electron generation - Examples - C+ + Ne

- Alq+ + He - N+ + Ar

- Universal functionl form? • Summary

Page 4: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

ITER

Page 5: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Wide range of atomic data are needed by the ITM-TF (transport, ionization, capture)

Page 6: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Generate energetic electrons

Page 7: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Ping-pong game: heavy paddle – light ballElastic scattering:

mM

VBefore:

MV’ m

vAfter:

mvMVMV '2

212

212

21 ' mvMVMV

Momentum conservation:

Energy conservation:

MmVv

MmMmVV

/112

/1/1'

The final velocity of the light particle in the laboratory frame

Large energy gain

Page 8: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Energy gain in ping-pong game

Projectile velocity (V)EV=0.5 me V2

kicks: 1 2 3 4 5ball velocity: 2V 4V 6V 8V 10Vball energy: 4 EV 16 EV 36 EV 64 EV 100 EV

Page 9: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Charge particles in moving magnetic fields

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B1

B2

Page 10: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Pioneer: E. Fermi, Phys Rev. 75 (1949)

Pierre Auger project - Argentina 1600 detectors in 3000 km2

Can it be o

bserved in

an atomic scale ?

Page 11: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Ionization in ion-atom collisions

Description:

ZP/ZT

vP/ve

1

0.1 1 10

MO

PWBA

0.1

10

CDW

adiabatic fast

Distorted wawe approximations

Perturbative methods

Molecular development

Coupled channels calculations

?

Non-perturbative models:Classical treatment

Exact quantum models, e.g.,one dimensional „scattering” on a delta potential

Surprise (Wang et al.,1991):

2V

2V

4V

4V

6V

6V

Page 12: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

• Classical nonperturbative method – „theoretical experiment”• Treats the many-body interactions – multiple scattering model

3-body CTMC approach

1/ 1)1((r) where,r

1)()1(V(r)

dreHdrZ

Model potential:

Target nucleus

electron

Projectile

V(rTP)

V(rTe)

V(rPe)

v Specific for the present work:-Screened core potentials for both partners (analytic GSZ model pot.)

-Strategies for extracting the relevant information • a three-body balance is bound by E and p conservation;• final-state kinematics does not provide information about the mechanism

Page 13: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Example - advertisementDoubly differential cross sections for ionization of neon by 2.4 MeV C+ ions.

θ= 130°

Energy (eV)10 100 1000

d2 /d

Ed

(cm

2 /eV

/sr)

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

measurementtarget ionization

Energy (eV)10 100 1000

d2 /d

Ed

(cm

2 /eV

/sr)

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

measurement

Energy (eV)10 100 1000

d2 /d

Ed

(cm

2 /eV

/sr)

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

measurementtarget ionizationProjectile Loss

Energy (eV)10 100 1000

d2 /d

Ed

(cm

2 /eV

/sr)

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

measurementtarget ionizationProjectile LossTarget ion + Projectile loss

Page 14: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

C+ + Ne

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryCTMC

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryCTMC

Energy (eV)

0.01 0.1 1 10 100 1000 10000

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryExperimentCTMC

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryCTMC

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryCTMC

Energy (eV)

0.01 0.1 1 10 100 1000 10000

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryExperimentCTMC

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryCTMC

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryCTMC

Energy (eV)

0.01 0.1 1 10 100 1000 10000

d/d

E (c

m2 /e

V)

1e-24

1e-23

1e-22

1e-21

1e-20

1e-19

1e-18

1e-17

1e-16

Binary theoryExperimentCTMC

0.8 MeV C+ 1.2 MeV C+ 2.4 MeV C+

Tar

get

ioni

zatio

nPr

ojec

tile

io

niza

tion

Tar

get a

nd

proj

ectil

e io

niza

tion

Page 15: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Observation of the Fermi-shuttle process in the angular integrated electron spectra. Separation of multiple scattering components.

1.2 MeV C+ + Ne

Energy (eV)100 1000

Cro

ss se

ctio

n ra

tio

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

Experiment / binary theoryCTMC / binary theory

2.4 MeV C+ + Ne

Energy (eV)100 1000

Cro

ss se

ctio

n ra

tio0.0

0.5

1.0

1.5

2.0

2.5

3.0

Experiment / binary theoryCTMC / binary theory

2V 3V 2V

Page 16: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Doubly differential cross sections for ionization of helium by 100 and 200 keV Al3+ ions.

Page 17: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Doubly differential cross sections for ionization of helium by 100 keV Al+ ions.

Page 18: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Slow ion impact (>98% ping-pong)

Experiment

HMI Berlin

CTMC

Debrecen

Page 19: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Long ping-pong game (15 keV N+ + Ar) P-T-P-T-P-T-P-T-P-T

t (a.u.)88 90 92 94

z (a

.u.)

-6

-4

-2

0

2

4

6

8

Ele

ctro

n en

ergy

(a.u

.)

-6

-4

-2

0

2

4

6

8

target nucleusprojectileelectronEnergy (a.u.)

P PP P P

T T T T T

Page 20: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Hopefully this talk has given • An indication of the needs of the fusion community for Atomic data.• Some sense of new developments needs.

-Classical treatments of the atomic collisions reproduce the electron emission spectra.

- The signature of the Fermi shuttle type ionization is identified in the electron spectra.

-Fermi-shuttle multiple scattering is significant or dominant for slow collisions.

Generate energetic electrons

Electron emission in low energy ion-matter interactions might be governed by multiple scattering.

Conclusions

Page 21: K. Tőkési 1 Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Debrecen, Hungary, EU ATOMIC DATA FOR INTEGRATED TOKAMAC MODELLING

Thank you!