Kaplan-Turbines-Slides.pdf

Embed Size (px)

Citation preview

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    1/28

    Kaplan turbine

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    2/28

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    3/28

    Jebba, Nigeria

    *Q = 376 m3/s

    *H = 27,6 m*P = 96 MW

    D0 = 8,5 m

    De = 7,1 m

    Di = 3,1 mB0 = 2,8 m

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    4/28

    Machicura, CHILE

    *Q = 144 m3/

    *H = 36,7 m*P = 48 MW

    D0 = 7,2 mDe = 4,2 m

    Di = 1,9 m

    B0 = 1,3 m

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    5/28

    Outletdraft tube

    Outletrunner

    Inletrunner

    Outletguide vane

    Inlet

    guide vane

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    6/28

    Hy d r a

    u lic e f f

    ic i e nc y

    h

    Flow rate Q

    Runner blade angle

    = constant

    Hydraulic efficiency

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    7/28

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    8/28

    Hill chart

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    9/28

    c1

    v1

    u1

    c2 v2

    u2

    Hg

    cucu 2u21u1h

    =

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    10/28

    Pressure distribution and

    torque

    LiftLift

    DragDrag

    Torque

    Arm

    LL

    DD

    c

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    11/28

    LChord4

    FLift

    FDrag

    v

    AVCF

    AVCF

    DD

    LL

    =

    =

    2

    2

    2

    1

    2

    1

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    12/28

    Blade profile data

    L

    D

    C

    C

    Angle of attack

    Angle of attackAngle of attack

    Average relativeAverage relative

    velocityvelocity

    v

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    13/28

    Pressure distribution and

    torque

    Pressure side

    Suction side

    Cord length, l0,24 l

    Single profile

    Cascade

    The pressure at the outlet is lower for a cascade than

    for a single profile. The cavitation performance will

    therefore be reduced in a cascade.

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    14/28

    Radial distribution of the

    blade profile

    CL =Lift coefficient for a cascade

    CL1 =Lift coefficient for a single profile

    The ratio t/l influences the lift coefficient in a

    cascade. The cord length for a blade will therefore

    increase when the radius becomes increase

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    15/28

    Radial distribution of the

    blade profile

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    16/28

    Flow in the axial plane

    The figure shows blades with two different design

    of the blade in radial direction. This is because itwill influence the secondary flow in the radial

    direction

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    17/28

    Main dimension of a

    Kaplan turbine

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    18/28

    n

    o Q=

    1 . 5

    C m l = 0 . 1 2 + 0 . 1 8 0

    C

    m

    l

    2 . 0

    0

    0

    0 . 5

    ( t i l n r m e t )

    1 . 0

    2 . 5 3 . 0

    ( )

    m1

    n

    m1

    22

    n

    c

    4QD

    c4

    dDQ

    =

    =

    Diameter of the runner

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    19/28

    Height of the guide vanes

    and runner diameter

    0 . 4

    0 . 3

    3 0 0 4 0 0n s

    B / D0

    d / D

    d

    /D

    ,

    B

    /D

    0

    5 0 0 7 0 06 0 0 8 0 0 9 0 0

    0 . 5

    0 . 6

    0 . 7

    45

    n

    s

    H

    Pnn =

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    20/28

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    21/28

    Runaway speed

    2

    3

    1

    6

    0

    2

    2 . 2

    2 . 4

    2 . 6

    0 . 5 1 . 0 2 . 0 3 . 0

    5

    4

    k a v i t a s j o n s k o e f f i s i e n t

    R

    u

    s

    n

    in

    g

    s

    ta

    ll/n

    o

    rm

    a

    ltu

    rta

    ll

    V o it h

    Cavitation coefficient

    Runaw

    aysp

    eed

    H

    H10 S=

    The figure shows different runaway speed at

    different runner blade openings. The runaway speed

    is dependent of the cavitation as shown in the figur

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    22/28

    Hill chart

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    23/28

    Example

    P = 16,8 MW

    H = 16 mQn = 120 m

    3/s

    n = 125 rpm

    Find the dimensions D, d and Bo

    Given data:

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    24/28

    93,178,674,0Qn

    o ===

    sm7,171682,92Hg2 ==

    srad1,13

    60

    2125

    60

    2n=

    =

    =

    1m74,0

    sm7,17

    srad1,13

    Hg2

    ==

    =

    2

    3

    nm78,6

    sm7,17

    sm120

    Hg2

    QQ ==

    =

    Speed number:

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    25/28

    Diameter, D:

    467,018,012,01 =+=o

    mc

    mc

    Q

    Dm

    n

    3,4467,0

    478,64

    1 =

    =

    =

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    26/28

    Diameter, d:

    59016

    22826125

    4545===

    m

    Hprpm

    H

    Pnn

    n

    s

    0 . 4

    0 . 3

    3 0 0 4 0 0

    n s

    B / D0

    d / D

    d

    /D

    ,

    B

    /D

    0

    5 0 0 7 0 06 0 0 8 0 0 9 0 0

    0 . 5

    0 . 6

    0 . 7

    m9,145,0Dd45,0D

    d===

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    27/28

    Height, B:

    0 . 4

    0 . 3

    3 0 0 4 0 0

    n s

    B / D0

    d / D

    d

    /D

    ,

    B

    /D

    0

    5 0 0 7 0 06 0 0 8 0 0 9 0 0

    0 . 5

    0 . 6

    0 . 7

    m76,141,0DB41,0DB

    OO ===

  • 7/30/2019 Kaplan-Turbines-Slides.pdf

    28/28

    Number of vanes, z:

    95,0t

    l

    =

    5z =

    Nu

    mb

    erofb

    lade

    s

    z