8
matics of 3- or 2-dimensional moti z x y v 1 v 2 v Position vector: z y x i z i y i x r Average velocity: t r t t r r v 1 2 1 2 Instantaneous velocity: z y x i dt dz i dt dy i dt dx dt r d t r v lim Average acceleration: t v t t v v a 1 2 1 2 Instantaneo us acceleratio n: 2 2 lim dt r d dt v d t v a 0 t 0 t z y x i dt z d i dt y d i dt x d a 2 2 2 2 2 2 a a a || a || magnitude of velocity a direction of velocity

Kinematics of 3- or 2-dimensional motion

Embed Size (px)

DESCRIPTION

Kinematics of 3- or 2-dimensional motion. z. Position vector:. Average velocity:. Instantaneous velocity:. y. x. Average acceleration:. Instantaneous acceleration:. a || → magnitude of velocity a ┴ → direction of velocity. Equations of 3-D Kinematics for Constant Acceleration. - PowerPoint PPT Presentation

Citation preview

Kinematics of 3- or 2-dimensional motionz

x y

v

1v

2v

Position vector: zyx iziyixr

Average velocity:t

r

tt

rrv

12

12

Instantaneous velocity:

zyx idt

dzi

dt

dyi

dt

dx

dt

rd

t

rv

lim

Average acceleration:t

v

tt

vva

12

12

Instantaneous acceleration: 2

2

limdt

rd

dt

vd

t

va

0t

0t

zyx idt

zdi

dt

ydi

dt

xda

2

2

2

2

2

2

aaa

||

a|| → magnitude of velocitya┴ → direction of velocity

Equations of 3-D Kinematics for Constant Acceleration

)1( tavv

0

)2( tvv

rr

2

00

)3( 200 2

1tatvrr

)4( )(2 020

2 rravv

Result: 3-D motion with constant acceleration is a superposition of three independent motions along x, y, and z axes.

a

Projectile Motionax=0 → vx=v0x=constay= -g → vy= voy- gtx = x0 + vox ty = yo + voy t – gt2/2v0x= v0 cos α0 v0y= v0 sin α0 tan α = vy / vx Exam Example 6: Baseball Projectile Data: v0=22m/s, α0=40o

x0 y0 v0x v0y ax ay x y vx vy t

0 0 ? ? 0 -9.8m/s2 ? ? ? ? ?Find: (a) Maximum height h;(b) Time of flight T;(c) Horizontal range R; (d) Velocity when ball hits the ground

Solution: v0x=22m/s·cos40o=+17m/s; v0y=22m/s·sin40o=+14m/s

(a)vy=0 → h = (vy2-v0y

2) / (2ay)= - (14m/s)2 / (- 2 · 9.8m/s2) = +10 m(b)y = (v0y+vy)t / 2 → t = 2y / v0y= 2 · 10m / 14m/s = 1.45 s; T = 2t =2.9 s (c)R = x = v0x T = 17 m/s · 2.9 s = + 49 m (d)vx = v0x , vy = - v0y

(examples 3.7-3.8, problems 3.12)

Motion in a Circle(a)Uniform circular motion: v = const

(b) Non-uniform circular motion: v ≠ const

Centripetal acceleration:

r

v

t

v

r

tv

r

r

v

v

r

v

r

r

t

v

dt

vdaa radc

2

2

lim

Magnitude: ac = v2 / rDirection to center: rr /

dt

vda

r

vaa radc

tan

2

;

0t

Exam Example 7: Ferris Wheel (problems 3.29)

Data: R=14 m, v0 =3 m/s, a|| =0.5 m/s2

Find:(a) Centripetal acceleration(b) Total acceleration vector(c) Time of one revolution T

Solution:(a) Magnitude: ac =a┴ = v2 / rDirection to center: rr /

(b)

)/(tan/tan ||1

||

22||||

aaaa

aaaaaa

||a

a

a

θ

(c)

||

||200

02||

||0

4

022

)2/(2

a

RavvT

RTvTa

TavTvTR

Relative Velocity

c

Flying in acrosswind

Correcting for a crosswind

Exam Example 8: Relative motion of a projectile and a target (problem 3.56)

Data: h=8.75 m, α=60o, vp0 =15 m/s, vtx =-0.45 m/s

0

y

x

0pv

tv

Find: (a) distance D to the target at the moment of shot, (b) time of flight t, (c) relative velocity at contact.

Solution: relative velocity(c) Final relative velocity:

(b) Time of flight(a) Initial distance

tp vvv

)(60cos 0

00 txptxxpx vvvvv ghvvghvvEqKinematic ppyyppy 2sin2)4.( 22

02

02

gvvgvt ppypy /)sin(/ 0 tvD x

Principles of Special Theory of Relativity (Einstein

1905):1. Laws of Nature are invariant for all inertial frames of reference. (Mikelson-Morly’s experiment (1887): There is no “ether wind” ! )2. Velocity of light c is the same for all inertial frames and sources.

Relativistic laws for coordinates transformation and addition of velocities are not Galileo’s ones:

Contraction of length:

Slowing down of time: Twin paradox

Slowing and stopping light in gases (predicted at Texas A&M)

y y’

x

x’

V

v

xvyv

22

2

22 /1

/,

/1 cV

cVxtt

cV

tVxx

2

22

2 /1

/1,

/1 cVv

cVvv

cVv

Vvv

x

yy

x

xx

22 /1 cVxx

22 /1 cVtt

Proved by Fizeau experiment (1851)of light dragging by water )/( ncv

Lorentztransformation