25
First Results from a Test Bench for Very High Resolution Small Animal PET Using Solid-State Detectors Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA The University of Michigan Ann Arbor, Michigan USA CERN Geneva, Switzerland Instituto de Física Corpuscular / CSIC Valencia, Spain Institut Jozef Stefan Ljubljana, Slovenia Ideas ASA Oslo, Norway

Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

  • Upload
    cindy

  • View
    46

  • Download
    0

Embed Size (px)

DESCRIPTION

First Results from a Test Bench for Very High Resolution Small Animal PET Using Solid-State Detectors. Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA The University of Michigan Ann Arbor, Michigan USA CERN Geneva, Switzerland - PowerPoint PPT Presentation

Citation preview

Page 1: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

First Results from a Test Bench forVery High Resolution Small Animal PET

Using Solid-State DetectorsKlaus Honscheid

for

The CIMA CollaborationThe Ohio State University

Columbus, Ohio USA

The University of MichiganAnn Arbor, Michigan USA

CERNGeneva, Switzerland

Instituto de Física Corpuscular / CSIC Valencia, Spain

Institut Jozef StefanLjubljana, Slovenia

Ideas ASAOslo, Norway

Page 2: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Resolution Limitations for Conventional PET

Scintillator

~ 1 cm

Inter-Crystal Scattering Depth of Interaction Uncertainty

• Multiple Interactions• Energy deposited over a volume• ~ 1 cm mean path

• Penetration into crystals widens LOR

Best Resolution ~ 1-2 mm

Page 3: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Compton PET Concept

• Uses two sets of detectors: low resolution and high

• Low resolution detectors can be conventional PET or small animal PET scanner

• High resolution detectors 3D stack of position-sensitive solid-state detectors

• Resolution to challenge positron range

BGOdetector

Sidetector

Si-Si

BGO-BGO

Si-BGO

Si-SI Si-BGO

BGO-BGO 1D Profiles

Image reconstruction: FBP

Si-Si Sensitivity: 1.0 % *FWHM = 230 m

Si-BGO Sensitivity : 9.0% *FWHM = 790 m

BGO-BGO Sensitivity: 21.0 % *FWHM = 1.45 mm

* Not including effects of annihilation

photon acolinearity and positron range

Page 4: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Compton Pet Test Bench

Silicon detector BGO detector

4.5 cm 2.2 cm and 1 mm thick 3216 (512) pads, 1.4 mm 1.4 mm pixel sizeEnergy Resolution 1.39 keV FWHM for Tc 99m

5.3 cm 5 cm and 3 cm thick 84 array, 12.5 mm 5.25 mm crystal sizeEnergy Resolution 22% FWHM for Na-22

HAMAMATSU PMT R2497

VATAGP3

Page 5: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Setup and Alignment

Silicon detector

Source turntable

Lead shielding Tungsten Slit

Laser beam

Silicon detector

BGO detectors, electronics not shown

Page 6: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Images of Two Point SourcesMicroPET R4Compton PET

ML-EM Image reconstruction with Si-Si coincidence events only

0 1 2 3 4 5 cm

5

4

3

2

1

0

0 1 2 3 4 5 cm

5

4

3

2

1

0

Source

1.1~1.2 mm

0.4 mm

F-18

Glass wall 0.2 mm

F-18 in glass capillary tubes

Page 7: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Compton PET: Intrinsic Resolution

Needle 25G (ID = 0.254 mm, OD = 0.5mm, SS_steel wall = 0.127 mm)

5

4

3

2

1

0

0 1 2 3 4 5 cm

0.254 mm

0.127 mm

Image Resolution= 700 m FWHM

SS_steel wall

F-18

Page 8: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

F-18 in capillary tubes (I.D. 1.1 ~ 1.2 mm)

Resolution: ~ 700 µm FWHM across FOV

0 1 2 3 4 5 cm

5

4

3

2

1

0

5

4

3

2

1

00 1 2 3 4 5 cm

5

4

3

2

1

00 1 2 3 4 5 cm

Compton PET: Resolution Uniformity

Page 9: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Summary of Current Situation

• Both simulation as well as experimental results confirm Compton (or Silicon) PET concept.

• Testbench resolution 700 m FWHM – better than the resolution we were able to achieve with a commercial mircoPET R4 system using the same test object and even better reconstruction software.

• Uniform resolution over the entire Field of View.

Next Steps: Use the test setup to study some of the limitations of this concept.

Page 10: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Limitation 1: Silicon Detector Time Resolution

Si-Si

FWHM = 78.7 ns (due to Time Walk)

Timing window = 200 ns [see Poster J03-24for more details]

Page 11: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Measurement of Silicon Detector Time Resolution

Silicon Time Resolution• Intrinsic Resolution• Time Walk• Bias Voltage

Page 12: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Time Walk: LE versus CFD

Leading Edge

Threshold = 50mV, Pulse Rise Time = 150ns

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120

Trigger Time (ns)

Inp

ut

Am

pli

tud

e (V

)

Leading Edge

Constant Fraction

Simulated VATA Time Walk with CFD

Page 13: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Distribution ofPositron Range

F-18 C-11 N-13 O-15

Max energy (MeV) 0.64 0.97 1.19 1.72

Mean energy (MeV) 0.25 0.39 0.49 0.74

FWHM (mm) 0.10 0.19 0.28 0.50

FWTM (mm) 1.03 1.86 2.53 4.14

[by Levin and Hoffman]

Positron Annihilation Point Distribution

Event Geometric Overall

+ Acolinearity F-18 C-11 N-13 O-15

Si-Si 0.241 0.393 0.443 0.492 0.553

Si-BGO 0.816 1.062 1.261 1.419 1.742

BGO-BGO 1.458 1.977 2.270 2.490 3.069

Spatial resolution (FWHM [mm])

Limitation 2: Positron Range Distribution

Page 14: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Revisiting an Old IdeaD

ista

nce

(mm

)

0 Tesla

-4 -2 0 2

-4

-3

-2

-1

0

1

2

3

Distance (mm)

9 Tesla XZ-Plane

-4 -2 0 2

-4

-3

-2

-1

0

1

2

3

9 Tesla XY-Plane

-4 -2 0 2

-4

-3

-2

-1

0

1

2

3

• Embed PET FOV in strong magnetic field (Raylman, Hammer, etc.)

• Positrons spiral and range is reduced transverse to B-field vector

• Not very effective for F-18 positrons• Potentially useful for emitters with higher endpoint energies

(I-124, Tc-94m, etc.) Increasingly being used in small animal imaging

Simulated Range Reduction for I-124

Page 15: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Effect on Image Quality

Axially constant object transverse to B-field

0 T 9 T

Page 16: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Experimental Verification

Combine Compton PET with8 T MRI system at OSU Medical School

+

Page 17: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

• In order to achieve sub-millimeter spatial, a small animal PET based the Compton PET concept was developed.

• Simulation results demonstrated sub-millimeter spatial resolution of the Compton PET (0.4 mm FWHM from Si-Si and 1.0 mm FWHM from Si-BGO).

• Experimental results with a prototype setup using 1.4 mm x 1.4 mm x 1 mm silicon pads verified very high resolution (700 m FWHM).

• Experimental results demonstrate the Si pad detector time resolution can be better than 10 ns.

• Test setup to operate Compton PET prototype in an 8 T MRI system in preparation.

• Development of a new ASIC with significantly reduced time walk jitter underway.

Compton PET Summary

and Outlook

Page 18: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Acknowledgments

D. Burdette E. Chesi N. H. Clinthorne

S. S. Huh H. Kagan C. LacastaG. Llosa M. Mikuz S.-J. ParkW. L. Rogers A. Studen P.

Weilhammer(CIMA Collaboration)

Funded in part by DOE and NIH

Page 19: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Additional Transparencies

Page 20: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Scatters and DOI Uncertainty Problem in a BGO PET

DOI uncertainty included in both images

True first interaction position Centroid of scattered E distribution

- EGS4 Monte Carlo simulations- BGO PET ( 17.6 cm I.D. 16 cm length segmented with 3 mm x 3mm x 20 mm crystals)- Point sources at 0, 3, 6, 9, 12, 15, and 18 mm from center of FOV - Filtered back projection reconstruction

Page 21: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Energy Resolution of Si Pad Detector

Tc-99m (140.5 keV)Am-241 (59.5 keV)

FWHM = 1.39 keV (0.99%)Pb K1 = 74.969 keV, K2 = 72.804 keV,

K1 = 84.936 keV, and Compton edge = 49.8 keV

FWHM = 1.49 keV (2.5 %)

Page 22: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

Simulated ComptonPet Image

- Combined with Maximum likelihood Expectation Maximization (ML-EM)- Iteration number = 200

Si-Si (160k) + Si-BGO (1.4M) + BGO-BGO (3.1M)

4 cm x 4 cm

Page 23: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

CIMA Collaboration Klaus Honscheid, Ohio State University 2005 IEEE MIC Conference

iedmisclassifrandomscattertrue

truerrrr

rNECR

2

Noise Equivalent Count Rate (NECR)

Coincidence Events

True Scatter Random Misclassified

Page 24: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

Reduction of scatter,

random,

and misclassified events

Compton Kinematics

Compton Kinematics

Angular Uncertainty Factors

Si

BGO

ESi

Doppler Broadening Detector Element Size Energy Resolution Photon Acolinearity

Si pad:

0.3 mm x .3 mm x 1 mm

BGO crystal:

3 mm x 3 mm x 20 mm

BGO

Si

EBGO

Page 25: Klaus Honscheid for The CIMA Collaboration The Ohio State University Columbus, Ohio USA

Si-Si Si-BGO BGO-BGO

Improvement of NECR using Compton Kinematics

A = 0.1 mCi, Si = 5 ns FWHM, BGO = 1 e/ns,

E_W = ±50 %, T_W = 7 ns, A_W (Si-Si) = ±5 degree, A_W (Si-BGO) = ±7.5 degree

Improvement : Maximum 86 % for Si-Si and 36 % for Si-BGO at 5 mCi