17
KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic AG Draconis - a symbiotic mystery Rudolf Gális 1 , Ladislav Hric 2 1 Institute of Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9, 040 01 Košice, Slovakia ([email protected]) 2 Astronomical Institute of the Slovak Academy of Sciences, 059 60 Tatranská Lomnica, Slovak Republic

KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

Embed Size (px)

Citation preview

Page 1: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

AG Draconis -a symbiotic mystery

Rudolf Gális1, Ladislav Hric2

1 Institute of Physics, Faculty of Science, P. J. Šafárik University,

Park Angelinum 9, 040 01 Košice, Slovakia ([email protected])2 Astronomical Institute of the Slovak Academy of Sciences,

059 60 Tatranská Lomnica, Slovak Republic

Page 2: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

Outline

Symbiotic system AG Draconis123 years of the photometric historyObservations and analysisThe light curve between the years 1889 and 1966The light curve after 1966Period analysis of spectroscopic dataOutburst mechanismsConclusions?

Page 3: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

Symbiotic system AG Dra

AG Dra - one of the best studied symbiotic systems. The cool component is of a relatively early spectral type (K0 - K4), low metallicity (Smith et al. 1996) and higher luminosity than that of standard class III. The hot component is considered to be a white dwarf sustaining a high luminosity ( 10∼ 3 L) and temperature ( 10∼ 5 K) due to the TN burning of accreted matter (Mikolajewska et al. 1995).The radius of the giant was estimated to be 35R∼ by Zamanov et al. (2007) and Garcia (1986) found an orbital separation of 400 R.

The accretion most likely takes place from the stellar wind of the cool giant.Both components are in a circumbinary nebula, partially ionized by the white dwarf.

Page 4: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

123 years of the photometric history

AG Dra regularly undergoes quiescent and active stages which consist of the series of individual outbursts repeating at about a one-year interval.The nature of these periodical outbursts has been a matter of long-term debate. There is general agreement that the orbital period of AG Dra is about 550 d (Meinunger et al. 1979; Gális et al. 1999). There are variations on shorter time-scales (350 - 380 d) presented by Bastian (1998), Friedjung et al. (2003),Formiggini & Leibowitz (2012), Hric et al. (2014). Understanding the nature and mechanism of this variability is crucial in order to explain the outburst activity of AG Dra.

12000 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000 25000 26000 27000 28000 29000 30000 31000 32000 33000 34000 35000 36000 37000 38000 39000 40000 41000 42000 43000 44000 45000 46000 47000 48000 49000 50000 51000 52000 53000 54000 55000 56000

JD - 2 400 000 [days]

1890 1892 1894 1896 1898 1900 1902 1904 1906 1908 1910 1912 1914 1916 1918 1920 1922 1924 1926 1928 1930 1932 1934 1936 1938 1940 1942 1944 1946 1948 1950 1952 1954 1956 1958 1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

Q1 A Q2 B Q3 C Q4 D Q5 E+F Q6

12.5

12.0

11.5

11.0

10.5

10.0

9.5

9.0

8.5

B [

mag

]

A1

A2A3

A4

A5

A6

A7

B0

B1 B2

B3

B4B5

C1

C2

D1D2

D3 D4E0

E1

E2

E3E4

E5

E6

E7 E8

E9

E10

F1

F2

The historical LC of AG Dra over the period 1889 - 2012, constructed on the basis of photographic and B photoelectric observations. The LC is divided into active (A - F) and quiescence (Q1 - Q6) stages. Particular outbursts are assigned as A1 - A7, B0 - B5, C1 - C2, D1 - D5, E0 - E10 and F1, F2.

Page 5: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

Observations and analysis

We use all available photometry and radial velocities for the study of AG Dra. The new photoelectric and CCD observational material (U, B, V and DRi) was obtained at the observatories at Skalnaté Pleso, Stará Lesná and Valašské Meziříčí.Intermediate-dispersion spectroscopy of AG Dra was carried out at the Tartu Observatory in Estonia. Period analysis of the observational data was performed using an advanced implementation of the Date-Compensated Discrete Fourier Transform. We used a Fisher Randomization Test for determining the significance of the obtained periods.The minimum error of period P was determined by calculating a 1σ confidence interval on P, using the method described by Schwarzenberg-Czerny (1991).

Page 6: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

The light curve between the years 1889 and 1966

The historical LC of AG Dra over the period 1889 – 1966 was constructed using the compilation of photographic observations by Robinson (1969).During this period the AG Dra system underwent three phases of activity: the first one between the years 1932 and 1939 (A), the second one between 1949 and 1955 (B) and the third one between 1963 and 1966 (C). In total, we recognized 15 outbursts in this period.

The historical LC of AG Dra over the period 1889 -1996, constructed on the basis of photographic observations. The LC is divided into active (A - C) and quiescence (Q1 – Q3) stages. Particular outbursts are assigned as A1 - A7, B0 - B5 and C1 - C2.

12000 13000 14000 15000 16000 17000 18000 19000 20000 21000 22000 23000 24000 25000 26000 27000 28000 29000 30000 31000 32000 33000 34000 35000 36000 37000 38000 39000

JD - 2 400 000 [days]

1890 1892 1894 1896 1898 1900 1902 1904 1906 1908 1910 1912 1914 1916 1918 1920 1922 1924 1926 1928 1930 1932 1934 1936 1938 1940 1942 1944 1946 1948 1950 1952 1954 1956 1958 1960 1962 1964 1966

Q1 A Q2 B Q3 C

12.5

12.0

11.5

11.0

10.5

10.0

9.5

9.0

8.5

B [

ma

g]

A1

A2A3

A4

A5

A6

A7

B0

B1 B2

B3

B4B5

C1

C2

Page 7: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

The light curve between the years 1889 and 1966

The period analysis of the historical LC confirmed presence of the two periods:

∼ 550 d is related to the orbital motion,

∼ 350 d could be due to pulsation of the cool component of AG Dra (Gális et al. 1999).

Besides these periods, the analysis gave us the period 370 - 380 d, which is present in the active stages A and C. This period is related to the recurrence of the individual outbursts.

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009Frequency [c/d]

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

0102030 0

1020304050607080

Theta0

1020

Thet

a

01020

01020 0

1020304050600

1020 0

1020

0102030 0

10203040506070800

102030

AG Dra

Q6

223.4 d361.6 d

547.9 d

E+F

550.9 d

370.5 d1110.2 d

Q5348.0 d

D466.0 d 367.2 d

Q4

550.0 d350.9 d

C

380.2 d

Q3438.0 d

534.0 d

B

352.7 d

Q2

399.6 dA

371.3 d548.0 d

Q1348.8 d551.0 d

Power spectra of AG Dra taken from historical photographic, photoelectric and CCD data in the B filter for particular stages of quiescence (Q1 - Q6) and activity (A - F).

Page 8: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

The light curve after 1966

The historical LC of AG Dra over the period 1966 – 2012 was constructed using our compilation of photoelectric and CCD observations in U, B, V and DRi filters.

During this period the AG Dra system underwent two (or three?) phases of activity: the first one between the years 1980 and 1986 (D) and the second one between 1993 and 2008 (E+F), with 17 outbursts in total.The amplitudes of the outbursts increase towards shorter wavelengths, from

1∼ mag in V to 3∼ mag in U.

38000 40000 42000 44000 46000 48000 50000 52000 54000 56000JD - 2 400 000 [days]

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

10.0

9.5

9.0

8.5 V [m

ag

]

12.0

11.5

11.0

10.5

10.0

9.5

9.0

B [

ma

g]

12.0

11.5

11.0

10.5

10.0

9.5

9.0

8.5

8.0

7.5

U [m

ag]

C Q4 D Q5 E+F Q6

C1C2

D1 D2

D3 D4 E0

E1E2

E3 E4 E5

E6

E7 E8

E9

E10

F1

F2

UBV LCs from the period 1963–2012 with marked active stages (C, D, E and F) and quiescent ones (Q4, Q5 and Q6). Particular outbursts are assigned as C1–C2, D1–D5, E0–E10 and F1, F2.

Page 9: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

The light curve after 1966

Our statistical analysis shows that the LCs in U, B and V filters were very well correlated (correlation coefficients ≈0.9) during the active stages (D, E and F).During the quiescent stages (Q4–Q6), the correlation coefficients of the LCs in bands U and B as well as one of the LCs in bands U and V are less than 0.5 while, the variations in the B and V bands are correlated quite well.This result showed that brightness variations during the quiescent stages of AG Dra in the various bands were caused by different physical mechanisms.

38000 40000 42000 44000 46000 48000 50000 52000 54000 56000JD - 2 400 000 [days]

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

10.0

9.5

9.0

8.5 V [m

ag

]

12.0

11.5

11.0

10.5

10.0

9.5

9.0

B [

ma

g]

12.0

11.5

11.0

10.5

10.0

9.5

9.0

8.5

8.0

7.5

U [m

ag]

C Q4 D Q5 E+F Q6

C1C2

D1 D2

D3 D4 E0

E1E2

E3 E4 E5

E6

E7 E8

E9

E10

F1

F2

UBV LCs from the period 1963–2012 with marked active stages (C, D, E and F) and quiescent ones (Q4, Q5 and Q6). Particular outbursts are assigned as C1–C2, D1–D5, E0–E10 and F1, F2.

Page 10: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

The light curve after 1966

The LC in the U filter during the quiescent stages is clearly dominated by variations with orbital period 550 d. ∼

In the B and V bands, we found also a shorter period ( 350 d); however, its ∼value in each quiescent stage changed slightly.The significant period around 375 d is related to the distribution of individual outbursts. The value of this period varies with wavelength and is different for the individual active stages.Statistical analysis shows that the median of the time interval between the individual outbursts is 365 d, while the time intervals vary from 300 to 400 d without an apparent long-term trend.

Power spectra of AG Dra taken from photoelectric and CCD data in U, B and V filters for active (D, E+F) and quiescent (Q4 - Q6) stages. Power spectra for active stages were obtained after removing long-term periods around 1500 and 5400 d, which are related to the global morphology of these active stages.

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009Frequency [c/d]

0

40

0

40

0

40

80

120

1600

40

80

120

0

40

80

120

Theta

0

40

80

120

Thet

a

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

AG Dra 375.4 d

360.6 d

559.3 d

U (active)

B (active)

V (active)

U (quiescent)

B (quiescent)

V (quiescent)

375.4 d

374.7 d

559.3 d 361.9 d

361.2 d

557.8 d

551.8 d

551.7 d351.2 d

I

I

I

334.1 d 223.0 d367.2 d

Page 11: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

The light curve after 1966

Period analysis of the active stages revealed many significant periods, but most of these periods were more likely related to the complex morphology of the LCs during these stages.

The results of period analysis of particular stages between 1963 and 2012. LCs for each filter were analysed separately. Tstart is the beginning and Tend the end of the given stage. The periods are in order according to their significance.Notes: a The period of 1110.2 ± 18.5 d is probably only the double of 550.9 ± 9.8 d. b The period of 223.4 ± 5.3 d is the one-year alias of 547.9 ± 6.4 d. The global morphology of active stages D and E+F is possibly very well described by sinusoidal variations with periods around 1 110 d (or double 2 220 d) and 2 500 d (or double 5 000 d).

Phase Tstart [MJD] Tend [MJD]Significant periods [days]

U filter B filter V filter

Q4 39 250 44 400 551.0 ± 2.4 550.0 ± 10.3; 350.9 ± 4.8 349.6 ± 13.9; 550.0 ± 49.7

D 44 400 46 700 371.9 ± 5.5 367.2 ± 8.1; 466.0 ± 15.2 372.5 ± 6.1

Q5 46 700 49 150 553.6 ± 4.0 348.0 ± 6.7 350.1 ± 7.3

E + F 49 150 54 550 371.2 ± 1.8 370.5 ± 1.9; 1 110.2 ± 18.5a; 550.9 ± 9.8 370.5 ± 1.8

Q6 54 550 continue 549.3 ± 2.7 547.9 ± 6.4; 223.4 ± 5.3b; 361.6 ± 5.3 357.3 ± 19.8

Page 12: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

Period analysis of spectroscopic data

The detailed period analysis of radial velocities based on absorption-line measurements confirms the presence of only two significant periods, 550.4 ± 1.4 d (the orbital motion) and 355.0 ± 1.6 d (the cool-component pulsations).

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009Frequency [c/d]

010

01020 Theta

010203040

Thet

a

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

AG Dra 548.9 d

355.0 d 218.3 da

b

c

Power spectra of AG Dra taken from combined radial velocities based on absorption-line measurements: (a) original data and (b) data with orbital response removed, as well as (c) data with both orbital and probable pulsation response removed.

Page 13: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

Period analysis of spectroscopic data

The period analysis of the equivalent widths, absolute fluxes and radial velocities of spectral emission lines Hα, Hβ, He I 6678 Å, He II 4686 Å and Raman-scattered O VI 6825 Å preliminary confirmed the results mentioned above.Detected periods are close to the orbital period (511 - 568 d) and to the time interval between individual outbursts (366 - 383 d). The period related to the pulsation of the red giant (350 - 357 d) was marginally detected.

The curves of equivalent widths for particular spectral lines. The scales on the left and right axes are valid for equivalent widths of He I (6678 Å) and He II (4686 Å), respectively.

50600 50800 51000 51200 51400 51600 51800 52000 52200 52400 52600 52800 53000 53200 53400 53600 53800 54000 54200 54400 54600 54800 55000 55200 55400 55600 55800

JD - 2 400 000 [days]

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

12

11

10

9

8 U [m

ag]E+F Q6

0

40

80

120

160

200

240

280

Eq

. wid

ths

(He

II, H

, H

) [

A]

0

5

10

15

20

25

30

Eq

. wid

ths (He I,O

IV) [A

]

He II (4686)

H I (4861)

H I (6563)

He I (6678)

O VI (6825)°

°

E4E5

E6E7 E8

E9

E10

F1F2

Page 14: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

Outburst mechanisms

Periodical outbursts and their relation to the periodicities in this binary system have been a matter of long-term debate.Recently, the properties of AG Dra were studied by Formiggini & Leibowitz (2012).The result of their LC period analysis is the detection of the period 373.5 d (the mean time interval between outbursts). Authors interpreted this period as the synodic rotational period of the cool giant with respect to the white dwarf. To secure such a synodic rotational period in a binary with orbital period around 550 d, the giant should rotate in retrograde fashion with a period of 1160 d.They suggest that the cool giant of AG Dra has a very strong magnetic field, the axis of which is substantially (around 90 degrees) inclined relative to the rotational axis.When the region of the magnetic poles of the giant gets to the tidal bulge, the balance is disrupted and hydrogen-rich matter is thrown into the Roche lobe of the white dwarf. This will release large amounts of gravitational energy, which becomes apparent as an outburst observed in the optical.

Page 15: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

Outburst mechanisms

We could not confirm the presence of the period of 1160 d in photometric as well as spectroscopic data. Moreover, such a value of the rotational period of the giant is not typical in symbiotic systems (e.g. table 2 of Formiggini & Leibowitz 2012).The explanation for the retrograde rotation of a component in such an open system from an evolutionary point of view is unclear.According to the opinion of specialists studying stellar magnetic activity across the Hertzsprung–Russell diagram, such very strong magnetic fields of cool giants are not known (Korhonen, private communication). The process of balance-breaking by a tidal bulge is unphysical, in view of the fact that the whole surface of the tidally deformed giant in a binary lies on the same equipotential surface.

Page 16: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

Conclusions

We carried out the complex and detailed period analysis of photometric and spectroscopic data of AG Dra. The results of period analysis of all these data are two real periods present in this symbiotic system: 550 and 350 d, related to the orbital motion and postulated pulsation of the cool component, respectively.The orbital period is mainly manifested during the quiescent stages at shorter wavelengths (U filter), while the pulsation period is present during quiescent as well as active stages at longer wavelengths (B and V filters). The period analysis of active stages confirmed the presence of a period of around 365 d, which is the median of the time interval between outbursts. It is worth noting that these time intervals vary from 300 - 400 d without an apparent long-term trend. Our detailed analysis shows that most of the longer periods (e.g. 1 330, 1 580, 2 350, 5 500 d) are more likely related to the complex morphology of the LCs during active stages than to the real variability present in this symbiotic system.

Page 17: KOLOS 2014 - International scientific and methodological conference, December 4 – 6, 2014, Astronomical Observatory on Kolonica Saddle, Slovak Republic

Conclusions

The physical mechanism responsible for semi-periodical outbursts as well as recurrence of active stages is not clear.The nature of ∼ 350 d period which is manifested in photometric as well as spectroscopic data is not fully understood. If these variations are caused by pulsation of the cool component which physical processes are responsible for such unusual enhancement?Understanding the nature and mechanism of this variability is crucial in order to explain the outburst activity of AG Dra and other classical symbiotic stars.

Thank you for your attention.