23
Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources 2015 Wisconsin Lakes Partnership Convention April 2325, 2105 Holiday Inn Convention Center, Stevens Point LDCM artist’s rendering: NASA/Goddard Space Flight Center Conceptual Image Lab

Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Lake Monitoring in Wisconsin using Satellite Remote Sensing

D. Gurlin and S. GrebWisconsin Department of Natural Resources2015 Wisconsin Lakes Partnership ConventionApril 23‐25, 2105Holiday Inn Convention Center, Stevens Point

LDCM artist’s rendering: NASA/Goddard Space Flight Center Conceptual Image Lab

Page 2: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Remote sensing applications for environmental monitoring

Page 3: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Advantages• Water quality data with a high spatial 

and temporal resolution for thousands of lakes at a time

• Evaluation of environmental problems and potential health risks

• Historical data for studies of trends in water quality

• Real time data for integration into early warning systems to protect the public from harmful algal blooms

Disadvantages• Optically complex conditions found in 

lakes• Potential interference from the lake 

bottom in shallow lakes• Dynamic changes in water quality• Limited number of water quality 

parameters• Calibration and validation of models 

typically requires the collection of ground truth data

Advantages and disadvantages of remote sensing for lake monitoring

Page 4: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

• Systematic processing of Landsat 7 ETM+ and Landsat 8 OLI data for the retrieval of water clarity

Landsat 8 OLI image courtesy of the U.S. Geological Survey

• Increase in Earth observation monitoring capabilities through the optical and biogeochemical  characterization of lakes in support of algorithm calibration, refinement, and validation

• Studies of the major drivers of lake water clarity, their interactions, and the  potential impacts of land use and climate on water clarity

Remote sensing activities at the Wisconsin DNR

Page 5: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Landsat 8 OLI and TIRS (02/11/2013)

• Scene size 170 x 180 km• Repeat cycle 16 days

OLI• Eight multispectral 

bands and one panchromatic band

• Pixel size 30 m for multispectral bands and 15 m for panchromatic band

TIRS• Two thermal bands• Pixel size 100 m

Table from Dekker, A.G. & Hestir, E. L. (2012) Evaluating the Feasibility of Systematic Inland Water Quality Monitoring withSatellite Remote Sensing. CSIRO: Water for a Healthy Country National Research Flagship

Remote sensing activities at the Wisconsin DNR

Page 6: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Remote sensing of water quality

Remote sensing reflectance

Trout Lake

Downwelling irradiance, Ed(λ)

Water leaving radiance, Lw(θ,φ,λ)

Water leaving radiance

Downwelling irradiance

Rrs(θ, φ, λ) =Lw (θ, φ, λ)

Ed (λ)

Page 7: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Remote sensing of water quality

Absorption and scattering coefficients

Sensitivity of the reflectance to variations in the solar zenith angle

Bidirectional properties of the reflectance 

Absorption coefficient

Backscattering coefficient

f(λ) bb(λ)

Q(λ) a(λ) + bb(λ)Rrs(θ, φ, λ) =

a(λ) = aφ(λ) + aNAP(λ) + aCDOM(λ) + aw(λ)

Page 8: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Remote sensing of water quality

0.000

0.001

0.002

0.003

0.004

0.005

400 450 500 550 600 650 700 750

R rs, sr‐1

Wavelength, nm

ChlorophyllsCarotenoidsNAPCDOM

Chlorophyll‐aPhycocyanin

0.000

0.001

0.002

0.003

0.004

0.005

400 450 500 550 600 650 700 750

R rs, sr‐1

Wavelength, nm

ChlorophyllsCarotenoidsNAPCDOM

Chlorophyll‐a

Trout Lake 06/17/2014

Rainbow Flowage 06/17/2014

Landsat 8 spectral bands graph from http://landsat.gsfc.nasa.gov

Landsat 8 spectral bands

Page 9: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Systematic processing of satellite data for water clarity

2013 water clarity estimation• 54 satellite images• 3992 ground truth measurements• 32 data processing steps• 9 image mosaics for algorithm 

development• 475 ground truth measurements for 

algorithm development• 8561 water clarity estimates• 3788 files• 0.94 TB of data

Page 10: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Systematic processing of satellite data for water clarity

Image processing steps• Conversion of data to TOA spectral radiance• Reprojection of images to WTM• Removal of cirrus clouds• Removal of land• Removal of shallow waters and aquatic 

vegetation • Mosaicking• Extraction of radiance values for CLMN 

stations with data collected within one week from image acquisition date

Page 11: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Systematic processing of satellite data for water clarity

Algorithm calibration

0.00.51.01.52.02.53.03.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

LN_S

D

B2_RAD/B4_RAD

Predicted LN_SDLN_SD

0.00.51.01.52.02.53.03.5

40 42 44 46 48 50 52 54 56 58 60

LN_S

D

B2_RAD

Predicted LN_SDLN_SD

ln(SD) = a + b + c  OLIB2OLIB2OLIB4

Page 12: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

2013 preliminary water clarity composite 

Page 13: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Systematic processing of satellite data for water clarity

29185453 5150

1010

74406318 5598 6147

22387

29957

1169312953

7898

0

5000

10000

15000

20000

25000

30000

1999 2000 2001 2003 2004 2005 2007 2008 2009 2010 2011 2012 2013

Num

ber o

f satellite retrieve

d water 

clarity m

easu

remen

ts

Year

Page 14: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Lakes and Aquatic Invasive Species (AIS) Mapping Tool

http://dnr.wi.gov/lakes/viewer/

Page 15: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Systematic processing of satellite data for water color

Algorithm calibration

‐2.0

0.0

2.0

4.0

6.0

1.50 1.60 1.70 1.80

LN_C

_VALU

E

B3_RAD/B4_RAD

Predicted LN_C_VALUE

LN_C_VALUE

‐2.0

0.0

2.0

4.0

6.0

55 56 57 58 59 60 61 62 63 64 65

LN_C

_VALU

E

B2_RAD

B2_RAD Line Fit  Plot

Predicted LN_C_VALUE

LN_C_VALUE

ln(C) = a + b + c  OLIB2OLIB3OLIB4

Page 16: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

2013 preliminary water color product 

AverageWater Color

Big Saint Germain Lake• 5.5 PCURainbow Flowage• 33.0 PCUPickerel Lake• 13.3 PCU

Page 17: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Major drivers of lake water clarity

National Land Cover DatabaseUSDA National Soil Survey

Gridded climate

Water chemistry

Digital elevation models

Predictor categories• Climate• Land use/land cover• Surficial geology• Water chemistry• Lake morphology & position• Runoff potential

Focus on• Explained variance• Response distributions

Data courtesy of Kevin Rose, University of Wisconsin‐Madison

Page 18: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Major drivers of lake water clarity

What are the implications of long term trends in temperature and precipitation?

Data courtesy of Kevin Rose, University of Wisconsin‐Madison

Page 19: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Major drivers of lake water clarity

Predictor categoryPredictors 

(#)

2005 variance explained

2010 variance explained

Climate 13 30.0 23.1Land use/land cover 26 28.5 21.3Lake morphometry 4 27.5 23.7Run‐off potential 5 18.8 11.7Catchment morphometry 11 17.9 12.0Water chemistry 3 12.8 2.1Geology 18 4.3 3.6

Total 80 64.4 52.4

Water clarity is regulated by many different drivers.

Dry year, 2005Wet year, 2010

Data courtesy of Kevin Rose, University of Wisconsin‐Madison

Page 20: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Major drivers of lake water clarity

Wet year, 2010

Dry year, 2005

Data courtesy of Kevin Rose, University of Wisconsin‐Madison

Page 21: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Major drivers of lake water clarity

Data courtesy of Kevin Rose, University of Wisconsin‐Madison

Regulators of lake water clarity• Deep lakes high in the landscape tend 

to be the clearest• Agricultural land use is the best land 

use predictor of water clarity• High precipitation is associated with 

lower water clarity

Page 22: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Increase in Earth observation monitoring capabilities 

Field and laboratory measurements• Water temperature, dissolved oxygen, 

conductivity, and Secchi depth• Reflectance• Water color and turbidity• TSS, ISS, and OSS• Absorption and backscattering 

coefficients

Optical and biogeochemical  characterization of lakes • Field data collection in summer and fall 

2014 for algorithm development • 24 lakes in Wisconsin

Return from field data collection at Lake Geneva

Page 23: Lake Monitoring in Wisconsin using Satellite Remote Sensing · Lake Monitoring in Wisconsin using Satellite Remote Sensing D. Gurlin and S. Greb Wisconsin Department of Natural Resources

Thank you!

LDCM artist’s rendering: NASA/Goddard Space Flight Center Conceptual Image Lab

D. Gurlin and S. GrebWisconsin Department of Natural Resources2015 Wisconsin Lakes Partnership ConventionApril 23‐25, 2105Holiday Inn Convention Center, Stevens Point