28
Mar$n et al. (1990, Nature) Iron in Antar*c Waters Jickells et al. (2005, Science) Global Iron Connec*ons Between Desert Dust, Ocean Biogeochemistry, and Climate Shi et al. (2012, Aeol. Res.) Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: A review

Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Mar$n  et  al.  (1990,  Nature)  Iron  in  Antar*c  Waters    Jickells  et  al.  (2005,  Science)  Global  Iron  Connec*ons  Between  Desert  Dust,  Ocean  Biogeochemistry,  and  Climate    Shi  et  al.  (2012,  Aeol.  Res.)  Impacts  on  iron  solubility  in  the  mineral  dust  by  processes  in  the  source  region  and  the  atmosphere:  A  review  

Page 2: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Iron  in  Antar*c  Waters  

Mar*n  et  al.  (1990,  Nature)  

Page 3: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Summary  •  Tes*ng  the  hypothesis  that  Antar*c  phytoplankton  suffer  

from  iron  deficiency,  preven*ng  them  from  blooming  and  using  up  major  nutrients  in  the  southern  ocean  

•  Highly  produc*ve  (shallow)  Gerlache  Strait  waters  with  abundant  Fe  facilitate  phytoplankton  blooming  and  major  nutrient  removal  

•  Low  produc*vity  Drake  Passage  water,  with  very  low  levels  of  dissolved  Fe,  uses  less  than  10  %  of  the  major  nutrients  available.  

•  Hypothesis:  Iron  s*mulated  phytoplankton  growth  may  have  contributed  to  the  drawning  of  atmospheric  CO2  during  glacial  maxima  

Page 4: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Gerlache  Strait  vs  Drake  Passage  •  Neri*c  (shallow)  Gerlache  Strait  shows  Fe  and  Mn  50-­‐60  

*mes  higher  than  open  ocean  waters  of  the  Drake  Passage  (7.4  vs  0.1  nmol/kg)  

•  Insufficient  Fe  introduced  by  upwelling  in  the  Drake  passage  and  low  atmospheric  dust  load  

•  In  the  shallow  waters  of  the  Gerlache  Strait  Fe  input  comes  from  Fe  sediments  and  Fe  released  from  mel*ng  sea  

 •  Assuming  that  Fe  requirement  of  Phytoplankton  is  

5000N:1Fe  -­‐>  7.4  nmol/kg    is  enough  to  remove  the  ~  24  umol  NO3/kg    occurring  there.  

•  Clearly,  no  Fe  limita*on  -­‐>  which  may  explain  the  very  high  produc*vity  reported  (3  g  C/(m2  day))  

•  This  contrasts  with  the  es*mate  of  0.01  to  0.03  g  C  /  (m2  day)  in  the  Drake  passage,  which  is  less  than  10  %  of  the  carbon  that  could  be  fixed  with  the  available  nitrogen.  

 

Page 5: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Conclusions  •  Very  low  dissolved  Fe  in  the  Drake  passage  supports  the  argument  that  present-­‐day  produc*vity  is  limited  in  offshore  waters  of  the  Antar*c  because  of  Fe  deficiency  

•  This  may  severely  limit  the  power  of  the  ‘biological  pump’,  contribu*ng  to  the  raised  CO2  typical  of  previous  and  present  interglacial  periods.  

•  -­‐>  Enhanced  Fe  from  atmospheric  dust  may  thus  have  contributed  to  the  drawning  down  of  CO2  during  glacial  maxima.  

Page 6: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Global  Iron  Connec*ons  Between  Desert  Dust,  Ocean  Biogeochemistry,  and  Climate  

Jickells  et  al.  (2005,  Science)  

Page 7: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Introduc*on  •  Iron  (Fe):  is  an  essen*al  nutrient  for  all  organisms,  used  in  

a  variety  of  enzyme  systems,  including  those  for  photosynthesis,  respira*on,  and  nitrogen  fixa*on.  

•  Fe  supply  is  a  limi*ng  factor  on  phytoplankton  growth  over  vast  areas  of  the  modern  ocean  

•  Iron  supply:    –  Fluvial  and  glacial  par*culate  iron  that  is  mostly  

trapped  near  coastal  areas  (except  where  rivers  discharge  beyond  the  shelf)  

–  Hydrothermal  inputs  (rapidly  precipitated  at  depth  in  the  ocean).  (This  is  disputed  by  Tagliabue  et  al.,  2010  Nat.  Geosc.;  and  other  studies)  

–  Dominant  external  Fe  input  to  the  open  ocean:  aeolian  dust  (which  can  be  par*cularly  sensi*ve  to  global  change  pressures)  

–  Other  atmospheric  Fe  inputs:  volcanic,  anthropogenic,  extraterrestrial..  (lower  Fe  supply  but  more  Fe  soluble  frac*on  than  dust)  

Page 8: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Global  iron  and  dust  connec*ons  

•  Four  components:  land  surface  and  dust  availability,  atmospheric  loading,  marine  produc*vity,  clima*c  state.  

•  Solid  arrowhead:  posi*ve  correla*on  

•  Open  circle:  nega*ve  correla*on/forcing  

•  Open  arrowhead:  uncertain  sign  

•  Mechanism  in  italics  

•  Water  tap  symbol:  secondary    mechanism  modula*ng  the  primary  mechanism  

Page 9: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Climate  effects  on  Dust/Iron  Fluxes  •  Clima*c  and  geomorphological  controls  on  source  regions.  •  Controls  on  dust  emission:  rainfall,  wind,  surface  

roughness,  temperature,  topography,  vegeta*on  cover.    •  Dust  removal  occurs  by  dry  and  wet  deposi*on,  depending  

on  par*cle  size,  rainfall  paierns  and  transport  al*tude  

•  Deposi*on  es*mates:  1000  to  2000  Tg/year.  Significant  interannual  variability.  Highly  uncertain.  •  Produc*on  es*mated  around  1700  Tg/year.  Highly  uncertain.  25  %  reaching  the  oceans  •  Dust  fluxes  2  to  20  *mes  higher  during  last  glacia*on  (?  Stronger  dust  winds,  aridity,  changes  in  

vegeta*on  cover,  lowered  sea  level,  reduced  precipita*on)  •  Land  use  prac*ces  over  recent  decades  have  altered  dust  fluxes  (up  to  50%,  very  uncertain).  Recent  

work  suggests  25  %.    Global  importance  unclear,  however  regionally  can  be  very  important.  

•  Dust  from  the  Sahel  probably  increased  since  the  1950’s  (Climate  and  land  use)  •  Variability  of  dust  can  be  influenced  by  climate  cycles  such  as  el  Niño-­‐SO  and  NAO  •  Enhanced  greenhouse  warming  could  “green”  the  Sahel  and  southern  Sahara.  •  Predic*ons  for  the  next  100  years  range  from  +  12  %  increase  to  60%  decrease,  depending  on  the  

importance  of  land  use  changes  and  CO2  fer*liza*on  (HIGHLY  UNCERTAIN)  

Page 10: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

•  In  a  biogeochemical  context,  the  key  flux  to  the  oceans  is  not  dust,  but  soluble  or  bioavailable  iron.  

•  Fe  content  of  soil  dust  is  3.5  %  on  average,  variable  globally  depending  on  the  mineralogical  composi*on  of  the  sources  

•  Fe  solubility  at  the  sources  is  small  (<1  to  2%)  

•  Fe  is  processed  during  transport  through:  –  photochemistry  (photoreduc*on  of  Fe  III  to  Fe  II)  –  acidity,  par*cularly  during  aerosol  cloud  processing  (Emissions  of  acid  precursors  

have  more  than  doubled  from  the  preanthropogenic  state.)  –  Organic  complexa*on:  natural  (soil  humic  acids  and  plant  terpenes)  and  

anthropogenic  sources  (biomass  burning  and  industrial/urban  emissions)  may  influence  atmospheric  iron  cycling  

•  All  these  processes  are  affected  by  global  change  pressures.  

Effects  on  Iron  Fluxes  

Page 11: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Dust/Iron  Impacts  on  the  Ocean  •  At  seawater  pH  of  8:  compe**on  between  adsorp*on  to  par*culates  in  the  water  column,  biological  

uptake  and  organic  complexa*on  (evolves  over  tens  of  days,  the  water  residence  *me  of  dust)  •  Oceanic  profiles:  

–  Low  surface  dissolved  Fe  concentra*ons  (0.03  to  1nmol/liter)  –  Deep  water  concentra*ons  of  0.4  to  2  nmol/liter  –  Colloidal  Fe  present  and  poten*ally  labile  

•  Dissolved  Fe  in  oceans  is  predominantly  organically  complexed:  this  stabilizes  it  against  rapid  scavenging  (residence  *me  of  decades).  Source,  biological  func*on  and  structure  of  organic  iron-­‐complexing  ligands  unknown.    

•  Studies  suggest  that  these  ligands  have  similar  strong  binding  strength  as  siderophores.  (Microbes  release  siderophores  to  scavenge  Fe  from  mineral  phases  by  forma*on  of  soluble  complexes)  

•  Rela*ve  importance  of  atmospheric  and  upwelling  sources  varies.  Fe/N  ra*os  of  deep  water  show  that  sustaining  open  ocean  primary  produc*on  requires  addi*onal  input  besides  upwelling.    

•  Fe  limita*on  results  in  incomplete  use  of  macronutrients  N,  P,  Si,  and  low  algal  abundance  in  the  Southern  Ocean  (HNLC)  

•  Fe  availability  influences  algal  community  structure  as  well  as  overall  produc*vity.    •  Open  ocean  phytoplankton  generally  need  less  iron  than  coastal  species,  which  have  evolved  in  a  

more  iron-­‐rich  environment,  although  iron-­‐limited  coastal  systems  are  known  •  In  addi*on  to  direct  limita*on  of  primary  produc*on  in  the  HNLC  regions,  iron  may  limit  (or  co-­‐limit  

with  P)  nitrogen  fixa*on  by  photosynthe*c  diazotrophs  in  tropical  oceans,  where  there  are  low  nitrate  concentra*ons  in  surface  waters  

Page 12: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

•  Overall  effect  will  vary  between  ocean  biogeochemical  provinces  

Dust/Iron  Impacts  on  the  Ocean  and  effects  upon  climate  

•  Models  and  ice  core  data  yield  very  different  results,  predic*ng  that  glacial/interglacial  changes  in  dust  fluxes  will  change  atmospheric  CO2  by  5  to  45  parts  per  million  (ppm)  as  a  contribu*on  to  the  total  change  of  80  to  100  ppm  

•  Radia*ve  forcing  (CO2)  

•  Twofold  global  rise  in  DMS  -­‐>  global  temp  decrease  of  1oC  

•  greenhouse  gas  forcing  (nitrous  oxide  and  methane)  

•  atmospheric  oxidizing  capacity  (isoprene  and  carbon  monoxide)  

Page 13: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Research  priori*es  •  Huge  uncertain*es  in  our  understanding  of  these  interac*ons,  requiring  research  

that  integrates  across  the  whole  Earth  system.  Authors    suggest  the  following  research  priori*es:    

 (i)  dust  deposi*on  processes,      

 (ii)  aerosol  iron  bioavailability,    

 (iii)  the  impact  of  iron  on  marine  nitrogen  fixa*on  and  trace  gas        emissions.  

Page 14: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Impacts  on  iron  solubility  in  the  mineral  dust  by  processes  in  the  source  region  

and  the  atmosphere:  A  review  

Shi  et  al.  (2012,  Aeolian  Research)  

Page 15: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Processes  controlling  specia*on  of  Fe  and  deposi*on  

Page 16: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Introduc*on  

•  Fe  bioavailability  cannot  be  directly  measured  chemically  -­‐>  it  is  assumed  that  dissolved  Fe  or  highly  reac*ve  Fe  in  the  dust  is  bioavailable  

•  FeT  in  dust:  1%  to  5%  depending  on  source  region  

•  FFS  observed  to  be  from  0.1%  to  more  than  80%  

•  FFS  controlled  by:  –  the  mineralogy  of  the  soils  –  atmospheric  processes  that  can  convert  low-­‐reac*vity  Fe-­‐bearing  minerals  

into  highly  soluble/bioavailable  forms  of  Fe    

•  Biomass  burning  and  anthropogenic  pollu*on  also  provide  Fe-­‐bearing  par*cles  which  can  be  a  dominant  source  of  bioavailable  Fe  in  some  areas  of  the  ocean  

Page 17: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Fe  Solubility:  defini*on  and  measurements  

•  Difference  in  the  defini*on  of  ‘‘solubility’’  between  the  atmospheric  and  geochemical  communi*es  

•  Geochemical:  concentra*on  (ac*vity)  of  a  solute  measured  in  equilibrium  with  a  mineral  phase  and  is  therefore  independent  of  mineral  mass  in  the  system  considered.  

•  Atmospheric  (FFS):  ra*o  (as  a  percentage)  of  the  dissolved  Fe  concentra*on  (typically  auer  filtra*on  and  passing  through  0.2  or  0.45  lm  pore  size  filter)  in  the  filtrate  rela*ve  to  the  total  Fe  contained  in  the  bulk  sample  

•  FFS  is  heavily  dependent  on  the  proper*es  of  the  sample,  the  extractant/solvent  used,  extrac*on  *me  and  other  experimental  protocols.  Big  problem  in  the  community  and  a  nightmare  for  modelers  (evalua*on)  

Page 18: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Soil  samples  as  surrogates  for  dust  in  aerosol  studies  

•  Wet  sieving  has  the  effect  of  wevng  the  surface  of  the  aerosol/dust  and  will  remove  the  most  soluble  and  labile  Fe  frac*on  from  the  samples  

•  Beier  to  re-­‐suspend  soil  and  collect  with  size  selec*ve  PM  samplers.    

•  Main  reason  of  using  soil:  large  amounts  (g-­‐kg),  and  not  subject  to  changes  in  the  atmosphere  

Page 19: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Analy*cal  techniques  for  Fe  in  dust  •  X-­‐ray  diffrac*on  (XRD):  semi-­‐quan*ta*ve  mineral  composi*on.  Problems  to  

iden*fy  and  differen*ate  between  Fe  oxides  •  Sequen*al  extrac*on:  ascorbate  and  dithionite  extrac*on  of  Fe  oxides.  •  Ascorbate  extrac*on:  most  reac*ve  and  poorly  crystalline  pool  of  Fe  (FeA)  •  Dithionite  extrac*on:  quan*ta*vely  solubilizes  the  remaining  Fe  (oxyhydr)oxides  

phases  including  goethite  and  hema*te  (FeD)  •  Direct  reflectance  spectroscopy  (DRS)  can  be  used  to  quan*fy  the  ra*o  of  

hema*te  to  goethite  •  FeT:  X-­‐ray  fluorescence  (XRF)  spectrometer  and  Par*cle  induced  X-­‐ray  Emission  

(PIXE),  among  others  •  Observa*on  of  individual  dust  par*cles:    

–  scanning  electron  microscopy  (SEM)  coupled  with  energy  dispersive  X-­‐ray  spectrometry  (EDX)      –  transmission  electron  microscopy  (TEM)  coupled  with  EDX      –  selected  area  electron  diffrac*on  (SAED)  and  electron  energy  loss  spectrometry  (EELS)  –  synchrotron-­‐based  X-­‐ray  absorp*on  spectroscopy  (XAS)  –  size  and  high  resolu*on  morphology  of  individual  par*cles  down  to  nanometerscale,  

mineralogy,  Fe  specia*on  (Fe  II  /  Fe  III)  

Page 20: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Processes  in  the  dust  source  regions:  Fe  minerals  in  dust  

•  Ferrihydrite  and  other  poorly  crystalline  Fe  phases  •  Crystalline  hema*te  (Fe2O3),  goethite  (FeOOH)  •  Clay  minerals,  such  as  illite,  mixed  layer  illite/smec*te,  and  smec*te  

•  Amorphous  Fe  minerals  including  nanopar*cles  of  ferrihydrite  are  highly  reac*ve  and  poten*ally  bioavailable  (generally  exhibit  a  grain  size  in  the  nanometer  range)  

•  Ferrihydrite  par*cles  may  be  also  formed  during  cloud  processing  

•  Most  abundant  form  of  Fe  oxides  in  dust  or  dust  precursors  are  goethite  and  hema*te  •  Synthe*c  and  commercial  Fe  oxides  are  usually  well  crystallized  with  characteris*c  

morphologies,  larger  size  and  well-­‐defined  surface  area.    •  Fe  in  clays  may  also  transform  into  chemically  available  forms  (although  they  are  considered  

the  most  refractory  Fe-­‐containing  minerals)  

•  Some  of  the  poten*ally  available  Fe  in  ‘‘standard’’  clay  minerals  used  in  previous  works  is  likely  to  be  the  adsorbed  Fe  oxides  par*cles,  and  Fe  located  at  the  edge  of  clay  par*cles  while  the  remainder  is  refractory  Fe  held  in  the  clay  lavce  structure  

Page 21: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Processes  in  the  dust  source  regions:  Fe  mineralogy  in  North-­‐African  dust  

•  (FeA  +  FeD)/FeT  helps  characterizing  the  Fe  mineralogy  

•  Higher  in  Sahelian  samples  (~0.57)  than  in  Saharan  Samples  (~0.36).  Even  lower  in  paleolake  samples  (~0.2)  

•  Explained  by  Fe  weathering  in  soils  (higher  degree  of  transforma*on  of  original  Fe-­‐bearing  minerals  into  Fe  oxides)  

•  FeA/(FeA  +  FeD)  is  usually  small  (<<0.1),  although  it  can  be  higher  in  ephemeral  lakes  

Page 22: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Forma*on  of  secondary  Fe  minerals  during  chemical  weathering  

primary  Fe  minerals  Fe(III)  

Fe  oxyhydroxides  Poorly  cristalline  e.g.  Ferrydrite  

Crystalline  Fe  oxides  Mainly  Hema*te  and  goethite    

(Fe  II)  

Aluminosilicates  Clay  minerals  

rapid  oxida*on   hydrolysis  

FeSt   FeD  

FeA  

Page 23: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Forma*on  of  secondary  Fe  minerals  during  chemical  weathering  

Page 24: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Atmospheric  processing  and  impact  on  FFS  

Gravita$onal  seCling:    •  Inverse  rela*onship  between  FFS  in  Atlan*c  

aerosols  and  atmospheric  dust  concentra*ons  

•  First  explained  in  terms  of  gravita*onal  seiling:  greater  solubility  at  lower  dust  mass  could  be  due  to  a  larger  surface  area  to  volume  ra*o  of  the  finer  dust  par*cles  

•  Later  results  indicated  that  the  size  dependence  can  at  most  explain  a  small  part  of  the  measured  variability  in  FFS  

•  Other  studies  also  showed  that  the  aerosol  FFS  was  somewhat  variable  with  size  but  in  general,  it  did  not  increase  with  decreasing  par*cle  size  

Page 25: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Acid  processing  of  dust    •  Solubility  of  Fe  oxides  is  highly  dependent  on  the  pH  of  

the  aqueous  medium  it  is  in  contact  with,  specially  for  pH  <  3  

•  Interac*on  of  dust  par*cles  with  cloud  water,  or  cloud  processing,  provides  the  main  mechanism  for  uptake  of  acid  gases  in  the  atmosphere,  lowering  the  pH  of  the  cloud  water  

•  Correla*on  of  the  FFS  with  concentra*ons  of  acid  species  in  aerosols  ambiguous  due  to  complexity  

•  E.g  mineral  dust  ouen  contains  a  high  percentage  of  carbonate  can  neutralize  the  acid  in  contact  with  the  dust  

Atmospheric  processing  and  impact  on  FFS  

Page 26: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Acid  processing  of  dust    •  First  studies  found  that  dissolved  Fe  appeared  in  solu*on  when  a  

sample  of  Saharan  dust  was  exposed  to  acidic  solu*ons  at  pH  2  which  is  the  pH  relevant  to  wet  aerosols.  

 •  When  the  pH  of  the  solu*on  was  increased  to  5–6,  a  range  

commonly  measured  in  cloud  water,  the  dissolved  Fe  concentra*on  was  considerably  reduced  

•  Mineralogy  is  an  important  factor  in  controlling  the  amount  of  dissolved  Fe  

•  Commercial  Fe  oxide  (goethite,  hema*te,  and  magne*te)  samples  have  a  much  lower  FFS  (pH  2  for  2  h)  compared  to  clay  minerals  

•  There  is  currently  discussion/disagreement  whether  clays  or  amorphous  Fe  nanopar*cles  on  the  surface  of  clays  are  responsible  for  the  observed  solubility  

Atmospheric  processing  and  impact  on  FFS  

Page 27: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Acid  processing  of  dust    •  Shi’s  3  pool  model:  

–  The  Fe  dissolu*on  kine*cs  of  samples  from  Asia  and  Sahara)  could  be  accurately  described  using  a  simple  cumula*ve  model  assuming  first-­‐order  dissolu*on  kine*cs  of  3  acid-­‐extractable  pools  of  Fe.  

–  They  hypothesize:  •  “fast”  Fe  pool  is  low  reac*vity  dry  ferrihydrite  and/or  

poorly  crystalline  Fe(III)  oxyhydroxides  •  “slow”  Fe  pool  represents  both  crystalline  Fe  oxide  

phases  (goethite  and/or  hema*te)  and  Fe-­‐containing  clay  minerals  

•  “intermediate”  Fe  pool:  nano-­‐sized  Fe  oxides  

•  Importance  of  dust/liquid  ra*o  as  a  control  for  Fe  solubiliza*on  in  dust  (problem:  dust/liquid  ra*os  in  the  lab  are  approximately  3  orders  of  magnitude  smaller  than  what  is  expected  in  dust  aerosol  par*cles)  

•  Because  of  this,  the  high  Fe  concentra*on  from  the  fast  pool  may  suppress  the  dissolu*on  of  other  Fe  phases  from  the  dust  

Atmospheric  processing  and  impact  on  FFS  

Page 28: Lamont-Doherty Earth Observatory - …amfiore/eescG9910_s16... · 2016-04-01 · Summary% • Tes*ng%the%hypothesis%that Antar*c%phytoplankton%suffer% from%iron%deficiency,%preven*ng%them%from%blooming%and%

Photo-­‐reduc$on  and  organic  complexa$on    •  It  is  possible  to  photo-­‐reduce  solid  Fe  oxides  in  

solu*on  to  form  dissolved  Fe2+  under  the  condi*ons  of  UV  light  at  rela*vely  low  pH  

•  Photo-­‐reduc*on  when  ac*ng  alone  has  limited  impact  on  FFS  

•  Organic  ligands  such  as  formate,  acetate  and  oxalate  are  found  in  atmospheric  par*cles  and  clouds  

•  These  are  able  to  form  complexes  with  dissolved  Fe  and  thus  may  increase  the  FFS  

Atmospheric  processing  and  impact  on  FFS