88

Landscape Futures

Embed Size (px)

DESCRIPTION

Instruments, Devices and Architectural Inventions

Citation preview

Page 1: Landscape Futures
Page 2: Landscape Futures

LANDSCAPE 2

A coronal mass ejection

from the sun on August 31,

2012, produced spectacular

auroras on Earth several

nights later. Photograph

courtesy of NASA/GSFC/SDO.

Below, Herbert “Shortie”

Clark maps the terrain

using a plane table and

telescopic alidade, early

1900s. Courtesy of the

U.S. Geological Survey.

This surreal image ap-

pears, at first glance,

to portray some new sort

of medical diagnostic

tool, but it is simply a

dairyman listening to the

radio while milking his

cow, c. 1923. Courtesy of

the Library of Congress

Prints and Photographs

Division.

Page 3: Landscape Futures

John Braund, cartographer

for the U.S. Coast and

Geodetic Survey, demon-

strates a “new process

expected to revolutionize

map making… showing all

the details of topography

in a form true to nature,”

March 1939. The machine

chisels topographic de-

tails using “a specially-

designed electric hammer.”

The center image shows

Alexander Graham Bell

and assistants testing

one of Bell’s many

experimental kite

designs, July 7, 1908.

A professor at the

U.S. Naval Observatory

looks through a 26-inch

telescope, August 1924.

All photographs on

this page courtesy of

the Library of Congress

Prints and Photographs

Division—the Harris

& Ewing Collection,

Gilbert H. Grosvenor

Collection of Photographs

of the Alexander Graham

Bell Family, and National

Photo Company Collection,

respectively.

FUTURES 3

Page 4: Landscape Futures

Claude Birdseye, the aptly

named Chief Topographic

Engineer for the U.S.

Geological Survey, charts

the Grand Canyon, 1923.

Photograph courtesy of the

U.S. Geological Survey.

Below, a 1959 Army Field

Manual photograph depicts

a ball-shaped target-

tracking radar instal-

lation used as part of a

U.S. NIKE Missile Battery.

Courtesy of the Library

of Congress Prints and

Photographs Division.

U.S. Geological Survey

members measure a base-

line in New Mexico, 1883.

A missile detection and

tracking facility at Cape

Cod Air Station, con-

structed in 1978, scans

the horizon for incoming

warheads. This “radar

pyramid” is part of the

4LANDSCAPE

Page 5: Landscape Futures

PAVE PAWS network, or

Phased Array Warning

System. Both photographs

courtesy of the Library

of Congress Prints

and Photographs Division.

A WiFi camera by Usman

Haque, Adam Somlai-Fisch-

er, and Bengt Sjölén reads

the strength of wireless

internet signals through

walls, thus inferring a

picture of the densities

and obstructions of the

architectural spaces

around it. The “Weather-

Field” project, pictured

bottom-right, is a col-

laboration between Mason

White, Luis Callejas,

Matthew Spremulli, and

Alexander Laing. Their

project “is a shape-shift-

ing energy generation park

along a strip of sandy

beach in Abu Dhabi between

Yas and Saadiyat Islands,”

offering “a variety of

ways to engage with cli-

mate and renewable energy,

as an economic sponsor,

as a visual or physical

experience, and as

information.”

FUTURES 5

Page 6: Landscape Futures

A U.S. Geological Survey

“level crew”—pictured

above—surveys a line

from Mojave to Keeler,

California, 1905. Photo-

graph courtesy of the

U.S. Geological Survey.

For a speculative project

called “Theriomorphous

Cyborg” (2011), architect

Simone Ferracina proposed

a series of intermediary

devices, organized in the

form of a game, through

which humans could alter

their perception of the

built environment.

6LANDSCAPE

Page 7: Landscape Futures

Edited by Geoff Manaugh

LANDSCAPE FUTURES

Instruments, Devices and Architectural Inventions

FUTURES 7

Page 8: Landscape Futures

Nevada Museum of ArtCenter for Art + Environment160 West Liberty Street Reno, Nevada 89501U.S.A. T +1 775 329 3333nevadaart.orgnevadaart.org/ae/center

Library of Congress Control Number: 2011940606

ISBN (Actar) 978-84-15391-14-2DL: B.31219-2012

Design Everything Type Company (ETC)Brooklyn, USA

Printing Ingoprint printed in Spain.

All rights reserved.© edition, Nevada Museum of Art and Actar, 2013© texts, retained by their authors© images, retained by their authors

ACtArBarcelona—New [email protected]

DistributionActarDBarcelona—New Yorkactar-d.com

Roca i Batlle 2E-08023 BarcelonaT +34 93 417 49 93F +34 93 418 67 [email protected]

151 Grand Street, 5th floorNew York, NY 10013 USA T +1 212 966 2207 F +1 212 966 [email protected]

Exhibition Sponsors Landscape Futures: Instruments, Devices and Architectural Inven-tions was generously sponsored by the Graham Foundation for Advanced Studies in the Fine Arts, the Andy Warhol Foundation for the Visual Arts, and the Nation- al Endowment for the Arts. The exhibition was a feature of the Nevada Museum of Art’s 2011 Art + Environment exhibition se-ries and a backdrop for the 2011 Art + Environment Conference.

About the Nevada Museum of Art The Nevada Museum of Art is the only art museum in the state of Nevada accredited by the American Alliance of Museums. Designed by internationally renowned architect Will Bruder, the new museum facility opened in 2003 and is the heart of Re-no’s downtown cultural district. The four-level, 60,000 square-foot building is inspired by geological formations located in northern Nevada, a reference that resonates metaphorically with the museum’s scholarly focus on art and environments. The Nevada Museum of Art is a museum of ideas. While building upon its founding col-lections and values, it cultivates meaningful art and societal experiences, and fosters new knowledge in the visual arts by encouraging interdisciplinary investigation.

In 2009, the Museum established the Center for Art + Environment (CA+E), an inter-nationally recognized research center that supports the practice, study, and awareness of creative interactions between people and their natural, built, and virtual environments. William L. Fox was appointed as the CA+E’s first Director. Among the Center’s significant archive collections— including materials by 400 artists and organizations across all seven continents—are documents, sketches, and models relating to Walter De Maria, Michael Heizer, the Center for Land Use Interpre-tation, and Lita Albuquerque’s Stellar Axis project.

The Nevada Museum of Art was founded in 1931 by Dr. James Church and Charles Cutts. Church was an early climate scientist who constructed the first snow survey station to measure water content on Mount Rose in the Sierra Nevada. The shared interdisciplinary interests of Church and Cutts continue to shape the ongoing programming and focus of the Museum and Center for Art + Environment. nevadaart.org nevadaart.org/ae/center

About ACtAr ACTAR is a Barcelona- and New York-based publisher of ground- breaking books in architecture, graphic design, and contemporary art. Their publishing program focuses on works by established and emerging architects, design-ers, and photographers at the forefront of contemporary praxis and theory. ACTAR’s titles repre-sent a broad cross-section of the seminal works and individuals who affect the character of current research and practice and its relationship to a global societal context. actar.com

About EtC Everything Type Company (ETC) is a NY-based design studio founded by Kyle Blue & Geoff Halber. The studio specializes in identity, publishing, and inter-active projects for clients spanning culture and commerce. everything-type-company.comPREVIOUS PAGE

“Man at telescope”—

image top right—

photographed between

1916 and 1919.

A “tide-predicting

machine” (center)

developed by Dr. E.

Lester Jones, Chief

of the U.S. Coast

and Geodetic Survey,

1915. Bottom right,

a radar-scanning

facility at Clear

Air Force Station,

Alaska, photographed

by Gregory Sims in

2001. All photo-

graphs courtesy

of the Library of

Congress Prints and

Photographs Division:

the Harris & Ewing

Collection and

Historic American

Buildings Survey.

Visible right is

a geodetic diagram

plotting the U.S.

national grid.

8LANDSCAPE

Page 9: Landscape Futures

Contents

4 Acknowledgements5 Foreword by David B. Walker6 Dataland by William L. Fox9 Landscape Futures by Geoff Manaugh49 Interviews 49 History’s Apparatus with David Gissen

65 The Active Layer with Mason White & Lola Sheppard

77 Insect Spectacles with Chris Woebken

87 Living Interface with David Benjamin & Soo-In Yang 99 Architectural Monsterology with Liam Young 115 Superscape with Mark Smout & Laura Allen

177 Work225 Sourcebook

226 Landscape Futures Super-Workshop by Geoff Manaugh 237 A Journey to the Top of the City of Los Angeles

by Center for Land Use Interpretation 241 OIAML: Oceanographic Instrumentation and Mediated Landscapes

by Rob Holmes

248 Buried Treasure by Jan Zalasiewicz

252 Doppler by Rob Holmes

252 The Climate Engineers by James Fleming 263 The Architectural Production of Nature, Dendur/New York

by David Gissen 275 (Im)possible Chicagos by Alexander Trevi

278 Instantaneous Lines by Smudge Studio

284 The Delta Pen by Scott Geiger

289 Mauna Loa Observatory by Rob Holmes 290 Sensory Devices by Cassim Shepard

293 Mobile Geodesy by Rob Holmes

294 Landscape in Suspension by Sam Jacob

FUTURES 9

Page 10: Landscape Futures

Landscape Futures, the book and exhibition both, could never have happened without the incredible patience and support of the Nevada Museum of Art staff, particularly Ann M. Wolfe, William L. Fox, David B. Walker, Rachel Milon, Colin Robertson, Erik Flippo, Brian Eyler, Amy Oppio, and the indefatigable Chris Martin. The exhibiting artists and architects—David Gissen, Mason White, Lola Sheppard, Chris Woebken, Kenichi Okada, David Benjamin, Soo-in Yang, Liam Young, Mark Smout, and Laura Allen—were, of course, instrumental to this project (including Johan Hybschmann, who generously assisted with installation). Photographers Jamie Kingham and Dean Burton helped to document the resulting work in all its diversity of scales and angles. Designer Atley G. Kasky assisted with an early version of this publication; Geoff Halber and Kyle Blue of Everything Type Company in Brooklyn produced the gorgeous book you’re currently holding. Anna Tetas and Albert Ferré at ACTAR took on the book with enthusiasm when their support was most needed. University College London contributed to our thorough documentation of the work of Smout Allen. All participants in the January 2011 Landscape Futures Super-Workshop—particularly, Matthew Coolidge and Sarah Simons of the Center for Land Use Interpretation—deserve singular recognition for their intellectual camaraderie. Virgin Amer-ica helped to bring us all together in person. Jonathan Rennie helped to organize trips to many relevant sites in the southwest; geologist Brian Romans participated in some early conversations about terrestrial mechanisms; and Nicola Twilley offered indispensable help with the curator’s essay. Finally, all of the authors, artists, architects, scientists, and photographers whose work appears within these covers deserve sincere thanks.

Acknowledgements

10LANDSCAPE

Page 11: Landscape Futures

Curator’s Essay by Geoff Manaugh

LandscapeFutures

15FUTURES

Page 12: Landscape Futures

When the Nevada Museum of Art first suggested back in May 2009 that we could perhaps work together to mount a new exhibition in their 2,500 square-foot contemporary gallery, and that I could take a shot at curating it, they were looking for what they called at the time an exploration of “landscape 2.0.” This term was not intended as a formal title for the proposed exhibition, however, but more as a gesture toward something that would allow us to document, even participate in, the ongoing digitalization of landscape studies.

Such an exhibition could thus take as its subject everything from Geographic Information Systems (GIS) and satellite mapping (Google Earth) to blogging and the “spatial humanities,” broadly speaking, which has reached something of a crescendo today in theorist James Bridle’s idea of the New Aesthetic, with its concern for how machines, from traffic cameras to military drones, algorithmically view and interpret the world around them.

At the time the Museum called, I was sitting in a Los Angeles hotel room, getting ready to fly south to Australia for the summer to teach an intensive design studio called Urban Islands. Urban Islands takes place every two or three years on an uninhabited, post-industrial site in Sydney Harbor called Cockatoo Island: it is a small and quite extraordinary island of dry docks, abandoned quarries, derelict prison cells, former school buildings, and wartime shipbuilding yards that the city hopes to transform someday into a popular tourist site.

One of the other instructors that year was architect Mark Smout, who, along with his partner Laura Allen, is half of the London-based design firm Smout Allen. Smout Allen’s 2006 entry in the legendary Pamphlet Architec-ture series from Princeton Architectural Press remains one of the best, and I was eager to see what Mark and his students might produce.

01

Concepts for

a global satellite

triangulation

system. Images

courtesy of the U.S.

National Oceanic

& Atmospheric Admin-

istration (NOAA)

Geodesy Collection.

Curator’s Essay

16LANDSCAPE

Page 13: Landscape Futures

As it happens, that trip to Sydney was very well timed: working alongside Mark and traveling around the country for a few weeks after the workshop was over proved to have several unexpected—and very positive—effects on the eventual curatorial direction of Landscape Futures.

To make a long story short, Mark’s assignment for his students that year on Cockatoo Island included the production of small optical devices, inspired by the disruptive techniques of “dazzle painting” first developed by artist Norman Wilkinson—and subsequently applied to British battleships—during World War 1. Wilkinson’s strategy was to use differently colored and oddly patterned geometric shapes apparently interrupting one another along competing lines of perspective, thus making it all but impossible, Wilkinson hoped, to determine how large an object (in this case, a Naval warship) really was, in what direction it might be headed, or even if it was one object or many. Where this particular tactic differs from military camouflage is that dazzle painting does not attempt to mimic an object’s background; instead, dazzle painting seeks to design and implement a visual style of ornament so difficult to understand that, no matter what context a dazzle-painted object might appear within, it would be, in a sense, dimensionally incomprehensible. In other words, a dazzle ship sitting alone in the middle of the desert would be just as visually confusing to someone seeing it in its more expected context, sailing aggressively toward an enemy coastline.

However, the history of camouflage, as an optical technique, is also relevant here. In her book Hide and Seek, author Hanna Rose Shell describes the late 19th-century research of Abbott Thayer, an American painter often credited with the invention of modern camouflage. Thayer identified two primary methods for making an object disappear: what he called, on the one hand, “obliterative countershading,” and, on the other, as if foreshadowing the emergence of dazzle ships, “disruptive patterning.” These two complementary optical effects could make something imperceptibly unite with—or thoroughly blend into—its immediate background.

Giving his research an explicitly ecological spin, Thayer emphasized that, in the natural world of animal hunting grounds and wild habitats, this happens only from specific angles, at specific times, and in front of specific backdrops. “Every animal has evolved,” we read in Shell’s summary of Thayer’s argument, “to disappear in the specific environ-ment and at the specific instant in which it otherwise would have been most vulnerable. The dappled clothing of the peacock, the hot pink of the flamingo, and the yellow splotches of the warbler are each, according to Thayer,

02

PREVIOUS SPREAD The Electrotape was

“a precise electron-

ic surveying device

that used microwaves

to measure distance.

The first commercial

unit of this device

was created in 1961.

It yielded centime-

ter accuracy over

distances from 100

meters to 40 kilo-

meters, and in all

weather conditions,

day and night. Two

units were needed,

one to send the

signal and the other

to receive it.”

Image and caption

courtesy of the U.S.

Geological Survey.

Geoff Manaugh

17FUTURES

Page 14: Landscape Futures

associated with a specific instance in time and position in space.”It is thus only when the animal is at its most vulnerable, surrounded

by the context in which it is most likely to be preyed upon—forest floor, marshland, coral reef, savannah—that the animal’s optical self-cloaking mecha-nism kicks in, functioning, through the special effects of camouflage, to make the animal visually evaporate by way of the patterns and shapes appearing on its body. After all, Shell notes, in the world of camouflage, “not showing up is, at times and places, both a strategic necessity and a worthy aspiration.” It is not a metaphor, in other words, to say that what we refer to as “nature” is, in fact, a highly competitive multimedia environment in which animal bodies—acting literally as biotechnologies of landscape display—change coloration in order to blend in to certain backgrounds at certain times.

It should not be surprising here to learn that the tactical advantages of dynamic animal camouflage have been noticed by the U. S. military. In September 2012, it was reported that scientists at DARPA—the U. S. Defense Advanced Research Projects Agency—have, in the words of Houston Chronicle blogger Eric Berger, devised a way to “hack into [a] squid’s com-plex nervous system and control this process.” Specifically, Berger writes, “researchers, including Robyn Crook at the University of Texas Health Science Center in Houston, identified the nerves that control the coloration of the squid’s skin, and demonstrated their ability to change its color on command.” The animal body thus becomes a kind of living device: a semi-autonomous 3-dimensional screen that can be reprogrammed at will to show patterns, colors, and shapes (raising some fascinating, though morally troubling, questions when seen in the context of Cassim Shepard’s essay, a short history of optical devices—from “phenakistascopes” to stroboscopes—later in this volume).

Mark Smout’s research into architectural dazzle objects sought to transform how the landscape in which those objects had been placed could be reinter-preted and newly understood. These objects were not architectural—at least, not as such. They were more like visual interruptions: using motifs “drawn from geological maps, dazzle ships, and nautical communication systems,” as Mark later explained in a short essay written for Urban Islands, these minor objects peppered here and there around Cockatoo served as temporary, spatially ambiguous additions that could change how the island was perceived, measured, and navigated.

Visually out of synch with its own immediate context, a dazzle object can thus catalyze new, potentially disorienting spatial relationships between fore-ground and background, inside and outside, light and shadow, solid and void. We might say that such an object is architecture, then, but architecture in its most compressed and powerful form: a design intervention with no traditional “building” in sight, more like a grenade of spatial effects.

In the end, Mark’s students successfully built and fabricated many of these

03

Curator’s Essay

18LANDSCAPE

Page 15: Landscape Futures

(often rather clunky) handheld devices and portable mechanisms in order to frame, point out, or otherwise highlight different locations around the island. The implication, I thought, was brilliant: rather than design a large-scale, iconic addition or alteration to the island, an artist or architect could simply introduce minor ornamental objects—a kind of instrumental jewelry—that would nonetheless have dispro-portionate spatial effects on the context in which they were placed.

This idea of a disorienting and catalytic spatial object bears comparison to the work of two recent graduates from the Bartlett School of Architecture in London, Matthew Shaw and William Trossell, who currently work together under the name ScanLAB Projects. With the technical support of Faro Laser Scanning, ScanLAB have embarked upon a series of investigations that, taken as a whole, reveal some of the most extreme design implications for laser scanning technology, or LiDAR (Light Detection And Ranging). Curious to see if they could produce 3D scans of diaphanous, even immate-rial spatial events, for instance, such as fog banks, smoke, humidity, and mist, ScanLAB have revealed a rich world of implied built environments.

For an ongoing project called “Stealth Objects,” Shaw and Trossell have been exploring “the subversion of city-scale 3D scanning in London.” As they explain it, “the project uses hypothetical devices which are installed across the city and which edit the way the city is scanned and recorded.” These hypothetical stealth objects with complex LiDAR-jamming geometries include “boundary miscom-munication devices” to “offset, relocate, and invent spatial data such as paths, boundaries, tunnels and walls,” as well as objects that can “go undetected by surveillance while twisting, offsetting, distorting, and subverting city-scale 3D scanning.” These latter experiments include “speculative LiDAR blooms, blockages, holes, and drains,” all of which are “the result of strategically deployed devices which offset, copy, paste, erase, and tangle LiDAR data around them.” ScanLAB’s work not only heralds a whole new class of archi-tectural ornament (ornament as digital camouflage, designed to be seen only by laser-scanning equipment) but also entirely new types of building façades (augmented reality meets LiDAR). In both cases, it is a kind of implied architec-ture, invisible to the naked eye, that pops up only on laser scanners at various

04

U.S. Geological

Survey crew member

holds aloft a

landscape measuring

rod in the hills

of West Virginia,

September 1921.

Photograph by George

Stanley Druhot,

courtesy of the U.S.

Geological Survey.

Geoff Manaugh

19FUTURES

Page 16: Landscape Futures

points around the city. ScanLAB refers to this latter possibility as “the deploy-ment of flash architecture”—flash streets, flash statues, flash doors—that only exist as data artifacts in scanning gear.

Stealth statuary and other anomalous spatial entities could thus dot the cityscape, perceptible only as representational effects in the technologies through which we view them, acting, in a sense, like spatial watermarks or invisible writing. Of course, it is not hard to imagine the military becom-ing interested in the future of this research, suggesting as it does stealth body armor, stealth ground vehicles, even stealth forward-operating bases, all of which would be geometrically invisible to radar and other sensing equipment.

When Urban Islands was over, my wife, Nicola, and I took some time off to stay down in Australia and travel around the country’s east coast for a few weeks before heading home. One night, we found ourselves in a tourist hotel in Cairns where I was flipping between channels on the in-room TV. It wasn’t long before I stumbled onto the final fifteen minutes or so of a U.S.-produced documentary about the Apollo space program. At the moment I tuned in, the show was looking at the present-day work of an astronomer based in west Texas.

It turns out, the documentary explained, that the Apollo program never really ended; there is still one experiment, still very active, involving at the time of the documentary a lone man stationed in a small lab in Texas, working out of a hut that could have passed for a garden shed. What was his job? To shoot lasers at the moon.

A laser beam as thin as a pencil would leave this modest installation—which was utterly transformed when its roof sliced opened to reveal the mysterious machines that would produce a sublime beam of light, shooting upward into the heavens. Upon reaching the moon, the resulting laser—that, because of the effects of the Earth’s atmosphere, was now a kilometer in width—would hit a small tray of reflective prisms called a retroreflector array that had been left behind on the moon’s surface by American astronauts. When even just three or four photons from that laser finally returned to the Earth, having reflected off the prismatic array, this man in west Texas, armed with computers running complex software packages, could begin to measure whether or not the moon was orbiting the Earth faster than predicted by Einstein’s relativity.

It would be a wild understatement to say that I don’t fully understand the implications of this experiment and that I might even be describing its purpose incorrectly in the above paragraph; but, when the documentary on our hotel television began showing images of the reflective tray, and when a shot of that spectacular, lonesome beam of pure light shooting up from the middle of nowhere toward the moon appeared on screen, I had an overwhelming urge to get in touch with Mark Smout. It was as if the most outlandish and literally off-world speculative proposal by Smout Allen—prisms on the moon, a landscape

05

Curator’s Essay

20LANDSCAPE

Page 17: Landscape Futures

Fog scanned as part

of research work

called “Slow Becom-

ing Delightful”

by ScanLAB Projects

(Matthew Shaw and

William Trossell).

Courtesy of ScanLAB

Projects/scanlab-

projects.co.uk.

A physical prototype

from the “stealth

objects” series

by Matthew Shaw and

William Trossell;

these “hypothetical

objects” can “off-

set, copy, paste,

erase, and tangle

LiDAR data around

them.” Image cour-

tesy of ScanLAB

Projects/scanlab-

projects.co.uk.

Geoff Manaugh

21FUTURES

Page 18: Landscape Futures

Photographer Chris-

tian Houge’s ongoing

Arctic Technology

series—from which

this image is taken—

offers a fascinat-

ing, expeditionary

look at large-scale

scientific instal-

lations on the

Norwegian island

of Svalbard. Sval-

bard is an unusually

isolated far-north-

ern landmass located

between Norway

and the North Pole.

Its pristine air,

minimal population,

and nearly radio-

free environment

make it an ideal

site for scientific

Photograph courtesy

of Christian

Houge/Nevada

Museum of Art.

christianhouge.no

Curator’s Essay

22LANDSCAPE

Page 19: Landscape Futures

work, thus the high

number of elaborate

antennas and other

installations found

there. Svalbard, in

fact, is but one of

many landscapes all

over the world—from

South Africa and

Western Australia to

the “National Radio

Quiet Zone” in the

mountains of West

Virginia—in which

massive pieces of

equipment necessary

for cutting-edge

physics experiments

have been construct-

ed and installed.

Achieving electro-

magnetic isolation

on this scale—entire

landscapes quaran-

tined from outside

interference—pres-

ents an intriguing

new branch for

architectural inves-

tigation, including

new possibilities

for landscape

design. As but one

minor example of

this, innovative

forms of shielding

and enclosure have

been developed to

help reduce inter-

ference from distant

sources of radio

waves; the scientif-

ic equipment and its

careful siting in

the landscape—styled

not in a local ver-

nacular but accord-

ing to the spatial

needs of a particu-

lar experiment—thus

paradoxically gives

architectural form

to the very thing

whose influence it

is trying to mini-

mize. These radio-

free landscapes

on the very edges

of the inhabit-

able world could be

thought of as a kind

of spatial arms race

waged against the

growing presence of

electromagnetic in-

terference in

everyday life.

Geoff Manaugh

23FUTURES

Page 20: Landscape Futures

device that would not at all have been out of place in their edition of Pamphlet Architecture—had been built and realized in the 1970s by NASA.

Several months later, Nicola and I had an extraordinary opportunity to visit this experiment, officially now called the Apache Point Observatory Lunar Laser-Ranging Operation, or APOLLO, named after its new location in the mountains of south-central New Mexico. On our way driving up from the wasteland of Alamogordo on a road past huge and violent rock strata, like a storm frozen at sea, we drove through the town of Cloudcroft before heading south—and higher—through the pine forests another 15 miles to the telescope complexes of Apache Point and the National Solar Observatory.

At the National Solar Observatory, our first stop, we took a short self-guided tour, reading about “dark time surveys,” “ripples of dense matter left by sound waves that were frozen in space shortly after the Big Bang,” and the

06

Apollo 11 astronauts

install the Early

Apollo Scientific

Experiments Package

(EASEP) on the moon,

including the Lunar

Laser Retroreflector

array, or LRRR,

a prismatic tray

that would reflect

lasers shot from

Earth. Courtesy

of NASA.

A lunar laser-

ranging experiment

underway at NASA’s

Goddard Space Flight

Center in Greenbelt,

Maryland. Photograph

courtesy of NASA/

GSFC/Debbie Mccallum

and Tom Zagwodzki/

Goddard Space Flight

Center.

Curator’s Essay

24LANDSCAPE

Page 21: Landscape Futures

magnetic equivalent of smoke rings moving through space. In the main telescope facility, we stared somewhat awestruck at a TV screen, an antique set seemingly left over from the 1960s, that flickered with live sunspots as if someone had trained a surveillance camera at the sun. Behind the building, on a fantastically clear spring day, we found a cluster of small telescopes stand-ing there wrapped in waterproof tarps, their legs visible at the bottom like overstocked barbecues in a suburban backyard.

Heading onward to Apache Point, we met with Dr. Russet McMillan who generously gave us a private, behind-the-scenes tour of the facility. This included a glimpse of the software used to control the experiment, an intro-duction to the geometry of the retroreflecting arrays themselves, and, best of all, a visit upstairs to the actual laser room with its huge tanks of liquid nitrogen coolant and a diagram labeled “Delay Line Prisms” inside the door of a locked cabinet. Dr. McMillan walked us through the complex—a surpris-ingly massive hilltop structure of internal bracing and concrete walls—into what felt like an underlit office in a warehouse. Here, she pushed a bottom and the walls and roof split open, sliding aside to reveal the extraordinary smell of a late-afternoon spring pine forest and a light breeze.

We stood there looking out at the blue sky and treetops, and the moon—with its prismatic array of Smout Allen-like objects—was up there waiting to appear after nightfall.

Dazzle objects, prisms on the moon, laser-scanned stealth ornament: it became increasingly clear to me that, if the goal was to curate an exhibition on the digitalization of landscape studies—that is, an exhibition that explored data and topography, surveying and information technology, future terrains and “landscape 2.0”—then there was a whole, readymade world of spatial technologies for us to consider. The world was already filled with extraordinary instruments, handheld sensors, mechanisms, experimental arrays, and other, often semi-autonomous, networked machines through which humans, on a continual basis, without pause, on every continent of the Earth and even at the bottom of the sea, have been recording and interpreting the world around them. These are “devices of wonder,” in the words of art historian Barbara Maria Stafford, machines that “not only constrain what it is possible to see but also determine what can be thought” by those dependent on them.

Seen this way, even scientific instruments, such as radio telescopes, neutrino detectors, seismographs, and ground-penetrating radar used in archaeological surveys—even lumbering and lonely Mars rovers packed with instruments for off-world exploration—also reconfigure, albeit in very different ways, our existing understanding of a given landscape. These, too, could be displayed in an art museum alongside other more explicitly “artistic” works; to say that NASA and Smout Allen share many interpretive and conceptual overlaps in their work is thus not—or not only—a poetic exaggeration.

Taken together, through the data they produce, these and other instruments

07

Geoff Manaugh

25FUTURES

Page 22: Landscape Futures

Listening to the

Mississippi River

through a hole in

the ice (c. 1940),

courtesy of the U.S.

Geological Survey.

Patent for a hydro-

logical machine

from Smout Allen’s

research for

Landscape Futures.

Curator’s Essay

26LANDSCAPE

Page 23: Landscape Futures

reveal the existence of spaces, objects, forces, and influences that humans would otherwise never be able to perceive. Charged particles passing through the Earth; ruined buildings locked within ancient flows of volcanic lava; vast and invisible radio galaxies turning hypnotically through space.

Given the right instruments, humans gain access to and, more importantly, begin to interact with entire systems of objects and landscapes that were present all along but had otherwise been physically undetectable, camouflaged or hidden against an inhuman context or background.

As it happens, this turn toward spatial instrumentation is a very old and very architectural concern. As C.J. Lim—also based at the Bartlett School of Architecture—writes in his book Devices: A Manual of Architectural + Spatial Machines, “Devices have shared a long and complex history with architecture. The machines of Vitruvius and Leonardo da Vinci were devised in times of peace and war for both the construction and destruction of the built form.”

Citing Victorian mechanical phantasmagoria, theatrical stage-sets, and experimental architectural studies of speculative machines—mobile image-projection equipment, climbing robots, navigation tools, drawing instruments, sensors for detecting lost rivers, wearable toolkits, and more—Lim presents a compelling vision of the architect as spatial tinkerer, inventing new constellations of intermediary spatial products that can transform how human beings understand the spaces around them.

Made from such things as plastic tubes, ball bearings, litmus paper, and lighting filaments, the “spatial machines” cataloged by Lim wander forth into the world, activating and sometimes literally shedding new light on overlooked nooks and crannies in the landscape.

From here, it is only a small jump to consider much larger technical undertakings, moving up to the scale of buildings and even to an entire metropolis. In his book OneFiveFour, for instance, architect Lebbeus Woods describes a specula-tive city ornamented by networked systems of “oscillo-scopes, refractors, seismometers, interferometers, and other, as yet unknown instruments, measuring light, movement, force, change.” It is an urban-scale physics experiment, or Vitruvius updated for the 31st century. In this city of instruments, Woods imagines even the towers and bridges acting in strange geomechanical synchrony, as the buildings themselves “are kinetic instruments that measure the earth’s inner dynamic.” “Like musical instruments,” he writes,

The 2012 Dachstein

Mars Cave Experi-

ment transformed an

Austrian ice cave

into a laboratory

for simulating the

surface of Mars,

including testing

the effectiveness

of future explora-

tion gear, from

spacesuits to semi-

autonomous remote-

sensing vehicles.

Photographs copy-

right OEWF (Katja

Zanella-Kux) and

Association Planète

Mars (APM).08

Geoff Manaugh

27FUTURES

Page 24: Landscape Futures

“they vibrate and shift in diverse frequencies, in resonance with the earth and also with one another… Indeed, each object—chair, table, cloth, examining apparatus, structure—is an instrument; each material thing connects the inhab-itants with events in the world around him and within himself.”

This vision of the built environment as a constellation of scientific instru-ments actually has fascinating overlaps with the history of Christian cathedrals. In a remarkable book called The Sun in the Church: Cathedrals as Solar Observatories, historian J. L. Heilbron explores the long-standing astronomical interests of the Catholic church (in fact, the Vatican still owns and operates, in collaboration with the University of Arizona, Tucson, a large telescope facility in the mountains of southeastern Arizona). These studies were moti-vated less by a love for scientific learning, however—after all, this is the same organization that excommunicated Galileo and burned Giordano Bruno at the stake—than by something altogether more prosaic. “The problem,” Heilbron writes, “was establishing and promulgating the date of Easter.”

Accurately maintaining the Christian calendar thus required Lebbeus Woods-like architectural inventions, including the ornamental augmentation of cathedrals in Florence, Bologna, and even the Vatican itself with meridian lines, quadrants, and solar gnomons that could measure, or give visual coordinates for, the perceived seasonal movement of the sun.

The entire building, in this analysis, is designed to function as a kind of sacred astronomical device, passively recording and making visible the dynamics of heaven far above.

The connective thread between these examples—from Smout Allen’s dazzling ornamentalism or an entire city designed by Lebbeus Woods to be “in resonance with the earth,” to the cathedral as passive solar experiment— can be found by focusing on and foregrounding the mechanisms, devices, and spatial machines through which the human understanding of a land-scape might be radically refigured.

These intricate

models by architect

Nat Chard explore

a series of instru-

mental scenarios,

including a “bird

automata test track”

for studying and

filming mechanical

flight, and various

domed cameras and

“drawing machines.”

Images courtesy

of Nat Chard.

Curator’s Essay

28LANDSCAPE

Page 25: Landscape Futures

The central curatorial question for Landscape Futures was thus right there, and suddenly seemed obvious: What if we could take the deceptively minor spatial intermediaries through which humans see and understand the Earth and put them into the context of such things as land art, geog-raphy, landscape anthropology, the digital humanities, and more? What if we could commission our own such devices—what sorts of traces and data clouds might they track, collect, or interpret? Who would invent them? How might they transform our understanding of the environment in which we live? Surely, I thought, these machines and experiments, these technologies and instruments, belonged in any serious conversation about landscape studies or the future of spatial design practice. Surely, in the vast space between Christian cathedrals and seismographs, between Lebbeus Woods and abandoned mines converted into high-energy physics experiments, between Smout Allen and NASA, there was fertile ground to explore.

A few brief examples of how profoundly a device can affect our understanding of the landscape will hopefully demonstrate what my goals were in turning toward instru-ments, devices, and architectural inventions in the curatorial brief for Landscape Futures.

In the September/October 2008 issue of Archaeology magazine, author Samir S. Patel profiled a team of particle physicists from the University of Texas, Austin, called the Maya Muon Group. For the past few years, we read, this group has been using repurposed muon detectors—“an almost featureless aluminum cylinder 5 feet in diameter” designed for “silently counting cosmic flotsam called muons,” or “ghost particles,” in Patel’s words, ceaselessly raining down from space—to peer inside archaeological ruins in Belize.

There, these machines have been put to work searching for previously undiscovered internal spaces—rooms and corridors that may or may not exist—inside what the project’s scientists refer to as merely a “jungle-covered mound.” This “mound” might not be a mound at all, in other words: not a mountain but a building, a forgotten work of architecture long ago consumed by the forest and now masquerading as part of the natural landscape. Not the Earth, then, but an unnatural addition to it.

Because dense materials, such as walls and mountain sides, block more muons than open spaces or empty

“By means of this

chronograph,” the

Library of Congress

explains, “Dr. L.V.

Astin records the

weather signals

sent down from the

radiometeorograph

attached to the

balloon as it soars

anywhere from 9

to 11 miles in the

upper air.” Image

courtesy of the U.S.

Library of Congress.

Images courtesy

of the Smithsonian

Institution.

09

10

Geoff Manaugh

29FUTURES

Page 26: Landscape Futures
Page 27: Landscape Futures
Page 28: Landscape Futures
Page 29: Landscape Futures

History’sApparatus

An interview withDavid Gissen

57FUTURES

Page 30: Landscape Futures

GEOFF MANAUGH: Let’s start with the idea of reconstruction, which is something you and I have talked about at great length and is also a theme that pops up more and more in your work.

DAVID GISSEN: Reconstruction is something I’m increasingly interested in—the role that reconstruction can play within architecture and, more tangentially, within architectural interpretations of nature.

But, first, I should give you a sense of what I mean by “reconstruction.” Within ar-chitectural history, when we talk about reconstruction, we’re generally describ-ing an activity by which an architect or architectural historian visually reinterprets a building from the past. It could be a building that he or she has seen fragments or ruins of, or it could be a building that he or she has only read about within architectural literature from the past.

In either case, it generally involves some act of visual representation and re-interpretation.

Some relatively early examples of architectural reconstruction are by Johann Bernhard Fischer von Erlach, from his history of architecture—also considered the first history of architecture—from the early 18th century. One of the things I find interesting about von Erlach’s reconstruction—and von Erlach was an architect reconstructing the buildings of the past for an architectural and, frankly, aristocratic audience—is that, in addition to reconstructing buildings he had never seen but only heard about or, in some cases, that didn’t even exist, he was also reconstructing nature.

Von Erlach imagines himself as reconstruct-ing, for an architectural audience, a Chinese landscape that is itself a reconstruction of earlier natural forms. He’s saying that, within the activity of Chinese architecture, there is already a reconstruction of even more ancient landscapes.

This idea of reconstructing nature—bringing back a nature that once existed but is lost—is, in a sense, embedded within the history of architecture and, thus, within the potential work of the architect.

More specifically, when we think about re-construction, we might think about something like Giovanni Battista Piranesi’s reconstruction of the Campo Marzio outside Rome. One of the key aspects of this, in addition to illustrating a more antiquarian concept of reconstruction, is that Piranesi introduces the idea of architec-tural reconstruction as a kind of agitation. In other words, Piranesi’s engravings were a statement about what Rome once was— but they were also a statement about what cities might be based upon our selective

interpretations of the past.One of the key features of the city,

as Piranesi depicted it, is that it doesn’t really have streets. He imagined the city as just an agglomeration of buildings— of architecture—and streets were simply the peripheral places left open in between. But he was doing that as a form of critique—or I prefer the term agitation—as a kind of a pinprick to his contemporary architectural audience.

Now, reconstructions can take on a much more literal form, and they do, especially in the 19th century; but their agitational role continues, and

I think we often lose sight of this. In Paris, for instance, there’s the Place Vendôme. The col-umn standing today in the Place Vendôme is a reconstruction of a column built by Napoleon to commemorate his victory at Austerlitz. But that was also a reconstruction, of Trajan’s column in Rome.

For anyone who knows Paris, this is like the swanky Madison Avenue of Paris now. It’s where you go to shop at Cartier. What’s interesting to me is that, in 1871, when the Communards—the neo-Republicans of Paris—wrested the city back from the ownership class and turned Paris into the first real example of revolutionary urbanism—they took over the city, they ended property, they ended work as we know it, and all of this lasted about three months before it was brutally put down—one of their first artistic acts was to bring this column down.

Gustave Courbet, the very famous Pre-Impressionist painter who was also the head of artistic works for the Commune, therefore said, our first act will be an act of destruction.

Piranesi’s

engravings were

a statement

about what Rome

once was —

but they were

also a state-

ment about what

cities might

be based upon

our selective

interpretations

of the past.

History’s Apparatus

58LANDSCAPE

Page 31: Landscape Futures

He and his fellow artists and Communards brought the column down and created the mound of Vendôme. Courbet said it was the greatest artistic act of the 19th century.

My research on the column and its destruc-tion has revealed the most fascinating bits of data. For instance, I found these old photos of the Commune in the Berkeley library: they actually built a story and a half hill out of hay, and had all the window shutters around the square closed so that when they toppled the column it wouldn’t damage the street. The shutters were closed so that all the dust and debris that shot out wouldn’t break the glass.

In fact, just to continue this random line of thought, when the Situationists, headed by Guy Debord, began writing about the city, they reclaimed this act. They said it was one of the great revolutionary acts of urbanism—the creat-ing of this mound. The Communards had made a landscape in the city out of a militaristic monument.

Anyway, as soon as the Communard revolution was suppressed, one of the first acts of the new public works commission was to rebuild the column—to reconstruct a recon-struction in the Place Vendôme. When you go there today, you are seeing the second itera-tion of that column, and its real urban history is completely erased to us.

So reconstruction and destruction have an interesting dialectic, one that I think is possible, but not necessarily easy, to recover.

G.M. The theme of reconstructing nature runs throughout much of your work, includ-ing the essays in your book Subnature. How did you first get interested in the subject?

D.G. When I was a graduate student, for my thesis project I wanted to do some sort of reconstruction. But I didn’t want to recon-struct a Greek temple; I didn’t want to reconstruct ancient Rome. I was interested in how reconstruction could have an agitational relationship to the present, and I was also—and have been for a very long time—very much interested in ideas of urban nature.

So I decided to reconstruct a building type that existed very briefly on the East River and Hudson River in New York City, called floating

bath houses. These buildings were first built in the late 19th century as a place in which newly arrived immigrants to the city would have a place to wash themselves. To bathe. Bathing in the 19th century had two meanings: it meant to clean or to wash yourself, of course, but it also had a recreational form. To bathe was what, today, we’d call swimming.

What was so provocative to me in thinking about this, when I was a student in the mid 1990s, is that people once swam in the rivers of New York City, which, at the time, when I was a student, seemed completely disgusting. They still are quite polluted, of course, but, at the time, just the image—the very thought of somebody swimming in the river—was repul-sive. When I decided to reconstruct these buildings, I wanted to do it as a provocation about what the river might become. At this time, in the mid ’90s, there was only the very beginning of a discussion about creating boule-vards so that people in the city could have access to the rivers and enjoy those land-scapes from a recreational perspective; but I wanted to throw this out there as a way to think about the river could become much more than just something to observe.

So, in 1999, we exhibited a suite of draw-ings, models, and photographs at the Lower East Side Tenement Museum in New York City. What was really kind of exhilarating for me at the time—I was quite young, in my 20s—was the fact that this exhibition, which was very modest and simple, was picked up by the local newspapers, including The New York Times and the Village Voice, and people really reacted to the exhibition in exactly the way the exhibi-tion was designed to operate.

In other words, the exhibition was designed to produce a certain kind of reaction and I was very happy that it did: it offered a vision of what the East and Hudson Rivers of New York City could be through a reconstruction. Not that we could necessarily realize this today, but it does make us think about what is possible with our bodies in a city and with the landscape that surrounds that city.

It was funny, though: after doing that exhibition, everybody was like, “Can you do an exhibition about pools in Central Park? You can reconstruct the pools that Robert Moses once

An Interview with David Gissen

59FUTURES

Page 32: Landscape Futures

haas that the extension of a museological men-tality into the city is such a dangerous thing. Museums are not places where things get frozen for all time; rather, they’re sites where things, and the contexts of things, become intensely and endlessly debated. Again, think of the Elgin Marbles.

More to your point, there’s a suggestion in your questions that there might be something very dangerous in a curatorial, conservationist, or preservationist agenda being wielded in the city. There’s a risk of stagnation. And when you talk about the idea of a future landscape— of a landscape’s future, of landscape futures—you might immediately think of a landscape saturated with, or filtered through, technol-ogy, instead of a landscape seen through the mentality of historical preservation.

But the idea of the future always implies a present and a past—and we need to think about what the role of the historical might be within some near or immediate concept of the future. What is the role of history in quote-unquote landscape futures? What is the historian’s relationship to the future?

History’s Apparatus

72LANDSCAPE

Page 33: Landscape Futures

TheActiveLayer

An interview withMason White & Lola Sheppard

73FUTURES

Page 34: Landscape Futures

GEOFF MANAUGH: Let’s start with the piece itself, which has an imposing though quite elegant presence in the gallery. What’s the concept behind it?

MASON WHITE: “The Active Layer” is part of a larger series of research and design projects that all look at the far northern context, which is typically seen either as a militaristic enterprise—a purely strategic enterprise, through things like the Distant Early Warning Line or events like Operation Nanook, which is a military tour conducted there by the Cana-dian Navy—or as a place used only for remote scientific research outposts, such as Eureka in Nunavut. Instead, we’re looking at what kinds of architectures might come out of that region, if it were treated not as the globe’s far northern attic condition but as its own local context. Of course, it’s not well populated; there are around 100,000 inhabitants above 60-degrees north. We were looking at that question as part of a multi-year research project.

In particular, the geological foundation of this region is called the “active layer,” which yields a type of landscape phenomenon called thermokarst. Thermokarst is basically when the permafrost layer heats up, partially

melts, and then collapses, and the active layer is the topmost level of soil that shifts rapidly between freeze and thaw states. That is pretty much the basis of any life there; it’s how you get plants, which mammal species feed off of, and then humans feed off of those mammal species. So it’s a key phenomenon—the active layer—this thin and fragile layer just above the permafrost.

We’re using the idea of freezing and thawing to explore what kinds of architecture might occupy that space, what kind of architecture might relate to that environment more directly.

LOLA SHEPPARD: It’s also becoming a site for other projects that aren’t necessarily situ-ated on that exact geography. In other words, the active layer allows us to talk about a particular kind of landscape that is constantly

74

The Active Layer

LANDSCAPE

Page 35: Landscape Futures

oscillating between land and water, between freeze and thaw. In that sense, the active layer stands in for a whole host of geographic conditions that this project then specifically addresses.

G.M. I’m interested in the larger implica-tions of such a climatically, politically, and even economically dynamic landscape. I’m curious how you, as designers, can best diagnose what is appropriate now for that landscape, versus a kind of predictive or projective—even preemptive—look at emerg-ing future scenarios. You know, a project that will only be appropriate in fifteen years, or after radical climate change. Do your northern projects aim to catalyze or insti-gate new conditions, or do they respond to something that currently exists?

M.W. Well, it’s a very strange context, in the sense that everything there already does not belong. It truly is a frontier. On top of that, it’s so difficult to design, say, two generations ahead; it’s much easier to design within just one generation. I think the situations we are looking at exist more in the near future; they would address immediate concerns, but the way in which they would address those concerns would be obliquely.

Let me give you an example: we have a project that we call “Health Hangars.” It looks at a phenomenon that is very common in the north: medivac-ing. Basically, you have a community of 800 people and you’ve got a pregnant woman or somebody’s who got tuberculosis, and they need to be flown by airplane to the nearest hospital, which is some-times a two-hour flight away. The air industry becomes a major lifeline—and social line—amongst these very distant communities, who are all in the process of investing millions of dollars in small but legitimate air terminals. Air freighting, air travel, etc.—these are vital for their economic well-being.

The project that we put on the table would combine a hospital with an air terminal. It’s got a very specific configuration of what is geared toward land use, what is geared toward air use, how does freighting work, where is a place for the patients, etc. Basically, the

idea is that a hospital is a big, burdensome building and an air terminal can equally be a big, burdensome building; so our proposition is that, if there are about four communities, and they’re dispersed by 500-700 kilometers from each other, then they can form one hospital, even though they’re spatially separated. They’re in four different locations, but there’s a kind of Voltron logic here, where, even though they’re in diverse locations, they are linked together by plane. They tap into a larger set of communities cooperatively opening a single facility—in this case, a hospital—on a manageable scale. That’s a strange architectural logic that comes out of a strange situation—and we really embrace that logic.

L.S. More generally, because these are small communities and they’re very remote, part of our interest was to ask: can one envision a broader role for infrastructure? This is crucial. An airport is the only way in and out of many northern communities, so its role could potentially expand.

It’s the same thing with the idea of a school: could it expand to take on other functions in a larger network, and hence have the ability to adapt or expand its role and be shared

amongst potentially many communities over time? That’s where the element of trying to project into the future happens, not so much in the sense of predicting future directions for the culture or the economic circumstances of those com-munities, but simplyto envision more possibilities for the infra-structure that responds to this unique context.

G.M. It’s interesting that your northern work also includes infrastructure aimed at nonhuman users, such as the “Caribou Pivot Stations.” What are the challenges of designing nonhuman infrastructure, so to speak, or infrastructure for other species?

That’s where

the element of

trying to proj-

ect into the

future happens,

not so much

in the sense

of predicting

future direc-

tions for the

culture or the

economic cir-

cumstances of

those communi-

ties, but sim-

ply to envision

more possibili-

ties for the

infrastructure

that responds

to this unique

context.

An Interview with Mason White & Lola Sheppard

75FUTURES

Page 36: Landscape Futures

In their 2010

project for

“water farming”

in California’s

Salton Sea,

Lateral Office

proposed an

ambitiously

multi-faceted

new infrastruc-

ture that could

combine water

purification,

public re-

creation, and

wildlife habi-

tat renewal.

“Easily

replaced or

upgraded,”

the architects

write, “these

infrastructures

double as

landscape

life support,

creating new

sites for

production or

recreation.

The ambition

is to supple-

ment landscapes

at risk rather

than overhaul

them, combining

existing land-

scapes with

emergent sys-

tems to cata-

lyze a network

of ecologies

and economies

in a new

public realm.”

84

The Active Layer

LANDSCAPE

Page 37: Landscape Futures

An interview withChris Woebken

Insect Spectacles

85FUTURES

Page 38: Landscape Futures

in. But I don’t consider myself a scientist; that’s not what I am.

The easiest thing to do, actually, is to create projects like “Animal Superpowers,” where you’re basically creating toys for kids. They shift the perspective and it’s really fun, but the idea of creating larger interactions with water and fish—or with bats, through the “Bat Billboard”—is very difficult.

With the bats, I had the idea to take these animal interactions further and to use the structure of the billboard not only as an inter-active habitat, but to have it work also for a brand. I was actually thinking about Motorola, whose logo is a bat. Because, once you take these kinds of ideas into a commercial realm, and you try to make something like this into a viral advertisement, or into something that works for a brand while still functioning as a fun installation in the city that talks about ecological issues, there are just so many factors involved. It’s more difficult to design and to make sure it works.

For now, the “Bat Billboard” is just a concept, but I can easily imagine it becoming real and working as some form of advertising—to do this type of work for a commercial client, but still create these kinds of ecological relationships. That’s more difficult than creating something like toys that shift perception.

So the question is, really: is this work about making people imagine new things, and think about ecological issues and consider new urban possibilities? Or is it really about having hard data and creating real fact- and science-based installations? Because I’m interested in both. Animal Superpowers started off with the idea of looking at animal perspectives, and creating these toys, but then it started to expand more and more, which was great.

It’s interesting that you mention the playful-ness, though, because I really need to watch out that it’s going to stay that way. The humor and the playfulness is key to getting people engaged in these types of issues. That’s how you make science really accessible.

94

Insect Spectacles

LANDSCAPE

Page 39: Landscape Futures

LivingInterface

An interview withDavid Benjamin & Soo-In Yang

95FUTURES

Page 40: Landscape Futures

Photographs

from the gold

mines of West-

ern Australia,

taken by Liam

Young and

Oliviu Lugojan-

Ghenciu/olgv.

net, part of an

Unknown Fields

Division trip

exploring dis-

tant landscapes

of extraction.

with a new perspective on the emerging ecological conditions we are designing for.

So, in 2010, we went to West-ern Australia, which is referred to as “the quarry of the world.” We landed in Perth and we went straight out to the Kalgoorlie Super Pit, which is one of the deepest gold mines in the world. It’s a hole so big that it has its own weather system and a series of strobe lights to help keep planes away from it, because otherwise they would drop into

the vacuum caused by the vortex. We went on to Wiluna, which is an underground gold mine, and then up to Newman, which is the largest iron ore mine, and where we get our steel from as architects. Then we followed the train line all the way through to Port Headland, a town blan-keted in a thick layer of rusty red dust, which is where Australia ships all that iron ore over to China and Iceland.

Along the way, we had lots of meetings with geologists, miners and engineers, and we learned about the models that they work with. Basically, they work with LiDAR data and satellite images, looking for anomalies in the landscape. They can do things like measure the gravity content of the land; they can sense fluctuations in gravity and in mag-netic fields. And they use this data to construct what are basically phantom visions of the ore body hidden below the surface. Some of them even referred to themselves as storytellers, because they intuitively read all this informa-tion and then conjure a speculative image

of what this ore body might be like—a new kind of Dreamtime about where and how large it might really be. It’s on the basis of these stories that this entire infrastructure is installed and put in motion.

The mining engineers are basically design-ers. They develop all this fragmentary data into models, which become the design of the pit itself. But then what happens is, based on gold prices, the pit model changes. In other words, if the gold price or the mineral price is higher, then the pit gets wider as it becomes cost effective to mine areas of lower concentration. This happens nearly in real-time—the speed of the machines digging the pit can change over the course of the day based on the price of gold, so the geometry of the pit is utterly parametric, modeling these distant financial calculations.

Architectural Monsterology

114LANDSCAPE

Page 41: Landscape Futures

Actually, there are areas where they know there is gold, but it’s in such low concentrations that, with the technology at the moment, it’s not efficient to mine it out. But they know the technology will advance to such a point

that it someday will be efficient to mine it, so they’ve basically sectioned those places off. That land is lying in wait with a kind of latent wealth.

So what we found is that the landscape—although it’s rock and earth and minerals— is actually a virtual construction, in a way. It’s a construct of technology, the changing gold price, and these virtual models. It’s an acceler-ated geology, with mines—on the scale of what would take rivers millennia to produce—linked to an entirely virtual index.

But it is also a very real, physical place. We went a kilometer underground to explore where the gold comes from, visiting these extraordinary machines—these lumbering beasts and strange creatures in a warren of passages—all programmed and controlled remotely. All this paraphernalia is to get gold out of the ground and quantify how much was in there. There’s even a bacteria tank where they’ve engineered a new type of bacteria to release the gold from the ore it’s attached to.

At the end of this process, we went into the gold room. There are just a few of these scattered around Australia. We met Pete, who’s like the superhero of the mine. He’s the guy who, once or twice a week, gets to pour the gold and make gold bars—and one gold bar in this form, which is refined from 40 trucks of rock, is worth around $150,000 US. It goes straight from the gold room into a plane with armed guards, then into the Perth mint for refining, and then it is flown to an underground vault in a place like London or New York. Essentially, it goes from one hole in the ground into another.

Again, this virtual construction of land-scape is based purely on the storytelling that mining engineers invent around an imagined ore body that they think is underground. They dig it out in order to quantify it, and to prove that their stories and models are true. All we need, then, is a new technology—a more accurate technology that is able to measure all the gold in a plot of land—and perhaps we wouldn’t have to take it out of the ground at all. We wouldn’t have to go through the trouble of digging it all up only to stick in another hole somewhere on the other side of the world.

On another Unknown Fields mission we

An Interview with Liam Young

115FUTURES

Page 42: Landscape Futures

took a group of students to Iceland to see the other end of this process. What happens is that raw bauxite comes from Australia, and it then goes over to Iceland where it gets smelted into aluminum. We send it all that way—halfway around the world—because of the ultra low cost of energy in Iceland.

The title of that studio was actually “The End of the World and Other Bedtime Stories.” We went there, basically, because we wanted to see anxieties about the world collapsing. We wanted to go and see the glaciers melting. We wanted to go and see a place where all of these discussions of climate change are actually being experienced first-hand.

But what we found was—you know, we met with all these meteorologists, and we tried to probe them about the dangers, the pessimism, and the fears they had about the future and about climate change, but what we actually found was this country full of extraordinarily happy and optimistic people. In a way, we were going there for the end of the world—but what we found was an ecology and a country full of aspirations and hope.

Because Iceland is set: they’ve got unlimited water resources, they’ve got unlimited geother-mal energy, their country is actually growing by the speed that our fingernails are growing. They’re going to be a global superpower, man. [laughter]

Despite this image of Iceland and the Arctic Circle as the last fragile wilderness, or northern frontier, what’s actually happening there is a burgeoning hydrogen economy. And the hydrogen economy is usually seen as this perfectly green movement but, in reality, it’s spawned a new landscape of aluminum smelting plants—an incredibly polluting indus-try. Underlining this pristine wilderness is a

kind of sinister undercurrent, where they see how much they can thoroughly exploit their natural resources.

The other industry that they’ve developed to make the most of their unlimited power is that of data storage and server farms. We explored the idea of what this industry might become—a new typology of industry based around data storage and geology.

With Tobias Jewson, for example, one of the students that year, we developed the idea of the data fossil, a kind of accelerated geology that could be used to store digital data in the ground. You could hack geological processes to store data in a version of a 3D QR code—a data rock. You would create struc-tures that can be read through MRI scans, or through ground-based radar, and they would actually store data within the landscape of Iceland. Crystalline forests of data would be a new form of geology—reimagining the pris- tine landscape as a data archive, somehow echoing the economically encoded mines we visited in Australia.

We went back to the Arctic in the winter of 2011, visiting Barrow, Alaska, on the winter solstice to learn more about anthropological ideas of cyclical time, the international date line, the vast military outposts up there scanning the frontier, and the incredible infrastructure of ice roads and oil pipelines. For instance, Alaskan Inuits, informed by ancestral environ-mental traditions, embrace the uncertainties of the future with a deep belief in their own adaptability—an interesting contrast with envi-ronmental scientists, who attempt to assemble observations and data into climate models that predict the future as precisely as possible. Caught between improvisation and premedita-tion, these cultural relationships to landscape and time offer very different approaches to the idea of “landscape futures.”

Architectural Monsterology

116LANDSCAPE

Page 43: Landscape Futures

Photos by

Liam Young,

Dessislava

Lyutakova,

and Alexander

Laing (alexan-

derlaing.com)

document the

Unknown Fields

Division trip

to Barrow,

Alaska, for

the 2011 winter

solstice.

An Interview with Liam Young

117FUTURES

Page 44: Landscape Futures

G.M. There’s a consistent theme throughout your work, including the Landscape Futures exhibition, of the idea of natural history— but the limits of natural history, or even the future of natural history, where genetic modification, animal cyborgs, sentient bio-technologies, and other kinds of invented creatures will exist happily side by side in otherwise pristine landscapes. Can you talk a bit more about your interests here, in these mythic tales and design fictions of an augmented nature to come?

L.Y. The core interest in this part of the work is the idea that myth and imagination plays much more of a role in our conception of nature and science than we typically acknowledge. Nature is a moving target. Through the expedi-tions, what we’ve realized is that there is no real nature anymore—at least not in the sense that we have culturally defined it. Our work is about teasing this out, acknowledging this complex-ity, to see if thinking about nature in traditional terms is in any way relevant.

Perhaps the very idea of nature needs to be reevaluated in the context of prime-time cosmet-ic surgery, gene manipulation, modified crops escaping into the wild, augmented animals, even things like the occupation of the electro-magnetic spectrum and emergent A.I. In this world, we must understand ecology and nature in new ways. We must not continue to see technology and nature in opposition to one another, but we must rethink our conservationist ecological position. What is required is a cultural shift and a redefinition—even a new word—for the idea of nature. We need new design strate-

gies and new designers for a new kind of wilderness. This is not to undercut the hard-fought battles already won by the conservation movement; it’s just to suggest that we need to be far more radi-cal in our approach.

There was a point—and I’m talking back in ancient Rome with people like Pliny the Elder and his volumes of natural history—when our view of nature was one of allegory. This was a time when travel to exotic lands meant encountering monsters and exotic beasts. Our current concept of nature—a tradi-

tion of biology—is one that really began through myths and stories, and these evolved into more objective things, like zoology, when people started to classify plants and animals.

But what’s interesting is that, even then, you encountered a lot of hoaxes and fake speci-mens. For instance, there’s Charles Waterton, an early 1800s biologist who traveled through South America collecting specimens; he was a contemporary with Joseph Banks and all these guys. But he was also a taxidermist. He would come back to London with all the extraordinary creatures he had discovered on his travels through South America, but he would try to put forward, amongst this mix, various animals that he collectively classified as non-descripts: animals that couldn’t fit into the typical classification categories. A number of these non-descripts were actually very well-crafted taxidermy hoaxes—things that were part eagle, owl, and heron.

So, even in this time when people were trying to be empirical about biology, there was an underlying layer of imagination and mystery that kept the allegorical understanding of nature alive.

At some point, superstition disappeared from nature and science but, now, there are all of these unknowns about emerging technol-ogy, and I think there’s a renewed possibility for myth and fiction in reframing our cultural relationship to nature. We’ve always used stories and narratives as techniques for dealing with unknowns—whether it was understanding the orbital rotation of planets around the sun, which meant that, when we lived in a culture based on agriculture, we developed whole solar mythologies in order to understand why the sun would rise and fall at the beginning and end of each day. The potential to use these same techniques as a way of thinking about the ways we might relate to these emerging technologies—a kind of engineering folklore— is really interesting, I think.

For example, there are things like Japanese monster stories—like Godzilla, a monster born out of Japanese culture trying to deal with the horrors of Hiroshima and Nagasaki, with the terrifying new technology of the atomic bomb, through narratives in film and television.

Jorge Luis Borges, in his Book of Imaginary

We need new

design strate-

gies and new

designers for

a new kind

of wilderness.

Architectural Monsterology

118LANDSCAPE

Page 45: Landscape Futures

Beings, describes what he calls “necessary monsters”: cathartic creatures that are a particular culture’s way of dealing with the anxieties of their time. I wonder if we could start to design these sorts of stories and myths into our future cities and land-scapes. We try to use narrative and the illustration of fictional scenarios as imaginative tools to explore potential new relation-ships with nature.

G.M. It’s also interesting to look at how certain things can seem technologically inevitable within the narrative arc of Greco-Roman mythology—for instance, talking statues or the angelic world of cyberspace. Western mythology, in a sense, prepares us for these things, so we’re ready for them when they arrive. But this applies not only to future scenarious that are depicted as desirable; it also applies to things that inspire fear. For instance, there’s an ongoing theme in Japanese horror films of the mistreated ancestor, the betrayed child, or the abused family member who comes back with a grudge to haunt and torment the living. In a very family-centric culture, these are nightmarish possibilities. But this is the same society that has no trepidation at all about, for instance, robots, which are, by contrast, a perennial source of worry for the West, with our myths and stories of out-of-control, autonomous machines and

golems that can’t be killed, almost as if, in a Judeo-Christian culture, the robot is akin to a slap in the face of God. In any case, my point is that any comparative mythology should include a detailed look At what different cultures view with horror.

L.Y. That’s actually the core of a new collection that I’m doing, based in Japan. I’m interested in this idea of an evolutionary theory of tech-nology, of technological myths.

After going to the Galapagos, it was so interesting to visit Japan and see the increas-ing specialization and speciation of technology there. For instance, I can take my phone from London to anywhere in the world, but it’s only recently that Japanese phones can go in the opposite direction; Japanese phones have become so increasingly specific to certain cul-tural needs in Japan that they are more or less useless in other countries—or they’re functional in all the wrong ways, I suppose. The actual technology has evolved in a culturally deter-mined way. Or take their extravagant robotic toilets, or the vending machine culture: all of these things mean that you get an increasing speciation of culturally based technologies. And I wonder, just as with Darwinian evolu-tion, about the potential for mutations within that ever-increasing landscape.

One of the projects I’m working on there is an investigation of the obake and yokai, a collection of ancient myths and monsters, but to reframe them through new technologies— to make a whole new technological bestiary. It will be a collection of robotic specimens framed as migrating infrastructure within cities.

One of these will be a suicide monster, which stalks the forests beneath Mt. Fuji. It’s essentially a suicide infrastructure that refer-ences the tremendously high suicide rates in Japan and the landscape of the Aokigahara Forest, an infamous site where many people go to commit suicide. It gives this buried cultural phenomenon a technological expression, by designing into the forest this creature that stalks the woods. I don’t know a polite way of describing this—it sneaks up and painlessly kills people who are walking through the forest, then it excretes their remains as fertilizer for a new forest of cherry blossom trees. These

Liam Young’s

“Bioluminescent

Billboards”

will roam the

city of the fu-

ture like rats

or squirrels,

projecting

images on bac-

terial screens.

An Interview with Liam Young

119FUTURES

Page 46: Landscape Futures

gorgeous pink trees start to bloom inside a dark green, shadowed forest as a living memorial of the people who gave up their lives there.

I think the potential to mutate technologies based on very specific cultural quirks and idio-syncrasies is super interesting. To build on that, and to design into the structures of cities, and into the objects we fill our world with, these personalities and superstitious tendencies. To speculate on how design may play a role in developing new cultural relationships with the inevitable byproducts of industry, a changing climate, and the anthropocenic world.

G.M. I’m curious about the ethical implica-tions of some of your projects. On one level, there are morally dubious propositions like suicide monsters or ecologically problem-atic ideas like robotic invasive species and synthetic bees; and, on another, there is an ongoing repurposing of existing technolo-gies, many of which originally come from things like the extraction industry or even the military. I’m curious where ethics come into this—if at all—and what sort of critical role your work plays.

L.Y. We are interested in the role of the archi-tect as provocateur. We try to develop projects that ask questions and that identify new arenas for operation rather than just finding solutions to problems posed to us. The work does hope to explore emerging ethical questions, as well, not by taking a particular position but by generating discussion, instigating debate, and acknowledging complexity.

There are a number of parts to that in relation to your question. The initial idea you mention—of technology transfer—is a super interesting one. As designers, we typically are much further down the line, in terms of the emergence and development of these tech-nologies. So much research today is driven by the funding body—by a corporation or a science lab or the military, who only pay at-tention to the types of problems they want to fund—which means that technology transfer becomes much more interesting than the ac-tual problem that begins the research process. That transfer, or the misuse of the original technology, is the real site of innovation,

although, in terms of time, it happens much further down the line.

For example, I was talking to Mark Pilk-ington recently, the UFOlogist, about “Project Palladium,” which is essentially radar-spoofing technology. Various conspiracy theorists maintain that radar spoofing is the idea of creating phantoms or ghosts in radar images. You can actually create these strange appari-tions that will pop up on enemy radar screens so that their hidden squad of jet fighters will reveal themselves as they try to track down this phantom signal. This means you can see where they are and start to track them with your own stealth planes and so forth.

The thought is that, when pilots see strange behaviors on the radar screen and report them as UFOs, what they’re actually reporting is tests of radar-spoofing technology. I like the idea that you can create ghosts and apparitions within this spectrum—but you could also create absences or shadows. For instance, there was an article in Wired last year about the U.S. mili-tary’s development of roving network-robots and autonomous drones that they could launch across a place like Egypt, when the government cut off internet access to prevent people from organizing protests. These drones would fly off and hover above the city, and create ad hoc connections and networks. We have just fin-ished a project inspired by this called Electronic Countermeasures. We built a flock of quadcopter GPS drones from components originally intended for aerial reconnaissance and police surveillance to create a flying pirate file-sharing network. Part nomadic infrastructure and part technological creature, they were rebuilt and programmed as a kind of aerial Napster:

Architectural Monsterology

120LANDSCAPE

Page 47: Landscape Futures

are inherently ambiguous about whether or not they’re positive projections or cautionary tales. Operating in the media of specu-lation or fiction allows one to do that. You know, typically, in a client-based relationship you can’t present something that’s deliberately dystopian. You can’t walk into a client meeting for a new museum in Dubai and say, “Guys, have a look at this—it’s going to be fucking horrible.” [laughter] You inherently have to present a positive position.

G.M. Let’s go back to the Unknown Fields Division. What future destinations might in store, and what sort of research questions are you hoping to address?

L.Y. Before we decide where to go next, we have to look at why we travel to these places in the first place. Design students often stay within the very closed and hermetic world of the design studio. What we try to do is open up that place to include an exploration of alterna-tive worlds—to take students out to these places as a means of looking back at our own familiar world from outside. Essentially, we travel as designers and documentarians, as reporters and visionaries both—part journalist, part science-fiction soothsayer. By collapsing these on top of one another, you get a confluence of fictional design strategies thar play out in these sites as test beds, but then offer a critical reading of our own cities back home.

It’s the same shift of perspective one gets

For a 2012

project called

“Electronic

Counter-

measures,”

Young explored

the possibility

of launching

a drone file-

sharing network

that could

bring internet

connectivity

to cities where

information

is tightly

policed.

they swarm into formation, broadcasting their illegal network, and then disperse, only to reform elsewhere.

I’m also interested in the idea that we could take the network-drone—which is emblematic of the militarization of the electromagnetic spectrum—and subvert that by turning them into signal-jamming robots. You can imagine designing shadows within the electromagnetic spectrum—creating points of absence. That might lead to the idea of stealth buildings or stealth spaces, where people can drop out of the network entirely and disappear from the grid. Silence and invisibility could become as intriguing a commodity as connection.

One of our roles as designers is to co-opt things that are developed through the military, and to imagine their implications and conse-quences when deployed in other contexts.

But the other thing to talk about, in terms of ethics, is that a lot of these projects are speculative. They were never intended as real propositions, to be put forward or taken out to venture capitalists for potential start-ups. That’s a critical role of the designer, as well: to launch a project that may be inherently questionable, but to launch the fiction of that project with utter conviction—to present it to the world through various media and force a response, a conversation, or a debate to occur.

This is very different from when you hear a couple of talking heads on the BBC describe, in very abstract terms, the latest development in robotics, or the latest potential of biotechnol-ogy. There, we’re forced to make ethical judg-ments on whether or not we want that to be part of our world—we have to decide whether or not it’s positive or dangerous—based purely on abstract research that exists and is presented in a vacuum.

But the real potential of these sorts of projects is to explore the future implications of new technologies through design scenarios, and to present them in such a way that we can start to develop emotional, cultural, or social responses to them. We can play some of those scenarios out so that we can actually make informed decisions about whether these things are worth trying to develop in more empirical terms later on.

I suppose that’s why some of our projects

An Interview with Liam Young

121FUTURES

Page 48: Landscape Futures

when looking at the present through the lens of science fiction. At the first Thrilling Wonder Stories that you and I put together back in 2009, Warren Ellis mentioned that science fiction is not about prediction: science fiction is actually an exaggeration of the present as a means to unpick it and reveal something about it. Predic-tion is only ever science fiction’s side effect. In a way, that idea—the distancing gaze offered by science fiction—is the same impetus behind traveling to these wild and mysterious places.

On our most recent trip we went to Cher-nobyl and saw a new form of wilderness that has emerged from technological disaster. This is a theme we are interested in following further on future missions. We’ve also started to plan an expedition up the Congo River, as a contemporary retelling of Joseph Conrad’s Heart of Darkness but, instead of the ivory trade, we want to examine the rare-earth mineral in-dustry and the militarized landscapes that are a consequence of our digital device manufacture.

We also only touched on the Amazon when we did our Ecuadorian tour. I would be inter-ested in going back to the Brazilian Amazon to explore the forest’s pharmaceutical industry. This continues on from our conversation about the mythic relationship with nature: to go back to this extraordinary landscape of the forest, where a commercial industry is now intertwined with an indigenous culture of medicinal herbs and hallucinogens.

Another trip—in terms of our discussion about militarized technology—would be to go through Vietnam and Cambodia, and to look at sites in the context of guerilla warfare and post-war landscapes, sort of updating Lebbeus Woods’s work in Sarajevo. It’s a very different type of warfare, one that occurs through camouflage in the rain forest and through emergent terrorist networks.

G.M. One of the professors I worked with as an undergrad—named Tom Cohen— was a former student of Paul de Man’s and a colleague of Jacques Derrida who first introduced me to critical theory and decon-struction, and who also went on to write several books about Alfred Hitchcock. In any case, in one of his many essays, Tom dis-cussed animal life—specifically, the idea that

creatures like rain forest insects are engaged in a kind of media war of chemical signs and countersigns, fought by means of dissimula-tion, where insects evolve to look like twigs and whole species mimic and camouflage themselves as other species. It’s natural his-tory joined to a very particular kind of media theory, by way of deconstruction.

L.Y. We’re actually working on some camouflage projects at the moment. I think a history of camouflage is a nice indicator of our changing relationship to landscape and nature. For instance, modern ideas of camouflage begin with dazzle ships, which were about disguising form—not blending in to the background, but simply disrupting the recognizable form of a ship or a troop vehicle so that you didn’t know which direction it might be moving. It’s based on techniques of misdirection, where nature isn’t seen as a thing that one is meant to assimilate with, but as a foreign, exotic thing that is very much separate from ourselves.

That, then, evolved into the idea of blend-ing in—like with the Ghillie suit, and the face paint, and the textile patterns—where nature is seen as a connected entity that we can start to disappear into and that we can be a part of. That’s where jungle warfare starts to come into its own.

Then, contemporary camouflage starts to move into the electromagnetic spectrum, with stealth planes, signal jamming, and elec-tronic countermeasures—these new, invisible spectrums of war. These are the new forms of landscape that we now occupy, and the idea of camouflage, and the tactics of how we disappear, has suitably shifted or morphed.

So I’d like to explore, in the jungles, the idea of disrupting form vs. disappearing into nature, to look at how, as designers, we can see the new natures of the digital landscape and its interface with existing jungle environments.

Embedded within that are questions for the architect as to what we can do in a world where the dominant building material now exists outside the physical spectrum. This means that we must rethink the very core of what our profession is. That would be a great future studio.

Architectural Monsterology

122LANDSCAPE

Page 49: Landscape Futures

An interview withMark Smout & Laura Allen

Superscape

123FUTURES

Page 50: Landscape Futures

GEOFF MANAUGH: I first became aware of your work in 2006, when the Augmented Landscapes pamphlet came out. Can we go back to that pamphlet briefly and discuss some of the broader themes it explored—including active landscapes, mechanical architectures, visual scenography, and so forth? What about those particular themes still propels your design work today?

MARK SMOUT: Broadly speaking, as the title suggests, the pamphlet is about augment-ing landscapes: pursuing more of a positive and symbiotic relationship between architec-ture and landscape, and looking at how that might generate a more proactive or productive form of architecture.

An example of that, I suppose, would be the “Ballistic Instruments” project. Had we not squeezed that into the Pamphlet when we did—had we not tied it off for publication at that point in time—we probably wouldn’t have finished it in the same way. We would have followed it through a bit more, and made a series of projectile devices, and we’d be launching instruments out in the middle of the Norfolk coast right now—I’d probably still be doing it! [laughs] It would have been a five-year project.

LAURA ALLEN: And it was about the horizon.

M.S. It was about the horizon and architecture—about the place of the horizon in architecture. We were looking at the way that objects fit into or stand against the horizon, to see how architecture could function differently in that visual context.

That then became a springboard for the later “Retreating Village” project, in that we went on to examine how things like the facades of buildings might work to break up the hori-zon visually with a disruptive pattern

In their book

Augmented

Landscapes,

Mark Smout and

Laura Allen

write that,

for “Ballistic

Instruments,”

pictured here,

“a split-second

spatial event

is triggered

which reveals

the nature of

the sites which

[these instru-

ments] tempo-

rarily occupy.”

124

Superscape

LANDSCAPE

Page 51: Landscape Futures

or a disruptive material on the front, like dazzle ships from World War II. The façade patterns could be illuminated from certain angles, so the architecture would disturb the visual line of the horizon in a way that wasn’t purely spatial. I’m talking about perceptual illumination here—not just a series of lights on sticks or something like that. It was about perceptual shifts.

We’re very interested in perception, landscape, architecture, and drawing—that sort of thing.

So “Ballistic Instruments” would be all about firing objects up into space to let you see where the sky meets the land. And that would have been in one of three ways: one would be with a line, one would be with a flash of chrome, and the other would use a chromed net that could fly onto an object—a house or a tree— to help you understand how three-dimensional a silhouette could really be.

L.A. The design process of understanding these projectiles—how they perform and what’s needed on site to make them into functioning tools—was all imagined, however. They weren’t ever fired. They were, in a sense, conceptual prototypes for a test. They were not necessarily instruments that were meant to be used, in other words; the design of the instruments

was itself the test. We quite like working like that.

M.S. It’s rather akin to Mike Webb’s Temple Island project, which is sort of a conceptual device that may or may not exist and may or may not work.

L.A. Both of those projects are devices in the sense that they’re supposed to be performative somehow. They’re meant to instigate a sensa-tion or to make you aware of something.

In a sense, they’re not supposed to be benign; they’re supposed to be very active, even though, in the majority of cases, they’re not really doing anything. They’re not twirling around or moving. It’s their perceptual effects that are very dynamic.

M.S. Devices are also very good ways of describing complex systems. Systems exist everywhere in the landscape—from regional ecologies to spatial systems within architec-ture—and a device is a more or less complex system. It’s a way of describing a situational relationship between known—or unknown— objects. That’s how we use them.

G.M. The “Retreating Village” project is

Diagrams from

NASA detail

“local apparent

time” and

“local real

time” for

the LANDSAT

system, includ-

ing precession,

implied orbital

planes, the

“geocenter,”

and more.

Courtesy

of NASA.

An Interview with Mark Smout & Laura Allen

125FUTURES

Page 52: Landscape Futures

it’s a very bland map with just the occasional little dot of sand in it. But, when you compare that to a map where I come from, in north Wales, that’s an incredibly rich depiction of coal seams, different forms of limestone, and loads and loads of stuff that you’d never know was going on under the soil.

I like the idea that the vast majority of the stuff on that map you just can’t see—you don’t even know it’s there.

G.M. So you like maps of geologic strata that humans can’t normally see, and, Laura, you like temporary geographies of air that usually aren’t mapped at all.

M.S. And that would make a good project! [laughs]

L.A. They’re also just super graphics—and they’re narratives. They’re little stories about a place at a particular moment, before it changed or became something else. At the moment that that map was made, that’s where those things were. And things also stick around: British maps, for instance, are absolutely full of old battle sites and remains of priories and Roman stuff. Even on a current map, you’re looking at 2,000 years’ worth of habitation.

G.M. Finally, this interview comes to an end a few weeks before you arrive in New York City for another super-workshop, featuring a different group of students from the Bartlett. I’m curious how this very different type of environment—architecturally dense and vertically layered with subways, sewers, and even Revolutionary War-era artifacts—might operate in a Smout Allen scheme. In other words, we’ve spoken so much about remote landscapes, open airspace, hidden geologies, and so on, but I wonder if working in a place like Manhattan or Queens, where other human constructions are front and center, might challenge your idea of an “envirographic” architecture or if it might, in a sense, more accurately correspond to the promises of your design approach.

M.S. The unit this year is looking at “infrastruc-tural architectures and megaurban ecologies.” Infrastructure is key.

L.A. What I think is really great about this trip is the liberty of an everything-goes environ-ment like New York. Part of the challenge for the students so far is that we’ve been asking them to make a lot of assumptions, and to move forward on the strength of their own proposals rather than based on intensive research about the city.

M.S. The idea of urban infrastructure also feels a bit more tangible when you’re not actually in that city. It’s easier to think of it as an abstract system of pipes and conduits and roads and cables, and then to come up with your own scheme or proposal—to really frame an idea—before you test it out in the real situation. If you’re doing that while standing there, you can get maybe too wrapped up in the details and lose your best ideas.

L.A. And a lot of the students so far have been coming back to us with environmentally focused proposals, not in terms of climate but in terms of urban cycles, processes, logistics, and delivery—the landscape of Manhattan as one enormous bit of malfunction. That’s been really exciting.

136

Superscape

LANDSCAPE

Page 53: Landscape Futures

Smout Allen

139FUTURES

Page 54: Landscape Futures

Smout Allen

140LANDSCAPE

Page 55: Landscape Futures

Smout Allen

141FUTURES

Page 56: Landscape Futures

Smout Allen

142LANDSCAPE

Page 57: Landscape Futures

Smout Allen

143FUTURES

Page 58: Landscape Futures

Smout Allen

162LANDSCAPE

Page 59: Landscape Futures

Smout Allen

163FUTURES

Page 60: Landscape Futures

Smout Allen

164LANDSCAPE

Page 61: Landscape Futures

Smout Allen

165FUTURES 165

Page 62: Landscape Futures

Smout Allen

186LANDSCAPE

Page 63: Landscape Futures

Landscape Futures travels the shifting terrains of architectural invention, where new spatial devices on a variety of scales—from the inhabitable to the portable—reveal previously inaccessible dimensions of the built and natu-ral environments. The projects on display, and the traces they uncover, suggest that the landscapes around us are more like sheet music: an interpretive repository of exhilarat-ing variation made newly sensible through perceptual instruments and recording devices, always open to reinterpretation.

The poetic ensembles of speculative machines seen in Landscape Futures include a mix of large-scale installations, technical prototypes, imaginative geographies, and portable instrumentation, each providing unexpected access to invisible streams of data generated by the environments around us.

Further, these landscapes are constantly evolving—through climate change and plate tectonics, always becoming future versions of themselves—and so, too, must the filters through which we understand the world be adjusted and updated.

From philosophical toys to ironic provoca-tions, these devices are not merely diagnostic but creative, deploying fiction as a means of exploring alternative futures: landscape futures, terrestrial scenarios for which we have no other guide.

Landscape FuturesWork

FUTURES

Page 64: Landscape Futures

Architectural historian David Gissen offers four provocative images of the city transformed into a museum of itself: often-overlooked landscapes from the city’s own past literally reframed in complicated ways. If the internal space of the museum can be seen as a device for turning everyday objects into historical artifacts and works of art, what happens when museological devices leak out into the city at large? Gissen writes that “that what we under-stand to constitute material history is very often the ‘stuff ’ (art, objects, nature) that we carefully illuminate in a museum, prohibit people from touching in public space, place in controlled environments in archives, and conserve in often highly visible ways.” So, his project for Landscape Futures asks, when plinths, lighting, scaffolds, and high-end air-conditioning sys-

tems take up residence in the streets, alongside urban rivers, even in the trees and plazas of a functioning metropolis, how does their presence transform the way we approach and understand these newly encapsulated scenes? “What matters, as much as the sites I focus on in the city (urban rivers, highways, monu-ments, verdure),” he suggests, “is the apparatus that transforms urban stuff into objects of our interest.” Gissen’s images thus foreground the interpretive infrastructures through which objects enter official history, giving them a monumental, highly public form.

Funding for Museums of the City provided by the Center for Art + Environment, Nevada Museum of Art, and the Chalsty Fund & Faculty Development Fund, California College of the Arts.

David GissenMuseums of the City

David Gissen

188LANDSCAPE

Page 65: Landscape Futures

“Central Park,

New York City”

from Museums

of the City

(2011), David

Gissen (render-

ed by Victor

Hadjikyriacou).

Image back-

ground:

courtesy of

Getty Images

[undated].

189FUTURES

Museums of the City

Page 66: Landscape Futures

Chris Woebken &Kenichi Okada

Animal Superpowers

What does the world look like to animals—to a giraffe, say, its head towering over trees and buildings? How do birds sense the airspace they soar through? Is the Earth strangely over-whelming at the scale of an ant? Interaction designers Chris Woebken and Kenichi Okada attempt to answer these questions, tongue firmly in cheek, with the whimsical notion of “animal superpowers”: wearable toys through which children can immerse themselves in the extraordinary sensory experiences of other species. These playful devices allow their users to inhabit the landscape from a radically new sensory perspective, reframing the human relationship both with the planet and with the other animals that call it home.

The “Giraffe”

device from

Animal Super-

powers (2008)

by Chris Woeb-

ken & Kenichi

Okada. Photo-

graph by Jamie

Kingham.

200LANDSCAPE

Chris Woebken & Kenichi Okada

Page 67: Landscape Futures

201FUTURES

Animal Superpowers

Page 68: Landscape Futures

The “Ant,”

“Bird,” and

“Giraffe”

devices from

Animal Super-

powers (2008),

Chris Woebken

and Kenichi

Okada. Instal-

lation photo-

graphs by Jamie

Kingham. Park

photograph by

Chris Woebken.

202LANDSCAPE

Chris Woebken & Kenichi Okada

Page 69: Landscape Futures

203FUTURES

Animal Superpowers

Page 70: Landscape Futures

Architect-provocateur Liam Young presents a cautionary tale of ecological preservation gone awry. In these new additions to his ongo-ing Specimens of Unnatural History series, we see conservation’s limit case, where autonomous packs of biotechnological robot drones have been deployed to protect even the most ideal-ized landscape—Darwin’s Galapagos—from invasive species. Are curated landscapes still natural, these creatures grimly ask, and, if not, are they still worth preserving? Young’s “near-future bestiary of designed and augmented monsters,” as he describes it, patrols the closely calibrated landscape of this future-perfect nature. Half animal, half machine, Young’s devices—a collection of architectural beasts,

robotic infrastructures, and hacked military devices—suggest that even the most distant Eden will soon be no more than a “robot zoo,” in his words, populated by the invented and the assembled, not the evolved, where nature is managed, controlled, and uncannily aug-mented. “As we stalk the strange and unfamiliar landscapes of robotics, biotechnology and ubiquitous computing,” Young predicts, “we will encounter a new form of engineered nature that we are not yet able to categorize.”

Liam YoungSpecimens of Unnatural History

212LANDSCAPE

Liam Young

Page 71: Landscape Futures

Specimens

of Unnatural

History

(2011-ongoing),

Liam Young.

Photographs by

Jamie Kingham.

213FUTURES

Specimens of Unnatural History

Page 72: Landscape Futures

Smout Allen(Mark Smout & Laura Allen)Neo-Nature: EnvirogrammicPrototypes for Lanzarote,

Techno-Nature: EnvirogrammicPrototypes for the River Severn,London’s Hydro Infrastructures:

Buffering Scarcity and Abundance, & Surface Tension

A vertically organized kinetic network of more than 2,000 individual parts is suspended from the ceiling of the gallery. Cranked mechanisms, computational devices, golden space blankets, and counterbalanced fluidic switches pulse through undulations and waves that mimic the droughts, rains, surges, and floods of the planet’s hydrological cycle. Subject to its own internal tides, Surface Tension is landscape as technological infrastructure: both animated and annotated with complex recording devices. With their related proposals for “new natures” in Lanzarote, the River Severn, and deep inside an unnamed fictional metropolis of the future, architects Mark Smout and Laura Allen have produced working mechanical pro-

totypes that make visible the processes through which water is managed and distributed the world over. In the process, Smout Allen make a coherent if magical machine out of the every-day technologies of water management—show-ing that the technical systems through which we manage water, if only we could notice them, are as mythic as water itself.

Special thanks to Johan Hybschmann, Kyle Buchanan, and Sandra Youkhana, with additional help from Jon Kaminsky, Amy Hiley, Ioana Barbantan, Janinder Bhatti, and Rae Whittow-Williams. Specific thanks to University College London (UCL) Architecture Re-search Fund for financial support. Project documenta-tion by Stonehouse Photographic.

218LANDSCAPE

Smout Allen

Page 73: Landscape Futures

“Ground Cloud,”

“River Re-

versed,” and

“Current Accu-

mulator” from

Neo-Nature:

Envirogrammic

Prototypes

for Lanzarote

(2011), Smout

Allen.

219FUTURES

Surface Tension

Page 74: Landscape Futures

LANDSCAPE

Page 75: Landscape Futures

226 Landscape Futures Super-Workshop by Geoff Manaugh 237 A Journey to the Top of the City of Los Angeles

by Center for Land Use Interpretation 241 OIAML: Oceanographic Instrumentation and Mediated Landscapes

by Rob Holmes

248 Buried Treasure by Jan Zalasiewicz

252 Doppler by Rob Holmes

252 The Climate Engineers by James Fleming 263 The Architectural Production of Nature, Dendur/New York

by David Gissen 275 (Im)possible Chicagos by Alexander Trevi

278 Instantaneous Lines by Smudge Studio

284 The Delta Pen by Scott Geiger

289 Mauna Loa Observatory by Rob Holmes 290 Sensory Devices by Cassim Shepard

293 Mobile Geodesy by Rob Holmes

294 Landscape in Suspension by Sam Jacob

SourceBook

235FUTURES

Page 76: Landscape Futures

Army Corps of Engineers map of Los Angeles, California (1955).

LANDSCAPE FUTURES SUPER-WORKSHOP10-17 JANUARY 2011 | LOS ANGELES, CA

By Geoff Manaugh

Super-Workshop Organizers

Geoff ManaughBLDGBLOG bldgblog.blogspot.com

Mark Smout and Laura AllenSmout Allen/Bartlett School of Architecture smoutallen.com

David Benjamin The Living/Columbia University GSAPP thelivingnewyork.com

Elizabeth Ellsworth and Jamie KruseSmudge Studio smudgestudio.org

Alex robinsonOffice of Outdoor Research orscapes.com

Christopher HawthorneLos Angeles Times latimes.com

Christian Chaudhari cargocollective.com/ccd

Emily White and Lisa LittleLayer layerla.com

tim MalyWired Design wired.com/design

Sponsors

BLDGBLOG bldgblog.blogspot.com

Center for Land Use Interpretationclui.org

Nevada Museum of Art nevadaart.org

Virgin America virginamerica.com

Participants

David Gissen, CCAAuthor of Subnature: Architec-ture’s Other Environments htcexperiments.org

Matthew Coolidge, Sarah Simons, and Ben Loescher Center for Land Use Interpretation clui.org

Hadley ArnoldArid Lands Institute aridlands.woodbury.edu

Liam Young Tomorrow’s Thoughts Today tomorrowsthoughtstoday.com

Ed KellerAUM Studio/Parsons, New School for Design aumstudio.org

236LANDSCAPE

Page 77: Landscape Futures

Los Angeles river at sunset; photo by Dan Marmot.

Photograph courtesy of USC Libraries Special Collections/Doheny Memorial Library/California Historical Society Collection, 1860-1960.

237FUTURES

Page 78: Landscape Futures

Landscape Futures Super-Workshop Original Brief

The purpose of this 7-day Super-Workshop, generously hosted by the Center for Land Use Interpreta-tion (CLUI), will closely parallel the themes of the exhibition Landscape Futures: Instruments, Devices and Architectural Inventions, on display at the Nevada Museum of Art from August 2011 to February 2012. That exhibition, and this super-workshop, will examine how landscapes and our perceptions of them can be radically transformed by spatial intermediaries, portable technologies, and information design—the instruments, devices, and architectural inventions of the exhibition’s title.

Specifically, super-workshop participants and exhibitors alike will explore the multitude of ways through which landscapes can be read, cataloged, mapped, and otherwise reinterpreted using specialty equipment, both speculative and real. A central question of both the exhibition and the super-workshop will thus be how future tools of landscape investigation—new spatial devices on a variety of scales, from the inhabitable to the portable—can be imagined, designed, and fabricated. As such, the super-workshop will be both a critical look at the very nature of architectural invention as well as an artistic or speculative exploration of the planetary sciences.

The resulting “devices” will thus include objects, models, prototypes, and other spatial proposals, ranging from the physical to the digital, from the geological to the conceptual, and from deep-time to the hand-made.

Over the course of the week, our readings and discussions will include a mix of natural history, materials science, contemporary and historical landscape investigations, and a critical overview of existing landscape sensing & measurement technologies; we will also examine design projects

by Smout Allen, The Living, Shin Egashira & David Greene, ScanLAB Proj-ects, Protocol Architecture, the United States Geological Survey, Caltech Robotics Lab, NASA’s Apollo Project, and many more.

In the process, and taking advantage of its urban setting in Southern California, the Landscape Futures Super-Workshop will maintain a strong focus on the built and natural landscapes of Los Angeles, a densely populated region prone to forest fires, drought, and flash floods, smog, landslides, and debris flows, climatic extremes, seismic activity, surface oil seepage, coastal fog, and subterranean methane clouds. These infra-structural connections with a repressed nature, in the complex manufac-tured terrains of greater Los Angeles, will be closely scrutinized.

To begin, workshop participants will visit a series of flood-control dams and landslide remediation structures in the San Gabriel Mountains. In his seminal 1989 essay “Los Angeles Against the Mountains,” author John McPhee introduces us to the often bizarre spatial defenses found on the periphery of Los Angeles through which whole neighborhoods try to survive in the fallout paths of rockslides, debris slugs, and other forms of “geologic mass wasting.” The outermost suburbs of L.A. have reached what McPhee calls the “real-estate line of maximum advance” against the dark bulk of the San Gabriels—a range “divided by faults, defined by faults, and framed by them.” The San Gabriels “are nearly twice as high

as Mt. Katahdin or Mt. Washington,” McPhee adds, “and are much closer to the sea. From base platform to summit, the San Gabriels are three thousand feet higher than the Rockies.” However, they are also “disintegrating at a rate that is also among the fastest in the world.”

As such, the San Gabriels produce extraordinary rockslides: “On the average, about seven tons disappear from each acre each year—coming off the mountains and heading for town,” McPhee explains. These slides are known as debris slugs, and they “amass in stream valleys and more or less resemble fresh concrete. They consist of water mixed with a good deal of solid material, most

A “carbon bank” for Los Angeles by super-workshop participant Emma Flynn, Bartlett School of Architecture.

238LANDSCAPE

Page 79: Landscape Futures

Debris basins overlook Los Angeles from the city's mountain periphery. Photographs by Geoff Manaugh.

the De Mille and Chaplin Airports located at the intersection of Wilshire Boulevard and what is now Fairfax Avenue (formerly Crescent Avenue); photographed in 1920. Photographs courtesy of UCLA.

239FUTURES

Page 80: Landscape Futures

readings & references

Over the course of the super-workshop, we will read and/or refer to the following materials:

Smout Allen, Pamphlet Architec-ture 28: Augmented Landscapes (Princeton Architectural Press)

Paul Thomas Anderson (dir.), There Will Be Blood

Archigram, A Guide to Archigram, 1961–74 (Taipei Fine Arts Museum)

Reyner Banham, Los Angeles:The Architecture of Four Ecologies (University of California Press)

Mike Davis, Ecology of Fear: Los Angeles and the Imagination of Disaster (Vintage)

Keller Easterling, EnduringInnocence: Global Architectureand its Political Masquerades (MIT Press) — Chapter 3 (“El Ejido”)

Shin Egashira and David Greene, Alternative Guide to the Isle ofPortland (Architectural Associa-tion)

Richard Fortey, Earth: An Intimate History (Vintage) — Chapter 9

William L. Fox, Making Time:Essays on the Nature of Los Angeles (Shoemaker & Hoard)

David Gissen, Subnature: Archi-tecture’s Other Environments (Princeton Architectural Press)

Thomas Gold, The Deep Hot Biosphere: The Myth of Fossil Fuels (Springer-Verlag)

InfraNet Lab and Lateral Office, Pamphlet Architecture 30: Coupling: Strategies for Infrastructural Opportunism (Princeton Architectural Press)

Peter Lang and William Menking, Superstudio: Life Without Objects (Skira)

C.J. Lim, Devices: A Manual ofArchitectural + Spatial Machines (Elsevier/Architectural Press, 2006)

John McPhee, Assembling California (Farrar, Straus and Giroux)

John McPhee, “Los Angeles Against the Mountains” in The Control of Nature (Farrar, Straus and Giroux)

Reza Negarestani, Cyclonopedia: Complicity with Anonymous Materials (re.press)

Michael Novacek, Time Traveler(Farrar, Straus and Giroux) — Chapters 1 and 10

Fred Pearce, When the RiversRun Dry: Water, The DefiningCrisis of the Twenty-First Century (Beacon) — Chapters 1, 3, 6, 24, 27, 28, 30

Roman Polanski (dir.), Chinatown

Marc Reisner, Cadillac Desert:The American West and its Disappearing Water (Penguin)

Martin Scorsese (dir.), The Aviator

Kim Stringfellow, Greetingsfrom the Salton Sea: Folly andIntervention in the Southern Cali-fornia Landscape, 1905–2005 (Center for American Places)

Chris Taylor and Bill Gilbert, Land Arts of the American West (University of Texas Press)

David L. Ulin, The Myth of SolidGround: Earthquakes, Prediction, and the Fault Line BetweenReason and Faith (Penguin)

Lebbeus Woods, OneFiveFour (Princeton Architectural Press)

Arid Lands Institute, Los Angeles

Hadley Arnold

StudentsBrandon CohenAbel GarciaTony GilStephen HartounianEric LadouceurJoel LeonJason TosattoDavid Trimblewith Jeremy Delgado

Columbia UniversityGSAPP, New York City

David Benjamin

StudentsSarah CarpenterRikki FrenkelZhong Ren HuangKooho JungNathan SmithJayson Walker

Bartlett School of Architecture, LONDON

Mark Smout

StudentsIoana BarbantanJaninder BhattiSigrid BylanderEmma FlynnVictor HadjikyriacouAmy HileyJon KaminskyRina KukajAdam Landsdown-BridgeDan MarmotTheodore Games PetrohilosJustin RandleMarcus ToddSpencer Treacy

246LANDSCAPE

Page 81: Landscape Futures

This tour is a 10.6 mile round trip hike or bike ride with 2,800 feet of elevation gain on a fire road. The journey begins in Haines Canyon and concludes at an antenna farm, atop the highest point in the City of Los Angeles, 5,074 foot Mt. Lukens. Along the way you will see evidence of the interaction of the built landscape with the precipitous mountains that surround the urban fringe of Los Angeles. The trip is strenuous, so bring plenty of water. This trail can be very hot during the summer months, and the summit can be cold and windy.

Photograph by Steve rowell, Center for Land Use Interpretation

tHE trAILHEAD N 34º 15.35' W 118º 16.37'

The trail begins 11 miles northwest of Pasa-dena. By car: Take the 210 freeway to Lowell Ave.; head north on Lowell Ave.; at the end of Lowell Ave. take the left fork, which is Day St.; make a right on Haines Canyon Ave. (Make sure that you park south of the no-parking signs.) Proceed to the end of the street and past the locked gate. The trailhead begins at the end of Haines Canyon Ave.

By bus: Take the #90 or #91 bus to Haines Canyon Ave. and Foothill Blvd., walk north

A JOURNEY TO THE TOP OF THE CITY OF LOS ANGELES

A Center for Land Use Interpretation Walking Tour

on Haines Canyon Ave. to Day St.; continue directions as above.

The San Gabriel Mountains are part of the Transverse Ranges and run east-west, unlike the majority of mountain ranges in California such as the Sierras, which run North-South. The Transverse Ranges include the San Gabriels as well as the Santa Monica Moun-tains, the San Bernardinos, and the Santa Inez range near Santa Barbara. All of the Transverse Ranges owe their height to the San Andreas Fault, which takes a detour towards the east in Southern California. The San

247FUTURES

Page 82: Landscape Futures

BURIED TREASURE

BY Jan Zalasiewicz

“Buried Trea-

sure” was orig-

inally pub-

lished in New

Scientist, vol.

158, issue

2140, 27 June

1998; repro-

duced here with

permission of

New Scientist.

Armageddon strikes. Perhaps it comes in the shape of nuclear war, or a new virus—deadlier than AIDS and more infectious than the common cold—or a collision with a huge meteorite. Whatever the cause, imagine that Homo sapiens suddenly passes into history. It’s a shocking scenario, but perfectly plausible—witness the demise of the dinosaurs 65 million years ago. What kind of legacy would we leave behind? Today, we are rulers of the planet. A hundred million years from now, will we just be history, or geology and paleontology, too?

The dinosaurs, masters of the Earth in their day, certainly left impressive remains for paleontolo-gists to pick over. But we are only one species, whereas they were many. Also, they were around for about a hundred million years, while we have managed less than half a million. And it is only in the past 250 years, since the Industrial Revolution, that we have had a truly global impact.

What’s more, although dinosaur remains are impressive, they are strikingly rare: around the world only a few thousand skeletons have been found that are anywhere near complete, together with scat-

tered footprints and occasional eggs. This is partly because dinosaurs were near the top of the food chain and so there were relatively few of them, but also because they lived mainly on land. When they died, their bodies were exposed to the elements, and scat-tered and recycled by the myriad agents of scavenging and decay. Only those few that were rapidly buried by floods or sandstorms were destined to be preserved for posterity.

How would our legacy compare? Fossil human skeletons might turn up here and there. After all, we’re very numerous and, by burying our dead, we certainly give our remains a head start over those of the dinosaurs. There may even be a few examples of soft tissues being preserved. But it’s not just bodies that can survive the ravages of geological time. Trace fossils such as burrows, trails, and footprints leave their own more oblique signature. Dinosaur footprints and even nests have been found.

Our own trace fossil systems are a lot more robust than those of the dinosaurs. They include roads, houses, and foundations. On average, over a lifetime we each

account for some 500 tons of sand, gravel, limestone, and clay, from which the hard-wearing artificial rocks known as concrete and brick are made. Then there’s iron, steel, copper, and plastic.

The eastern

edge of the

Astarte sanc-

tuary, discov-

ered during

excavations at

Tell-el-Nasbeh

(Mizpah), 1932,

from the G.

Eric and Edith

Matson Photo-

graphic Col-

lection, U.S.

Library of

Congress.

258LANDSCAPE

Page 83: Landscape Futures

In urban areas, the accumulated rubble of centuries of building form a significant geological deposit. Let’s call it the urban stratum. Unlike the dinosaurs, we’re good bur-rowers, and the urban stratum is shot through with a complex skein of pipes, tunnels, cables, and pilings which can go deep underground. The steel and concrete pilings that prevent the skyscrapers of New Orleans from sinking into the soft muds of the Mississippi Delta, for instance, extend to depths of nearly a hundred meters. We have transformed substantial parts of the planet’s surface, and done so amazingly quickly.

SAFELY BUrIED That’s quite a start. But ultimately all would erode away if the burial did not become permanent. Once the urban stratum is underground, out of reach of the wind and rain, eroding rivers and scavenging animals, the process of fossilization can begin. Such burials happen surprisingly often. The keys are location and tectonics, aided or hindered by the rise and fall of global sea level.

Let’s start with tectonics. Much of the Earth’s crust is moving up, down or sideways in response to the movement of the tectonic plates from which it is constructed. These plates, crashing together and grinding past each other, can throw up mountain ranges and cause earthquakes. Less conspicuous, but more widespread, are the wrinkles that extend hundreds of kilometers from the immediate regions where plates touch, and around the stretched area of crust where plates are pulling apart. These wrinkles make sections of the crust seesaw, placing them on a tectonic escalator that takes tens or hundreds of millions of years to ascend and descend. Brit-ain, for example, has been nudged by the opening of the Atlantic Ocean on one side, and the building of the high Alps on the other.

We have a pretty good idea how today’s tectonic escalators are behaving. Los Angeles, for example, is on an upward trajectory, pushed by pressure from the adjacent San Andreas Fault system, and is doomed to be eroded away entirely. But areas that are steadily going down, and where sediment has been piling up layer by layer over tens of millions of years, are more promising sites for preservation. The more sediment piles up, the more the crust is compressed by the sheer weight of deltas and silting-up coastal plains.

So a descending tectonic escalator is given a powerful additional push, and the stage is set to produce ideal pickling jars for cities. The urban strata of Amsterdam, New Orleans, Cairo, and Venice could be buried wholesale—providing, that is, they can get over one more hurdle: the destructive power of the sea.

Sea-level changes play a central role in preserving the sedimentary record, particu-larly in the low-lying, subsiding coastal plains and deltas around the world on which much of our urban stratum is being built. A drop in sea level would tilt the balance towards erosion and destruction. Conversely, a sea-level rise could favor preservation.

The speed of sea-level rise is critical. If it is slow, then there will be plenty of time for the sea’s destructive power to remove large swathes of land. But if sea level rises rapidly, these low-lying landscapes will be drowned and preserved. It is increasingly clear that there were very rapid changes in the recent geological past, caused by the

tendency of the world’s great ice sheets to collapse suddenly. If the delicately poised West Antarctic Ice Sheet were to slide suddenly into the sea, as the ice sheets of North America did 10,000 years ago, many coastal cities would be plunged underwater, and in a geological instant would be carried into the realm where fossilization begins.

Considerations of how your meager collection of bone and tissue, rings, and garments may be preserved almost pale into insignificance compared with the several hundred tons of concrete,

Jan Zalasie-

wicz is Senior

Lecturer in

Geology at the

University of

Leicester, UK,

and a former

employee of the

British Geo-

logical Survey.

A field geolo-

gist, palaeon-

tologist, and

stratigrapher,

Zalasiewicz

teaches vari-

ous aspects of

geology and the

Earth’s his-

tory to under-

graduate and

postgraduate

students, and

is a researcher

into fossil

ecosystems and

environments

across over

half a billion

years of geo-

logical time.

He has written

three books

published by

Oxford Univer-

sity Press:

The Earth After

Us (2008), The

Planet in a

Pebble (2010),

and, with Mark

Williams, The

Goldilocks

Planet (2012).

Our own trace

fossil systems

are a lot more

robust than

those of the

dinosaurs. They

include roads,

houses, and

foundations.

259FUTURES

Page 84: Landscape Futures

01. Ancient Bonneville wave-cut bench affords scenic perch for Salt Lake City suburb

03. Salt Lake City spreads below the line where Lake Bonneville lapped 15,500 years ago

04. Current stage of remnant Lake Sevier, desiccated by forces of the Great Basin

05. Strandlines as infrastructure, activated for material flows; Kennecott Smelter Facility

06. Lakebed as playing field in suburban develop-ment, built atop former copper pit evaporation ponds

02. I-80 cuts across Bonneville’s lakebed, severing the Great Salt Lake from its ancestral shorelines

07. Eroding lake line hovers above an exit ramp into the Great Salt Lake desert

08. Oasis of the Anthropocene on the desert lakebed

292LANDSCAPE

Page 85: Landscape Futures

11. A mountain buried to the top in deep desert sediments, once an island in Lake Bonneville

12. 15,500 years ago, the site of historic Wendover Airfield was submerged under 870 feet of water

13. Landscape imprinted by wave-formed undulations

14. History held beneath the basin, B-29 atomic bomb loading pit; Wendover Airfield

15. Breaking point; scoured to bedrock by Lake Bonneville’s catastrophic flood en route to the Pacific

16. Landscape futures: fluctuation, waters return, lake lines to come

10. Lakebed parsed into zones both exclusive and excluded

09. Petrified shoreline stranded for now in time and space

293FUTURES

Page 86: Landscape Futures

tation of capitalist space—the levelling of difference, the regularity, and the inescap-ability. In fact, this field of abstraction might recall the images produced by the radical Italian architecture group from the 1960s, Superstudio, images of what they described as “negative utopias.” Their collages of The Continuous Monument: An Architectural Model for Total Urbanization (1969-71), showing a single building made up of a strictly observed white grid relentlessly expanding over the world’s landscapes, were created as “forewarning images of the horrors which architecture was laying in store for us with its scientific methods for the perpetuation of existing models.”

Of course, the suspended ceiling is the opposite of a monument, so lightweight and loose-fit that you can—and often do—just throw it up. Its earnest unmonumentality is perhaps even more horrific than Superstudio’s ironic monument.

The suspended ceiling is a device designed to cover space as fast, cheap, and quickly as possible, without having to resolve any real architectural issues of how one material meets another. It represents the epitome of modern construction techniques: a simple panacea that solves the problem of the ceiling’s mess of services—the wires, pipes, and ducts that we need to deliver environments of reasonable comfort.

But, more than this, the conception of space suggested by the suspended ceiling is oppositional to traditional ideas of architectural space. It dissolves ideas of threshold and hierarchy into an endless sameness. It dispenses with the need for detailing: up in a zone out of reach, it’s hardly held together at all. Push those panels, and you’ll feel how fragile this stuff really is—just the lightest and simplest of connectors to the real building fabric, the tiles just resting lightly on their frames. This delicacy is the result of engineering the efficiency of fabrication, transportation, and installation to its absolute limit: Never was so much space covered by so little.

The very idea of a “false” ceiling is, of course, a strange idea—but not one without precedent. We could think of other kinds of false ceilings: the painted heavens of, say, the Sistine Chapel where the scenography of the ceiling is differentiated from its engineering or material surface, instead becoming an image of the most remarkable “above” imaginable. In a sense, the suspended ceiling is, like Michelangelo’s frescoes, an idealized image. Both vividly hallucinate an imaginary image of an “above.” Both are images depicting an omnipotent belief system, applied to a real architectural ceiling. The suspended ceiling idealizes the secular and ordinary image of a ceiling. It is perfect in its pure self-referentiality, an image of ceiling suspended beneath a ceiling, an immaculate image of its own totality and spatial completeness.

If you pass a new office building at night, its floorplates still empty and the lights still on, you’ll see suspended ceilings stacked floor on floor. Their pristine surfaces glow with an overexposed flores-cent brilliance, as though something almost supernatural were happening in those voided spaces of capital. It’s here that the suspended ceiling achieves a moment of Superstudio-esque monumen-tality, a sublimely banal dystopia; a flat grid in which you can lose yourself in endless repetition, left or right, back and forward, as though you might be anywhere.

Just as ancient cultures looked up at the stars and inscribed into this surface an intense density of myth that framed human existence, the suspended ceiling contains our own contemporary myths. It’s here that we can perceive our position within a new conceptual condition: the landscape as continuous, connected grid.

Wherever you may find yourself, look up and imagine the coming of the grid, as its square-by-square extension tiles the surface of the planet, its flimsy installation and just-good-enough aesthetic equalizing in every direction over the planet. As an agent of the generic space of the network, the abstract grid that the suspended ceiling manifests already exists everywhere, over even the most far-flung wilderness and desert as much as the teeming of a metropolis.

Indeed, sometime in the near future we may yet come to recognize the grid as our true natural habitat. A cross-Europe trip during an election cycle might then reveal the same three-quarter portraits of smiling candidates, now green-screened onto images of suspended ceilings, disappearing into an infinite one-point perspective.

In this concep-

tual landscape,

everything

is part of an

infinite and

equalized

surface—seam-

lessly connect-

ed, entirely

abstracted.

306LANDSCAPE

Page 87: Landscape Futures

A U.S. Geological Survey

team member uses a “tel-

lurometer,” a microwave-

based distance-measuring

device. Its name comes

from the Greek word for

Earth, tellus.

BACK COVER

Target practice/

range-finding device,

1913; photograph

by Harris & Ewing,

courtesy of the Har-

ris & Ewing Collec-

tion, U.S. Library

of Congress.

ABOUT GEOFF MANAUGH

Geoff Manaugh is the

author of BLDGBLOG and

The BLDGBLOG Book, former

senior editor of Dwell

magazine, and a contribut-

ing editor at Wired UK.

He has taught at Columbia

University, the University

of Southern California, and

the University of Technolo-

gy, Sydney, and he lectures

widely on architectural

topics at museums, schools,

and other venues around

the world.

In addition to curating

Landscape Futures for

the Nevada Museum of Art,

Manaugh co-curated, with

Nicola Twilley, Landscapes

of Quarantine, an inde-

pendent design studio and

exhibition at Storefront

for Art and Architecture

in New York, exploring the

future of medical distanc-

ing and the spatial history

of quarantine.

Manaugh is also a free-

lance journalist, writing

for, among others, Wired,

Popular Science, The New

York Times, Volume, Domus,

and many websites, and he

is currently writing a book

on burglary and architec-

ture, to be published by

Farrar, Straus and Giroux

in 2014.

Geoff Manaugh lives

in New York City where he

is co-director of Studio-

X NYC, an off-campus event

space and urban futures

think tank run by the

architecture department

at Columbia University.

FUTURES 307

Page 88: Landscape Futures