55
Lanterns Marco Bodnár 12.

Lanterns

  • Upload
    elam

  • View
    44

  • Download
    0

Embed Size (px)

DESCRIPTION

12. Lanterns. Marco Bodnár. Task. Paper lanterns float using a candle. Design and make a lantern powered by a single tea-light that takes the shortest time (from lighting the candle) to float up a vertical height of 2.5m. Investigate the influence of the relevant parameters. - PowerPoint PPT Presentation

Citation preview

Page 1: Lanterns

Lanterns

Marco Bodnár

12.

Page 2: Lanterns

Task• Paper lanterns float using a candle.

Design and make a lantern powered by a single tea-light that takes the shortest time (from lighting the candle) to float up a vertical height of 2.5m. Investigate the influence of the relevant parameters.

Page 3: Lanterns

Single tea-light

• Mass 5-15g

• Power 40W

Page 4: Lanterns

First simplistic model

Power

Losses

Buoyant force

Gravitational force

Page 5: Lanterns

Is power 40W enough?

• Condition to lift off

SMV

FF gb

Fb – buoyant forceFg – gravitational forceV – volume of

lantern∆ρ – difference in

density of air inside the lantern and outside

M – mass of the candle

σ – surface densityS - surface

Page 6: Lanterns

Heat balance in lantern

• KA heat transfer constant from 5-25 W/m2K

• S surface of lantern

• ∆T difference of temperatures• P power of tea light

TSKP A

http://engineeringtoolbox.com/convective-heat-transfer-d 430.html

Page 7: Lanterns

Ideal gas

RTpM

TTT

RTpM

2

Page 8: Lanterns

Limits of power

TT

ASKPT

1)

2)3) SMV

VSSMTKP A )(

Page 9: Lanterns

Minimal power to lift off

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.160

100

200

300

400

500

600

Minimal power

Volume [m3]

Pow

er [W

]

Page 10: Lanterns

Limitation of the task says: there is no chance to design such a lantern

Page 11: Lanterns

Conclusion

• Theoretical calculation of conditions to lift off proved, that tea light doesn’t work…

• Is this the end?

Page 12: Lanterns

Task ver. 2

• Paper lanterns float using a candle. Design and make a lantern powered by a fuel with constant power that takes the shortest time (from lighting the candle) to float up a vertical height of 2.5m. Investigate the influence of the relevant parameters.

Page 13: Lanterns

Higher power? No problem…

1500 W

Page 14: Lanterns

And it really works...Ready...

Steady...GO!

Page 15: Lanterns

Using solid fuel

• Constant power 800W• Lantern can lift off

Page 16: Lanterns

How it really works?

• Volume dependence • Time dependence

Page 17: Lanterns

Apparatus

Lantern

Solid fuel

scales

Solid fuel

Iron for glueing 3 different models – different bottom areas (A)

Page 18: Lanterns

Model #1: A = 0.06 m2

20 40 60 80 100 120 140 1600

5

10

15

20

25

volume [l]

Lifte

d m

ass

[g]

Page 19: Lanterns

Model #1: A = 0.06 m2

20 40 60 80 100 120 140 1600

102030405060708090

volume [l]

delta

Tav

erag

e [K

]

VgTFTT b

Page 20: Lanterns

Model #2: A = 0.12 m2

40 60 80 100 120 140 160 180 200 2200

5

10

15

20

25

30

volume [l]

lifte

d m

ass

[g]

Page 21: Lanterns

Model #2: A = 0.12 m2

40 60 80 100 120 140 160 180 200 2200

10

20

30

40

50

60

70

volume [l]

delta

Tav

erag

e [K

]

VgTFTT b

Page 22: Lanterns

Model #3: A = 0.45 m2

150 200 250 300 350 400 450 500 5500

10

20

30

40

50

60

volume [l]

lifte

d m

ass

[g]

Page 23: Lanterns

Model #3: A = 0.45 m2

150 200 250 300 350 400 450 500 5500

5

10

15

20

25

30

35

40

45

volume [l]

delta

Tav

erag

e [K

]

VgTFTT b

Page 24: Lanterns

All models together universal behavior

40 60 80 100 120 140 160 180 200 2200

10

20

30

40

50

60

70

volume [l]

Model #3: A = 0.45 m2

Model #2: A = 0.12 m2

Model #1: A = 0.06 m2

Does the shape matter???

Page 25: Lanterns

Heat balance

candleBAloss PTKTVKP 32

)6(

Heat dissipated through the surface

Heat dissipated through the bottom area

Page 26: Lanterns

0 100 200 300 400 500 6000

10

20

30

40

50

60

70

80

90

volume [l]

delta

Tav

erag

e [K

] Theoretical fit

Model #1: A = 0.06 m2

Model #3: A = 0.45 m2

Model #2: A = 0.12 m2

Page 27: Lanterns

How it really works?

• Volume dependence • Time dependence?

Page 28: Lanterns

0 5 10 15 20 25 30 35 400

2

4

6

8

10

12

14

16

time [s]

lifte

d m

ass

[g]

Time dependence (experimental)

Volume 70 l

Page 29: Lanterns

Dynamic model

dtPdtPdU losscandle

U – inner energy of lantern

Page 30: Lanterns

Time dependence (exp. vs. theory)

NO FIT! – constants used from previous experiment

0 5 10 15 20 25 30 35 400

2

4

6

8

10

12

14

16

time [s]

lifte

d m

ass

[g]

Page 31: Lanterns

• Volume dependence • Time dependence

How it really works?

Now we know everything we need…

Page 32: Lanterns

Forces on lantern

Excel simulation

Euler method of finite increments

MS Excel

Theoretical description of motion

Page 33: Lanterns

40 60 80 100 120 140 1600

10

20

30

40

50

60

70

80

90

100

volume [l]

time

to r

each

2,5

m [s

]Time to reach 2,5m

Lantern with this volume was produced

Page 34: Lanterns

Lantern; approximately 75 liters

Page 35: Lanterns

Conclusion

• Theoretical description of the problem

• With constant power found most suitable volume (around 75 liters)

• But this is not everything…

Page 36: Lanterns

Task vs. 3

• Paper lanterns float using a candle. Design and make a lantern powered by a modified single tea-light , which doesn’t have to lift on with lantern, that takes the shortest time (from lighting the candle) to float up a vertical height of 2.5m. Investigate the influence of the relevant parameters.

Page 37: Lanterns

What changes?

• New relevant parameter• Time of holding

• Small difference in simulation• No extra mass added to lantern• Power dissipates during the flight

Page 38: Lanterns

Experiment

Highest volume 170 liters

Smallest volume50 liters

Surface density8 g/m2

Page 39: Lanterns

Time to reach 2,5m

40 60 80 100 120 140 160 1800

20

40

60

80

100

120

140

volume [l]

time

to re

ach

2,5m

[s]

Page 40: Lanterns

Output from simulation

0 50 100 150 200 250 300 3500

20

40

60

80

100

120

140

volume [l]

time

to r

each

2,5

m [s

]

Best volume 120 liters

Time of holding 63 sec.

Total time 70 sec.

The fastest one created

Page 41: Lanterns

But we found something better

Page 42: Lanterns

• The lowest surface density

Highest volume15 l

Lowest volume10 l

Surface density5 g/m2

Second experiment

Page 43: Lanterns

10 20 30 40 50 60 70 80 90 100 1109.5

10

10.5

11

11.5

12

12.5

volume [l]

time

to r

each

2,5

m [s

]

theory

measurement

Only 1 point, but the best

Not able to lengthen the bag,

because it tears

Bur

ned

bag

Page 44: Lanterns

• The lowest surface density

Best volume15 l

Time of holding7 sec.

Time to reach 2,5m10 sec.

Second experiment

Page 45: Lanterns

Correlation

Page 46: Lanterns

Conclusion• Investigated the original task

– - No lantern in these conditions can be build

• Modified task to investigate this phenomenon– - Solid fuel instead of tea light– - Modified tea light not a part of lantern

• Found relevant parameters (volume, power, surface, time of holding…)

• Built the quickest lantern for each variant of task

Page 47: Lanterns

THANK YOU FOR YOUR ATTENTION

Page 48: Lanterns

Superlantern 10 sec.

Page 49: Lanterns

APPENDICES

Page 50: Lanterns

Measurement of temperature

thermometer

Hot air going outside has no influence on measurement

Page 51: Lanterns

Temperatures

Page 52: Lanterns

Redistributed temperature

•Linear gradient

•Shape approximately spherical

•Outside lantern is 0T

Page 53: Lanterns

No manipulation – steady power output

• Power 600W burning of wax of tea light

4h of modified tea light 16min

To o tom case horenie ja fajn vediet a pamatat si – ale … nezda sa mi to byt podstatne. Pride mi, ze jedinou podstsatnou informaciou je vykon 600W a ten za samostatnhy slide nestoji.

Page 54: Lanterns

First experimentHighest volume 170 liters

Best volume 110 liters

Time of holding 63 sec.

Total time 70 sec.

Hmm.. Tento slide tiez nie je podstatny. Nestaci to len ukazat a zvyraznit na predoslom grafe?

(navyse, nezda sa mi, ze v predoslom grafe je na 170 L cas 70 sekund :P)

Page 55: Lanterns

Forces on lantern

tmcmcKTPT t

t

1

VgTTF t

bt

tavv ttt 11

tvhh ttt 11

mFFFa dgbtt /)(

2

21

tdt SvCF

Excel simulation

Tieto rovnice su nepodstatne. Staci povedat, ze sme pouzili Eulerovu metodu konecnych inkrementov + Exce a ziskali sme…

Rovnice preloz do appendixu, ak sa na ne niekto spyta. Len si pamataj tie tri sily, ktore posobia na balon