6
Spring 2006 Math 308-505 7 Laplace Transforms 7.6 Transforms of Discontinuous and Periodic Functions Fri, 03/Mar c 2006, Art Belmonte Summary Heaviside function The Heaviside unit step function is a piecewise continuous function defined by u (t ) = 0, for t < 0; 1, for t 0. For c R (typically c > 0), the translate of u is defined by u c (t ) = u (t - c) = 0, for t < c; 1, for t c. The interval function is defined by u ab (t ) = u (t - a ) - u (t - b) = 0, for t < a ; 1, for a t < b; 0, for t b. The Heaviside function is easy to implement numerically in MATLAB in a vectorized fashion. To learn all about it, read Chapter 6 (“Advanced use of dfield7”) in your lab manual! Also read about Polking’s sqw square wave function M-file. (It’s available to you on CalcLab and is easily transferred to your Windows XP LABS account or home.) Finally, study the MATLAB Examples in this lecture handout. Even better, as of Fall 2003 I have learned how to fully implement the Heaviside function in a symbolic fashion for both Laplace transform and graphing purposes. Accordingly, your work will be much easier than the folks had it in the Spring! Periodic Functions If f (t + T ) = f (t ) for all t , then f is periodic with period T (or T -periodic). Its window is defined as f T (t ) = f (t ), 0 t < T ; 0, t T . More Laplace transforms In the following, a , b, c are constants, p is a nonnegative constant, L { f (t )}= F (s ) is the Laplace transform of f , and the Laplace transform of the window g T of the piecewise continuous T -periodic function g is given by L { g T (t )}= G T (s ). L { u (t - c)} = e -cs s L { u ab (t )} = e -as - e -bs s L { f (t - p)u (t - p)} = e - ps F (s ) L { f (t )u (t - p)} = e - ps L { f (t + p)} (s ) L { g(t )} = G T (s ) 1 - e -sT = T 0 g(t )e -st dt 1 - e -sT Hand Examples Example A Find the Laplace transform of e 2(t -1) u (t - 1). Solution Let f (t ) = e 2t . Then F (s ) = L { f (t )}= 1 s - 2 . Therefore L e 2(t -1) u (t - 1) = L { f (t - 1)u (t - 1)}= e -s F (s ) = e -s s - 2 . Example B Compute the Laplace transform of e -t u (t - 1). Solution Since L { u (t - 1)}= e -s s , we have L e -t u (t - 1) = e -(s +1) s + 1 . Example C Determine the Laplace transform of u (t - π 2 ) cos 3t . Solution We have cos(3(t + π 2 )) = cos(3t + 3 2 π) = sin 3t via trig. So L u (t - π 2 ) cos 3t = e - π 2 s L cos(3(t + π 2 )) = 3e - π 2 s s 2 + 9 . Example D Let f (t ) = 0, t < 0 t , 0 t < 3 3, t 3 . Define f in terms of the Heaviside function, then compute its Laplace transform. Solution f (t ) = t (u (t ) - u (t - 3)) + 3u (t - 3) = tu (t ) - (t - 3)u (t - 3) implies L { f (t )}= e -0s s 2 - e -3s s 2 = 1 - e -3s s 2 . 1

Laplace 76

Embed Size (px)

Citation preview

Page 1: Laplace 76

Spring 2006 Math 308-5057 Laplace Transforms7.6 Transforms of Discontinuous andPeriodic FunctionsFri, 03/Mar c©2006, Art Belmonte

Summary

Heaviside function

TheHeaviside unit step functionis a piecewise continuousfunction defined by

u(t) ={

0, for t < 0;1, for t ≥ 0.

Forc ∈ R (typically c > 0), thetranslate of u is defined by

uc(t) = u(t − c) ={

0, for t < c;1, for t ≥ c.

The interval function is defined by

uab(t) = u(t − a) − u(t − b) =

0, for t < a;1, for a ≤ t < b;0, for t ≥ b.

The Heaviside function is easy to implement numerically inMATLAB in a vectorized fashion. To learn all about it, readChapter 6 (“Advanced use of dfield7”) in your lab manual! Alsoread about Polking’ssqw square wave function M-file.(It’s available to you on CalcLab and is easily transferred toyour Windows XP LABS account or home.) Finally, study theMATLAB Examples in this lecture handout.

Even better, as of Fall 2003 I have learned how to fully implementthe Heaviside function in a symbolic fashion for both Laplacetransform and graphing purposes.Accordingly, your work will bemuch easier than the folks had it in the Spring!

Periodic Functions

If f (t + T) = f (t) for all t, then f is periodic with periodT (orT -periodic). Itswindow is defined as

fT (t) ={

f (t), 0 ≤ t < T ;0, t ≥ T.

More Laplace transforms

In the following,a, b, c are constants,p is a nonnegative constant,L { f (t)} = F(s) is the Laplace transform off , and the Laplacetransform of the windowgT of the piecewise continuousT -periodic functiong is given byL {gT (t)} = GT (s).

L {u(t − c)} = e−cs

s

L {uab(t)} = e−as − e−bs

sL { f (t − p)u(t − p)} = e−psF(s)

L { f (t)u(t − p)} = e−psL { f (t + p)} (s)

L {g(t)} = GT (s)

1 − e−sT=

∫ T

0g(t)e−st dt

1 − e−sT

Hand Examples

Example A

Find the Laplace transform ofe2(t−1)u(t − 1).

Solution

Let f (t) = e2t . ThenF(s) = L { f (t)} = 1

s − 2. Therefore

L{e2(t−1)u(t − 1)

}= L { f (t − 1)u(t − 1)} = e−sF(s) = e−s

s − 2.

Example B

Compute the Laplace transform ofe−tu(t − 1).

Solution

SinceL {u(t − 1)} = e−s

s, we have

L {e−tu(t − 1)

} = e−(s+1)

s + 1.

Example C

Determine the Laplace transform ofu(t − π2 ) cos 3t.

Solution

We have cos(3(t + π2 )) = cos(3t + 3

2π) = sin 3t via trig. So

L {u(t − π

2 ) cos 3t} = e− π

2 sL {cos(3(t + π

2 ))} = 3e− π

2 s

s2 + 9.

Example D

Let f (t) =

0, t < 0t, 0 ≤ t < 33, t ≥ 3

. Define f in terms of the

Heaviside function, then compute its Laplace transform.

Solution

f (t) = t (u(t) − u(t − 3)) + 3u(t − 3) = tu(t) − (t − 3)u(t − 3)

impliesL { f (t)} = e−0s

s2− e−3s

s2= 1 − e−3s

s2.

1

Page 2: Laplace 76

Example E

Find the inverse Laplace transform ofe−2s

s + 3.

Solution

Let F(s) = 1

s + 3. Then f (t) = L−1 {F(s)} = e−3t . Thus

L−1{

e−2s 1

s + 3

}= u(t − 2) f (t − 2) = u(t − 2)e−3(t−2)

={

0, t < 2;e−3(t−2), t ≥ 2.

Example F

Compute the inverse Laplace transform ofe−s

s(s − 2)2.

Solution

Let F(s) = 1

s(s − 2)2= 1/4

s− 1/4

s − 2+ 1/2

(s − 2)2via cpf. Then

f (t) = 14 − 1

4e2t + 12te2t . ThusL−1

{e−s

s(s − 2)2

}is equal to

u(t − 1) f (t − 1) = u(t − 1)(

14 − 1

4e2(t−1) + 12(t − 1)e2(t−1)

).

Example G

Consider the driven, undamped oscillator

y′′ + 4y = f (t), y(0) = 0, y′(0) = 0,

with the driving forcef (t) = u(t − 1) − u(t − 2). Solve theinitial value problem; i.e., determine the solution, or response, tothe input f (t).

Solution

OK, campers: you know the drill from Section 7.5!

1. s2Y(s) − sy(0) − y′(0) + 4Y(s) = e−s

s− e−2s

s.

2. s2Y(s) + 4Y(s) = e−s

s− e−2s

s.

3. With the aid ofcpf, we have

Y(s) = e−s

s(s2 + 4)− e−2s

s(s2 + 4)

Y(s) =14e−s

s−

14se−s

s2 + 4−

14e−2s

s+

14se−2s

s2 + 4

4. Thusy(t) =(

14 − 1

4 cos(2(t − 1)))

u(t − 1)

+(

14 cos(2(t − 2)) − 1

4

)u(t − 2).

MATLAB Examples

We corroborate the results obtained in the Hand Examples viaMATLAB’s Symbolic Math Toolbox. Here are the diary files.

Example A [revisited]%% NSS-7.6/Example A%syms tu1 = heaviside(t-1);f = exp(2 * (t-1)) * u1; pretty(f)

exp(2 t - 2) heaviside(t - 1)F = simple(laplace(f)); pretty(F)

exp(-s)-------

s - 2%echo off; diary off

Example B [revisited]%% NSS-7.6/Example B%syms tu1 = heaviside(t-1);f = exp(-t) * u1; pretty(f)

exp(-t) heaviside(t - 1)F = simple(laplace(f)); pretty(F)

exp(-1 - s)-----------

1 + s%echo off; diary off

Example C [revisited]%% NSS-7.6/Example C%syms tup2 = heaviside(t-pi/2);f = up2 * cos(3 * t); pretty(f)

heaviside(t - 1/2 pi) cos(3 t)F = simple(laplace(f)); pretty(F)

exp(- 1/2 s pi)3 ---------------

2s + 9

%echo off; diary off

Example D [revisited]%% NSS-7.6/Example D%syms tu = heaviside(t);u3 = heaviside(t-3);f = t * (u-u3) + 3 * u3; pretty(f)

t (heaviside(t) - heaviside(t - 3))+ 3 heaviside(t - 3)

%t = linspace(-2, 5);v = eval(vectorize(f));plot(t,v, ’LineWidth’, 2); grid onxlabel(’t’); ylabel(’f(t)’)title(’NSS-7.6/Example D: f(t)’)axis([-2 5 -1 4])%F = simple(laplace(f)); pretty(F)

2

Page 3: Laplace 76

1 - exp(-3 s)-------------

2s

%echo off; diary off

Example E [revisited]%% NSS-7.6/Example E%syms sF = exp(-2 * s) / (s+3); pretty(F)

exp(-2 s)---------

s + 3f = ilaplace(F); pretty(f)

heaviside(t - 2) exp(-3 t + 6)% That is, f(t) = u(t-2) * exp(-3 * (t-2)).%echo off; diary off

Example F [revisited]%% NSS-7.6/Example F%syms sF = exp(-s) / (s * (s-2)ˆ2); pretty(F)

exp(-s)----------

2s (s - 2)

f = ilaplace(F); pretty(f)

(- 3/4 exp(2 t - 2) + 1/4 + 1/2 exp(2 t - 2) t)

* heaviside(t - 1)% That is,% f(t) = u(t-1) *% ( -3/4 * exp(2 * (t-1)) + 1/4 + 1/2 * t * exp(2 * (t-1)) ).%echo off; diary off

Example G [revisited]%% NSS-7.6/Example G%syms s t Ysy = sym(’y(t)’)y =y(t)f = heaviside(t-1) - heaviside(t-2);nde = diff(y,t,2) + 4 * y - f;pretty(nde) % #0

/ 2 \|d ||--- y(t)| + 4 y(t) - heaviside(t - 1) + heaviside(t - 2)| 2 |\dt /ltde = laplace(nde); % #1ltde = chiclet(ltde); pretty(ltde)

exp(-s) exp(-2 s)s (s Ys - y(0)) - Dy(0) + 4 Ys - ------- + ---------

s seq = subs(ltde, {’y(0)’ ’Dy(0)’ }, {0 0}); % #2pretty(eq)

2 exp(-s) exp(-2 s)s Ys + 4 Ys - ------- + ---------

s sYs = solve(eq, Ys); pretty(Ys) % #3

exp(-s) - exp(-2 s)-------------------

2s (s + 4)

y = ilaplace(Ys); pretty(y) % #4

heaviside(t - 1) (1/4 - 1/4 cos(2 t - 2))+ (- 1/4 + 1/4 cos(2 t - 4)) heaviside(t - 2)

%t = linspace(0,8);y = eval(vectorize(y));plot(t,y); grid onxlabel(’t’); ylabel(’y’)title(’NSS-7.6: Example G’)%echo off; diary off

396/23 [periodic function, numerically graphed]

Let f (t) ={

e−t , 0 < t < 1,1 1 < t < 2,

and f has period 2. Plotf (t)

for 0 ≤ t ≤ 8, and compute the Laplace transform off .

Solution

Here is a graphing script M-file and the plot it produces.

%% NSS4-396/23g: Here is a graph of a periodic function f% using MATLAB logical functions (as described in Chapter 6% of your lab manual).%t = linspace(0, 7.999, 500);f = exp(-mod(t,2)) . * (0<=t & t<1) ...

+ 1 . * (1<=t & t<2) ...+ exp(-mod(t,2)) . * (2<=t & t<3) ...+ 1 . * (3<=t & t<4) ...+ exp(-mod(t,2)) . * (4<=t & t<5) ...+ 1 . * (5<=t & t<6) ...+ exp(-mod(t,2)) . * (6<=t & t<7) ...+ 1 . * (7<=t & t<8);

plot(t,f,’ * ’); grid onaxis([0, 8, -0.5 1.5])%echo off; diary off

0 2 4 6 8−0.5

0

0.5

1

1.5

t

f

NSS4−396/23g: Numerical graph of a periodic function

Now we compute the Laplace transform off using the theoremfor the Laplace transform of a periodic function.

%% NSS4-396/23%syms s tI1 = int(exp(-t) * exp(-s * t), t, 0, 1);pretty(I1)

exp(-s - 1) - 1- ---------------

s + 1I2 = int(1 * exp(-s * t), t, 1, 2);pretty(I2)

3

Page 4: Laplace 76

exp(-2 s) - exp(-s)- -------------------

sF = (I1+I2) / (1 - exp(-2 * s)); pretty(F)

exp(-s - 1) - 1 exp(-2 s) - exp(-s)- --------------- - -------------------

s + 1 s---------------------------------------

1 - exp(-2 s)%

echo off; diary off

396/26 [periodic function, symbolically graphed]

Compute the Laplace transform of thesawtooth wave fshown.

0 a 2a 3a 4a 5a 6a−0.5

0

0.5

1

1.5NSS4−396/26: Sawtooth Wave

t

f

Solution

First off, here is the script M-file that produced the plot.

%% NSS4-396/26g%% Here is a graph of a sawtooth wave! This time we use a% symbolic implementation via Heaviside step functions.% For graphing purposes, we have chosen the value 1 for the% parameter a.%a = 1;syms k tu = sym(’Heaviside(t)’);uka = subs(u, t, t-k * a)ukp1a = subs(u, t, t-(k+1) * a)f = symsum((t/a - k) * (uka - ukp1a), k, 0, 5);t = linspace(0, 6, 500);ff = eval(vectorize(f));plot(t,ff,’+’); grid onaxis equalaxis([0, 6, -0.5, 1.5])% DIG IT: Custom tickmarks!set(gca,’XTickLabel’, {’0’;’a’;’2a’;’3a’;’4a’;’5a’;’6a’ })%

echo off; diary off

Once again, we compute the Laplace transform off using thetheorem for the Laplace transform of a periodic function.

%% NSS4-396/26%syms a s tF = int(t/a * exp(-s * t), t, 0, a) / (1 - exp(-a * s));pretty(F)

exp(-s a) + exp(-s a) s a - 1- -----------------------------

2a s (1 - exp(-s a))

%

echo off; diary off

396/28 [YAPF: yet another periodic function]

Compute the Laplace transform of thishalf-rectified sine wave f.

0 5 10 15−1

−0.5

0

0.5

1

1.5

2NSS4−396/28: Half−rectified sine wave

t

y

Solution

Here is the script M-file that produced the plot.

%% NSS4-396/28g: Graph of half-rectified sine wave%syms k tu = sym(’Heaviside(t)’);u 2k pi = subs(u, t, t-2 * k* pi)u 2kp1 pi = subs(u, t, t-(2 * k+1) * pi)f = symsum(sin(t) * (u 2k pi - u 2kp1 pi), k, 0, 2);t = linspace(0, 15, 2000);ff = eval(vectorize(f));plot(t,ff); grid onaxis([0 15 -1 2])%

echo off; diary off

The third time’s the charm. We compute the Laplace transform off using the theorem for the Laplace transform of a periodicfunction.

%% NSS4-396/28%syms s tF = int(sin(t) * exp(-s * t), t, 0, pi) ...

/ (1 - exp(-2 * pi * s));pretty(F)

1 + exp(pi s)-------------------------------------

2exp(pi s) (s + 1) (1 - exp(-2 pi s))

%

echo off; diary off

397/38 [IVP with discontinuous forcing function]

Solvey′′ + 2y′ + 10y = g(t); y(0) = −1, y′(0) = 0. Here

g(t) =

10, 0 ≤ t ≤ 1020, 10 < t < 200, 20 < t

.

Then graph the solutiony(t) for 0 ≤ t ≤ 35.

4

Page 5: Laplace 76

Solution

Formulateg in terms of Heaviside step functions, then do theusual 4-step procedure!

%% NSS4-397/38%syms s t Ysy = sym(’y(t)’);u = heaviside(t);u10 = heaviside(t-10);u20 = heaviside(t-20);g = 10 * (u-u10) + 20 * (u10-u20);de0 = diff(y,t,2) + 2 * diff(y,t) + 10 * y - g;pretty(de0)

/ 2 \|d | /d \|--- y(t)| + 2 |-- y(t)| + 10 y(t) - 10 Heaviside(t) - 10 Heaviside(t - 10)| 2 | \dt /\dt /

+ 20 Heaviside(t - 20)% 1ltde = laplace(de0);ltde = chiclet(ltde);pretty(ltde)

10 exp(-10 s)s (s Ys - y(0)) - Dy(0) + 2 s Ys - 2 y(0) + 10 Ys - ---- - 10 ----------

s sexp(-20 s)

+ 20 ----------s

% 2eq0 = subs(ltde, {’y(0)’, ’Dy(0)’ }, {-1, 0 });pretty(eq0)

10 exp(-10 s) exp(-20 s)s (s Ys + 1) + 2 + 2 s Ys + 10 Ys - ---- - 10 ---------- + 20 ----------

s s s% 3Ys = solve(eq0, Ys); pretty(Ys)

2s + 2 s - 10 - 10 exp(-10 s) + 20 exp(-20 s)

- ---------------------------------------------2

s (s + 2 s + 10)% 4y = ilaplace(Ys); pretty(y)

(2 exp(-t + 20) cos(3 t - 60) + 2/3 exp(-t + 20) sin(3 t - 60) - 2)Heaviside(t - 20) +(-exp(-t + 10) cos(3 t - 30) - 1/3 exp(-t + 10) sin(3 t - 30) + 1)Heaviside(t - 10) - 2 exp(-t) cos(3 t) - 2/3 exp(-t) sin(3 t) + 1

% Graph via plot.t = linspace(0, 35, 500);y = eval(vectorize(y));plot(t,y); grid on%echo off; diary off

Beauty, eh?

0 10 20 30 40−1

−0.5

0

0.5

1

1.5

2

2.5NSS4−397/38

t

y

398/62

A mixing tank initially holds 500 L of a brine solution with a saltconcentration of 0.2 kg/L. For the first 10 minutes of operation,valve B is open, adding 12 L/min of brine containing a 0.6 kg/Lsalt solution. After 10 minutes, valve B is closed and valve A is

opened for the next 10 minutes, delivering a 0.4 kg/Lconcentration at 12 L/min. Finally, valve A is shut and valve B isswitched back in. The exit valve C removes brine at a flow rate of12 L/min, thereby keeping the volume constant.

Find the concentrationc(t) of salt in the tank as a function oftime. Graphc(t) over 0≤ t ≤ 30, then again over 30≤ t ≤ 400.

Solution

Here is a diary file followed by the two plots.

%% NSS4-398/62%syms s t Xsx = sym(’x(t)’);u = sym(’Heaviside(t)’);u10 = subs(u, t, t-10);u20 = subs(u, t, t-20);c = 3/5 * (u-u10) + 2/5 * (u10-u20) + 3/5 * u20;de0 = diff(x,t) - (12 * c - 12 * x/500);pretty(de0)

/d \|-- x(t)| - 36/5 Heaviside(t) + 12/5 Heaviside(t - 10)\dt /

- 12/5 Heaviside(t - 20) + 3/125 x(t)% 1ltde = laplace(de0);ltde = chiclet(ltde);pretty(ltde)

exp(-10 s) exp(-20 s)s Xs - x(0) - 36/5 1/s + 12/5 ---------- - 12/5 ---------- + 3/125 Xs

s s% 2eq0 = subs(ltde, ’x(0)’, 100);pretty(eq0)

exp(-10 s) exp(-20 s)s Xs - 100 - 36/5 1/s + 12/5 ---------- - 12/5 ---------- + 3/125 Xs

s s% 3Xs = solve(eq0, Xs); pretty(Xs)

125 s + 9 - 3 exp(-10 s ) + 3 exp(-20 s)100 ---------------------------------------

s (125 s + 3)% 4x = ilaplace(Xs); pretty(x)

100 exp(- 3/125 t) + 600 exp(- 3/250 t) sinh(3/250 t)- 200 Heaviside(t - 10) exp(- 3/250 t + 3/25) sinh(3/250 t - 3/25)+ 200 Heaviside(t - 20) exp(- 3/250 t + 6/25) sinh(3/250 t - 6/25)

save x = x;% Graph early on...t = linspace(0, 30, 500);x = eval(vectorize(x));c = x/500;plot(t,c); grid on% ...and in the fullness of timefigure % new plott = linspace(30, 400, 500);x = eval(vectorize(save x));c = x/500;plot(t,c); grid on% Concentration expressionc = save x / 500; pretty(c)

1/5 exp(- 3/125 t) + 6/5 exp(- 3/250 t) sinh(3/250 t)- 2/5 Heaviside(t - 10) exp(- 3/250 t + 3/25) sinh(3/250 t - 3/25)+ 2/5 Heaviside(t - 20) exp(- 3/250 t + 6/25) sinh(3/250 t - 6/25)

%

echo off; diary off

0 5 10 15 20 25 300.2

0.25

0.3

0.35

0.4NSS4−398/62: Concentration early on

Time (minutes)

Con

cent

ratio

n (k

g/L)

5

Page 6: Laplace 76

0 100 200 300 4000.3

0.35

0.4

0.45

0.5

0.55

0.6NSS4−398/62: Concentration in the long run

Time (minutes)

Con

cent

ratio

n (k

g/L)

6