15
1 Large thermoelectric figure of merit in graphene layered devices at low temperature Daniel Olaya 1 , Mikel Hurtado-Morales 1,2 , Daniel Gómez 1 , Octavio Alejandro Castañeda-Uribe 3 , Zhen-Yu. Juang 4,5 , Yenny Hernández 1* 1 Nanomaterials Laboratory, Department of Physics, Universidad de los Andes, Bogotá 111711, Colombia 2 Deparment of Electronic Engineering, Universidad Central, Calle 21 # 4 – 40, Bogotá – Colombia. 3 Department of Biomedical Engineering, Universidad Manuela Beltrán, Avenida circunvalar 60 – 00, Bogotá – Colombia. 4 Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan 5 SulfurScience Technology Co., Ltd., Taipei 10696, Taiwan. Keywords: Thermoelectrics, graphene heterostructures. Abstract Nanostructured materials have emerged as an alternative to enhance the figure of merit (ZT) of thermoelectric (TE) devices. Graphene exhibits a high electrical conductivity (in-plane) that is necessary for a high ZT; however, this effect is countered by its impressive thermal conductivity. In this work TE layered devices composed of electrochemically exfoliated graphene (EEG) and a phonon blocking material such as poly (3,4- ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), polyaniline (PANI) and gold nanoparticles (AuNPs) at the interface were prepared. The figure of merit, ZT, of each device was measured in the cross-plane direction using the Transient Harman Method (THM) and complemented with AFM-based measurements. The results show remarkable high ZT values

Large thermoelectric figure of merit in graphene layered

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Large thermoelectric figure of merit in graphene layered

1

Largethermoelectricfigureofmeritingraphenelayered

devicesatlowtemperature

DanielOlaya1,MikelHurtado-Morales1,2,DanielGómez1,OctavioAlejandro

Castañeda-Uribe3,Zhen-Yu.Juang4,5,YennyHernández1*

1NanomaterialsLaboratory,DepartmentofPhysics,UniversidaddelosAndes,Bogotá

111711,Colombia2DeparmentofElectronicEngineering,UniversidadCentral,Calle21#4–40,Bogotá–

Colombia.3DepartmentofBiomedicalEngineering,UniversidadManuelaBeltrán,Avenidacircunvalar

60–00,Bogotá–Colombia.4DepartmentofElectrophysics,NationalChiaoTungUniversity,Hsinchu30010,Taiwan

5SulfurScienceTechnologyCo.,Ltd.,Taipei10696,Taiwan.

Keywords:Thermoelectrics,grapheneheterostructures.

Abstract

Nanostructuredmaterialshaveemergedasanalternativetoenhancethefigureofmerit(ZT)

ofthermoelectric(TE)devices.Grapheneexhibitsahighelectricalconductivity(in-plane)that

is necessary for a high ZT; however, this effect is countered by its impressive thermal

conductivity. In this work TE layered devices composed of electrochemically exfoliated

graphene (EEG) and a phonon blocking material such as poly (3,4-

ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), polyaniline (PANI) and gold

nanoparticles(AuNPs)attheinterfacewereprepared.Thefigureofmerit,ZT,ofeachdevice

wasmeasuredinthecross-planedirectionusingtheTransientHarmanMethod(THM)and

complementedwithAFM-basedmeasurements.TheresultsshowremarkablehighZTvalues

Page 2: Large thermoelectric figure of merit in graphene layered

2

(0.81 < ZT < 2.45) that are directly related with the topography, surface potential,

capacitancegradientandresistanceofthedevicesatthenanoscale.

Introduction

TE materials have attracted the attention of the automotive, aerospace, medical and

electronic industries due to their ability to transform waste heat into electricity by the

Seebeckeffect1.Theperformanceofthesematerialsisdeterminedbytheirfigureofmerit

(ZT=S2sT/k),whichisafunctionoftheSeebeckcoefficient(S),theelectricalconductivity

(s),thethermalconductivity(k)andthetemperature(T).Thefigureofmeritofconventional

TEmaterials(highlydopedsemiconductors)isabalancebetweentheelectricalconductivity

andthethermalconductivity(connectedbytheWiedemann-FranzLaw)2.Thisbalanceleads

to ZT values not greater than the unit3, which limits the use of TE materials in power

generationandenergyharvestingapplications.ZTisfurtherlimitedinthepresenceofsmall

temperaturegradients2andTEmaterialsforapplicationswherethisisthecaseareyettobe

developed.

An alternative for increasing ZT is the use of low dimensionalmaterials as proposed by

DresselhausandHicks4,5.This improvement isdue toanenhancedSeebeckcoefficient,a

dimension-dependent electronic density of states and a low thermal conductivity due to

phonon scattering at the interfaces6. These findings lead to the development of

nanostructuredTEmaterialswithZTvaluesupto2.4(ataworkingtemperatureof~1000

K)7.

Carbonmaterialshavethebroadestrangeofthermalconductivityvaluesreported8.These

valuesgofrom0.01W/mKforamorphouscarbonupto2500W/mKfordiamond.Inthecase

ofgraphite,itexhibitsahighanisotropyinitsthermalconductivity(k)inthecross-planeand

in-plane directions with values at around 10 W/mK and 2000 W/mK respectively. This

anisotropyisalsoobservedintheelectricalconductivity(s)ofgraphitewithvaluesat3x102

S/mand2x105S/minthecross-planeandin-planedirectionsrespectively.

Page 3: Large thermoelectric figure of merit in graphene layered

3

Lowdimensionalcarbon-basedmaterials,suchasgrapheneandcarbonnanotubes(CNTs)

presentgoodelectricalandthermalconductivities(in-plane),whichimposesanobstaclefor

theiruseasTEmaterials.Multilayerstackingof twodimensional (2D)materialshasbeen

proposedasanefficientroutetowardstheenhancementofthermoelectricproperties9,10.In

particular, solution exfoliated graphene films11-13 display low thermal conductivity in the

cross-planedirection14 resembling the reportedvalue forgraphite8.Conductingpolymers

suchasPEDOT:PSSandPANIhavebeenusedforTEstudiesduetotheirpreferentialelectrical

conductivity along the polymer chain direction, their low thermal conductivity and their

measurableSeebeckresponse15.Compositematerialsofthesepolymerswithgraphene16,17

andcarbonnanotubes18 (CNT)havebeenrecentlypreparedandthishas ledto improved

values of S and s, which increases directly the power factor. Additionally, theoretical

calculationsofgoldnanopillarspatternedongraphenepredictedthepresenceofalargein-

planeSeebeckcoefficientforsuchstructure19.

Inthiswork,anapproachtoenhancethecross-planefigureofmeritofgraphene-basedTE

materialsisproposed.Solutionprocessingmethodswereusedtofabricatelayereddevices

basedonelectrochemicallyexfoliatedgraphene(EEG)andinterlayerconductingmaterials,

suchasPEDOT:PSS,PANIandAuNPs.TheTEperformanceofthefabricateddevicesinterms

ofthefigureofmerit,Seebeckcoefficientandelectricalconductivityischaracterizedinthe

cross-plane direction by means of THM20. In addition, the devices are structurally and

electricallycharacterizedatthenanoscalebyAFM.Thelocalmapsoftopography,surface

potential,capacitancegradientandresistancearemeasuredtostudytheinfluenceofthe

nanostructuredmaterialsintheoverallTEbehaviorofthedevices.

ZTmeasurementoflayereddevicesviaTHM

Layered materials of graphene and a conductive interlayer material such as AuNPs,

PEDOT:PSSandPANI,werepreparedinaconfiguration3:2followingthecoatingprocedures

describedinthemethodssection(Figure1).Thethermoelectriccharacterizationwascarried

Page 4: Large thermoelectric figure of merit in graphene layered

4

outbymeansofTHMwithcurrentpulsesof1mswhichallowedstatisticalanalysis(7cycles)

oftheextracteddata(Figure2a).WithinTHM,thevoltagedropisdividedintworegimes:a

rapidvoltagedropduetotheresistance,VR,followedbyaslowdeclineduetotheSeebeck

voltage,VS,asthethermalgradientacrossthedevicedissipates(Figure2b).Theturningpoint

betweenthetworegimeswasdeterminedusingalinearandanexponentialregressionfor

eachone.TheratiobetweenVSandVRisequivalenttotheZTfigure21(ZT=VS/VR)andcanbe

calculatedasafunctionoftemperature(Figure2c).

Figure1.DiagramofalayeredTEdevice(configuration3:2).

ThelayereddevicesbuiltwithPEDOT:PSS,PANIandAuNPshaveaverageZTvaluesof2.45,

1.47 and 0.81 respectively (Figure 2c). The ZT figure of the EEG – Polymer structures is

unprecedentedforsolutionprocessedgraphene16,17andwhencomparedwithBi2Te3based

TEmaterialsworkingatthesametemperaturerange22.TheZTwithAuNPsattheinterfaceis

in good agreement with the report by Juang and coworkers on CVD graphene – AuNPs

heterostructures23. The dotted line in Figure 2c represents the ZT figure of a device

composed purely by SiO2 and silver contacts as a reference for the contribution of the

substrateandtheelectricalcontacts.

Page 5: Large thermoelectric figure of merit in graphene layered

5

The semiconducting behavior of the layered devices was corroborated by plotting the

maximumvoltagemeasuredasafunctionoftemperature(FigureS1).Thismeasurementwas

coupled with a comparison of the electrical resistance in the in-plane and cross-plane

configurationstofurthercorroboratetheanisotropyofourdevices(FigureS1).

Figure 2. (a) Representative figure of a THM measurement (b) Intercept between the

resistiveandtheSeebeckregime(c)and(d)ZTandsforEEG–AuNPs(blacksquare),EEG–

PANI(redsquare)andEEG–PEDOT:PSS(bluesquare)devicesasafunctionoftemperature

(configuration3:2).

Influenceoftheinterlayermaterial

One of the goals when choosing the interlayer material was to enhance the electrical

conductivityacrosstheheterostructureincomparisontoadevicebuiltpurelywithEEG.For

thisreasonandfortheirTEresponse15,conductingpolymerssuchasPEDOT:PSSandPANI

were chosen. The performance of such polymers in a cross-plane configuration was

Page 6: Large thermoelectric figure of merit in graphene layered

6

measuredbyTHMasacomparisonwiththeEEGheterostructures.TheZTfigureofthese

deviceswas~1whichislowerwhencomparedtotheheterostructures(FigureS2).Figure2d

shows the internal conductivityof the layereddevicesasa functionof temperature. It is

importanttonotethateventhoughthedevicewithAuNPsdisplayshigherconductivitythan

theonewithPEDOT:PSSitsZTfigureiswhatultimatelywoulddeterminetheefficiencyof

thedevice.ThedottedlineinFigure2drepresentstheaverageconductivityofanEEGdevice

incomparisonwiththeimprovementoftheelectricalconductivityduetothepresenceof

theinterlayermaterials.

The Seebeck coefficient, extracted from the THMmeasurement (VS) and the measured

temperaturegradient,appeartobeindependentfromthenatureoftheinterlayermaterial

(Figure3a).Itisnoteworthy,however,thatthisresponseisenhancedwhencomparedtoa

pureEEGdevice(Figure3d).Meanwhile,thepowerfactor(S2s)differsbetweendevicesat

lowtemperatureduetothedifference inelectricalconductivity.Eventhough, theAuNPs

devicedisplaysahighervaluethanthatofthedeviceswithconductingpolymersatroom

temperature,as thetemperature increases, thisdifference isnotaspronouncedandthis

determines the recommended operating temperature for the TE device (Figure 3b).

Althoughkwasnotmeasureddirectlyitcanbecalculatedbydividingthepowerfactorand

theZTfiguretoillustratetheimportancenotonlyofhavinghighsbutalsolowkfortheTE

efficiencycalculation(Figure3b(inset)).Notethattheextractedvaluesforkarewithinthe

sameorderofmagnitudetothosereportedforgraphiteinthecross-planedirection8.

ItisinterestingtocomparethedeviceswithhighestZTandhighestpowerfactorwithanEEG

device.Ontheonehand,toexplainthehighZTfiguremeasuredfortheEEGdevice(Figure

3c)thereareacouplethingstoconsider:EEGhastypicalcrystalsizesof~5µm(FigureS3)

andthinfilmsaredepositedbyspraycoating,upto20nminthickness,toassurefullcoverage

ofthesubstrate.ThewrinklesandedgesofthedepositedEEGfilms(FigureS4)areknownto

containsharpfeaturesintheelectronicdensityofstates24whichplaysanincrementalrole

ontheSeebeckcoefficient25andintheelectricalconductivityinthecross-planedirection.

Page 7: Large thermoelectric figure of merit in graphene layered

7

On the other hand, the thermal conductivity across the EEG device is two orders of

magnitudelowerthanthehighestcalculatedvaluekforthelayereddevices;hencethehigh

ZTfigure(FigureS4).TheSeebeckcoefficientofthegraphenedeviceisinthesameorderof

magnitudeofthelayereddevices,howeveritspowerfactorissignificantlylower,whichcould

beattributedtoitslowelectricalconductivity(Figure3d).

Figure3.(a)and(b)Seebeckcoefficient,powerfactorandk(inset)forEEG–AuNPs(black

squares),EEG–PANI(redsquares),EEG–PEDOT:PSS(bluesquares)andEEG(greysquares)

devicesasa functionof temperature (c)ZT forEEG(greydiamonds),EEG–AuNPs (black

squares)andEEG–PEDOT:PSS(bluesquares)devicesasafunctionoftemperature(d)Power

factorandSeebeckcoefficientofEEGasafunctionoftemperature.

Nanoscalecharacterization

The nanoscale electrical characterization of the samples was divided into independent

measurementsofsurfacepotential,capacitancegradientandlocalresistance.Thesurface

Page 8: Large thermoelectric figure of merit in graphene layered

8

potential images (Figure 4b) show a heterogeneous distribution of potentials, which is

attributedtothedifferenceintheworkfunctionsoftheconstitutivematerialsofeachdevice

(EEG,conductingpolymerandAuNPs layers).Particularly, theEEG–PANIdeviceexhibits

extensiveequipotentialregions(yellowandturquoiseareas)thatworkaspotentialbarriers

thatblocktheelectrontransportinthecross-planedirection.

Figure4.(a)Topography,(b)Surfacepotential,(c)𝜕𝐶 𝜕𝑧(d)ConductingAFMofEEG–PANI,

EEG–PEDOT:PSSandEEG–AuNPs.

Thecapacitancegradientdenotestheratioofthevariationsbetweensamplecapacitance

andheight(𝜕𝐶 𝜕𝑧).Thehighhomogeneity(lowcontrast)ofthe𝜕𝐶 𝜕𝑧mapsinFigure4cis

a resultof theuniformity in thecapacitanceandheightof thetop layermaterialofeach

device.Thisindicatesahighqualityinthemulti-layeringprocessoffabrication.Moreover,

theestimationofthetotalequivalentcapacitancebasedonthe𝜕𝐶 𝜕𝑧measurementsof

eachdevicepairedwithimpedancespectroscopyanalysis26isacomplexprocedureanditis

outofthescopeofthispaper.

Page 9: Large thermoelectric figure of merit in graphene layered

9

To elucidate the relation of the cross-plane electronic transportwith the TE parameters

previouslydiscussed,conductiveAFMmeasurementswereconducted.InthecaseoftheEEG

–PANIdevicethedensityofcurrentpathsissignificantlylowerthantheothersampleswhich

correlateswell totheelectricalconductivitymeasurements.TheEEG–PEDOT:PSSdevice

displaysagreaterdensityofcurrentpathswhencomparedtotheEEG–AuNPsone.This

indicatesmoreprominentJouleheatingthatincreasesVsandthereforeZT.

Figure5.(a)ZTand(b)SeebeckcoefficientofEEG–PEDOT:PSS(4:3)(blacktriangles),EEG–

PEDOT:PSS (3:2) (blue triangles), EEG – PEDOT:PSS (2:1) (red triangles) as a function of

temperature (c)ZT ofEEG–PEDOT:PSS (3:2) (blue triangles)andCNT–PEDOT:PSS (3:2)

(whitetriangles)asafunctionoftemperature(d)PowerfactorandSeebeckcoefficientof

CNT–PEDOT:PSS(3:2)asafunctionoftemperature.

LayerdependenceandcomparisonwithCNT

Theeffectofthenumberoflayerswasalsostudiedinconfigurations2:1,3:2and4:3forthe

EEG-PEDOT:PSSlayereddevice(Figure5a).TheZTfigureforthe2:1and4:3deviceislower

Page 10: Large thermoelectric figure of merit in graphene layered

10

thanthe3:2configurationandthiscouldbeassociatedtoalowerSeebeckcoefficientinboth

cases(Figure5b).ThevalueofScanbeenhancedbyincreasingthenumberoflayers(2:1

and 3:2), however this enhancement is limited by the voltage output in the Seebeck

measurement(4:3).TheextractedvaluesofthethermalconductivitycomparedwiththeEEG

deviceindicatethattheinclusionofPEDOT:PSShasanasymmetriceffectwiththenumber

of layers (Figure S5) which differs from previous reports on graphene only multilayer

structures27.Ontheonehand,theinclusionofonelayerofPEDOT:PSS(2:1configuration)

has almost no effect onk. On the other hand, the 3:2 and 4:3 configurations displayed

increased and lowered k values respectively. The increased value of k for the 3:2

configuration could be attributed to the formation of electronic percolating pathswhich

enhancestheelectroniccontributiontothethermalconductivity.Incontrast,thelowered

valued of k for the 4:3 configuration could be associated to phonon blocking at the

interfaces.Fromthis,itcanbeconcludedthatacloseinterplaybetweenSandkwouldbe

keywhendesigningnewlowdimensionalTEheterostructures.

Additionally,aCNT-PEDOT:PSSdevice,inaconfiguration3:2,waspreparedwiththeinterest

of comparing itwith thegraphenebasedone.TheZT valuesmeasured in this casewere

significantlylower(Figure5c).ThelowefficiencyoftheCNTbaseddevicecouldbeattributed

tothelargeanisotropyontheelectricalandthermaltransportofCNTwhichispreferential

along the tube axis8 which in this case is oriented in-plane. Additionally, a low Seebeck

coefficientwasmeasured(cross-plane)incontrastwithreportsonlargeSeebeckcoeficcients

insemiconductingsinglewallnanotubefilms(inplane)28.Furtherexperimentaleffortsare

neededtodesigncarbonnanotube–graphenehierarchicalstructures.

Conclusion

Inthisworkanew,lowcost,methodtoproducehighperformanceTEcomponentsthatcould

beusedinmicro-electronicapplicationshasbeendemonstrated.Graphenebaseddevices,

preparedfromsolution,displayedlargefiguresofmerit(0.81<ZT<2.45)whencompared

to their counterparts within the same temperature range (<400K). The present study

Page 11: Large thermoelectric figure of merit in graphene layered

11

correlatesthethermoelectricperformanceofthedeviceswiththephysicalpropertiesofthe

interlayermaterial.Thisadvancementiscertainlyasteppingstonetowardstheengineering

ofnewadvancedlayeredTEmaterials.

Methods

Grapheneexfoliation,CNTdispersionandfilmformation

Graphenewaselectrochemicallyexfoliatedfromgraphitefoil(AlfaAesar,0.254mmthick,

99.8%)usingsulfuricacid(SigmaAldrich,99.999%)at0.1Mat10V.Theexpandedmaterial

wasfilteredusingVVPPfilters(poresize0.1µm),towashresidualacidonthesurface.The

filteredmaterialwasthendispersedin50mlofMilliporewaterviabathsonication(Branson

1800,90min)tofinishtheexfoliationprocedure.Thickergraphiteflakeswereremovedvia

centrifugation (HermleZ306,60minat3500RPM).Thisprocesswasconducted twice to

obtainstablegrapheneaqueousdispersionsat0.28mg/ml.Graphenefilmswereformedon

(1cmx1cm)SiO2substrates(thickness500µm)byspraycoating1.6mlofthedispersionat

100°Csubstratetemperature.

TopreparetheCNTfilms,anaqueoussolutionofsodiumcholate(SigmaAldrich)at0.2mg/ml

wasprepared.SubsequentlyCNT(NanoIntegris,13–18nmouterdiameter)weredispersed

viatipsonication(QSonica,50W,300s),followedby24hshelfdecantation.Thisprocesswas

conductedtwicetoobtainstableCNTdispersionsat0.2mg/ml.CNTfilmswereformedon

SiO2substratesbyspraycoating5mlat100°Csubstratetemperature.

AuNPs,PANIandPEDOT:PSSpreparationanddeposition

AuNPs (US ResearchNanomaterials Inc., 14 nm) and PEDOT:PSS (SigmaAldrich, 1.3wt%

dispersioninH2O)weredispersedusingasonictip(180s)inMilliporewaterat0.1mg/ml

and2mg/mlrespectively.PANI(SigmaAldrich,Mw>15.000)wasdispersedintolueneusing

a sonic tip (300 s) at 0.2mg/ml. AuNPs and PEDOT:PSSwere deposited via spin coating

Page 12: Large thermoelectric figure of merit in graphene layered

12

(Laurell,WS-650MZ)at3500RPMfor40s.PANIwasdepositedbyspraycoating1mlat60°C

substratetemperature.

Productionoflayereddevices

EEG and CNT deposition protocols were designed to attain continuous films. With the

previouslymentionedprotocolslayereddeviceswereproducedbyspraycoatingEEGorCNT

as thebottomandtop layers ina typicalconfiguration (3:2)with the interlayermaterials

depositedaspreviouslymentioned.Theaveragethicknesseswas~115nmand~105forEEG

andCNTdevicesrespectively(FigureS8).

AFM-BasedCharacterization

Nanoscale electrical characterization of the samples was conducted using atomic force

microscopy (Asylum Research MFP3D-BIO). The surface potential, capacitance gradient

(𝜕𝐶 𝜕𝑧)andlocalresistanceweremeasuredonthesurfacesamplebymeansofKelvinprobe

forcemicroscopy (KPFM), secondharmonic electrostatic forcemicroscopy (2ndHarmonic

EFM) and conductive atomic forcemicroscopy (C-AFM) respectively. Themeasurements

were conducted using an electrical conductive cantilever (AC240TM-R3) and applying a

voltagesignal(intherangeof0.02Vto0.5V)betweenthetipandthesample.Inadditionto

the electrical measurements the topography of the samples was also measured by the

conventionaltappingmodeofAFM.Alltheimagesweretakenatascanrateof0.5Hzanda

resolutionof512by512pixels.

THMforthemeasurementofthefigureofmeritZT

For THM, currents from 3 to 60 mA were injected across each device with a Keithley

sourcemeter(2450)whilethevoltageresponsewassensedacrossthemusingaTektronix

(TBS1152)oscilloscope(seeFigure1).TheZTfigurewasmeasuredatdifferenttemperatures

byplacingthesampleonaheatingelementcontrolledbyNationalInstrumentselectronics.

Measurementswere taken from room temperature up to 90°C (± 0.1 °C). The electrical

contactsweredepositedbythermalevaporationofsilver(100nm).

Page 13: Large thermoelectric figure of merit in graphene layered

13

THMallows thedeterminationof the Seebeck voltage,while the temperaturedifference

between the cold and hot side of each device is measured by thermocouples (National

Instruments, k-type). These two measurements are essential to calculate the Seebeck

coefficient. The internal electrical resistance is determined with the maximum voltage

generatedbytheinjectedcurrent.

Authorcontributions

Y.H.andZ-Y.J.conceivedtheexperiments.D.O.,M.H-M.andD.G.fabricatedthedevices.

D.O.andD.Gperformedtheexperiments.A.C.performedtheAFMmeasurements.Allthe

authors discussed the results. Y.H. and D. O. wrote the manuscript and all the authors

contributedtoit.

References

1 Fitriani et al. A review on nanostructures of high-temperature thermoelectricmaterialsforwasteheatrecovery.RenewableandSustainableEnergyReviews64,635-659,doi:https://doi.org/10.1016/j.rser.2016.06.035(2016).

2 Tritt, T. M. & Subramanian, M. A. Thermoelectric Materials, Phenomena, andApplications:ABird'sEyeView.MRSBulletin31,188-198,doi:10.1557/mrs2006.44(2011).

3 Li, J.-F., Liu, W.-S., Zhao, L.-D. & Zhou, M. High-performance nanostructuredthermoelectricmaterials.NPGAsiaMater2,152-158(2010).

4 Hicks, L. D. & Dresselhaus, M. S. Effect of quantum-well structures on thethermoelectricfigureofmerit.PhysicalReviewB47,12727-12731(1993).

5 Hicks,L.D.&Dresselhaus,M.S.Thermoelectricfigureofmeritofaone-dimensionalconductor.PhysicalReviewB47,16631-16634(1993).

6 Dresselhaus, M. S. et al. New Directions for Low-Dimensional ThermoelectricMaterials. Advanced Materials 19, 1043-1053, doi:10.1002/adma.200600527(2007).

7 Gayner, C.& Kar, K. K. Recent advances in thermoelectricmaterials.Progress inMaterials Science83, 330-382, doi:https://doi.org/10.1016/j.pmatsci.2016.07.002(2016).

8 Balandin, A. A. Thermal properties of graphene and nanostructured carbonmaterials.NatMater10,569-581(2011).

Page 14: Large thermoelectric figure of merit in graphene layered

14

9 Hatef,S.,Sara,S.&Colin,J.L.Cross-planeenhancedthermoelectricityandphononsuppression ingraphene/MoS2vanderWaalsheterostructures.2DMaterials4,015012(2017).

10 Chen, C.-C., Li, Z., Shi, L. & Cronin, S. B. Thermoelectric transport acrossgraphene/hexagonal boron nitride/graphene heterostructures.Nano Research 8,666-672,doi:10.1007/s12274-014-0550-8(2015).

11 Hernandez,Y.etal.High-yieldproductionofgraphenebyliquid-phaseexfoliationofgraphite.NatureNanotechnology3,563-568(2008).

12 Hurtado-Morales,M. et al. Efficient fluorescence quenching in electrochemicallyexfoliatedgraphenedecoratedwithgoldnanoparticles.Nanotechnology27,275702(2016).

13 Parvez, K. et al. Electrochemically Exfoliated Graphene as Solution-Processable,Highly Conductive Electrodes for Organic Electronics. ACS Nano 7, 3598-3606,doi:10.1021/nn400576v(2013).

14 Pop,E.,Varshney,V.&Roy,A.K.Thermalpropertiesofgraphene:Fundamentalsandapplications.MRSBulletin37,1273-1281,doi:10.1557/mrs.2012.203(2012).

15 Du,Y.,Shen,S.Z.,Cai,K.&Casey,P.S.Researchprogressonpolymer–inorganicthermoelectricnanocompositematerials.ProgressinPolymerScience37,820-841,doi:https://doi.org/10.1016/j.progpolymsci.2011.11.003(2012).

16 Wang, L. et al. PANI/graphene nanocomposite films with high thermoelectricproperties by enhancedmolecular ordering. Journal ofMaterials Chemistry A 3,7086-7092,doi:10.1039/C4TA06422D(2015).

17 Kim,G.H.,Hwang,D.H.&Woo,S.I.Thermoelectricpropertiesofnanocompositethin filmspreparedwithpoly(3,4-ethylenedioxythiophene)poly(styrenesulfonate)and graphene. Physical Chemistry Chemical Physics 14, 3530-3536,doi:10.1039/C2CP23517J(2012).

18 Yao, Q., Chen, L., Zhang, W., Liufu, S. & Chen, X. Enhanced ThermoelectricPerformance of Single-Walled Carbon Nanotubes/Polyaniline HybridNanocomposites.ACSNano4,2445-2451,doi:10.1021/nn1002562(2010).

19 Dragoman, D.&Dragoman,M.Giant thermoelectric effect in graphene.AppliedPhysicsLetters91,203116,doi:10.1063/1.2814080(2007).

20 Harman,T.C.,Taylor,P.J.,Walsh,M.P.&LaForge,B.E.QuantumDotSuperlatticeThermoelectric Materials and Devices. Science 297, 2229-2232,doi:10.1126/science.1072886(2002).

21 Singh, R. et al. Direct measurement of thin-film thermoelectric figure of merit.AppliedPhysicsLetters94,212508,doi:10.1063/1.3094880(2009).

22 Chung,D.-Y.etal.CsBi4Te6:AHigh-PerformanceThermoelectricMaterialforLow-Temperature Applications. Science 287, 1024-1027,doi:10.1126/science.287.5455.1024(2000).

23 Juang,Z.-Y.etal.Graphene-Aunanoparticlebasedverticalheterostructures:Anovelroute towards high-ZT Thermoelectric devices. Nano Energy 38, 385-391,doi:https://doi.org/10.1016/j.nanoen.2017.06.004(2017).

Page 15: Large thermoelectric figure of merit in graphene layered

15

24 Lin, S.-Y., Chang, S.-L., Shyu, F.-L., Lu, J.-M. & Lin, M.-F. Feature-rich electronicproperties in graphene ripples. Carbon 86, 207-216,doi:http://dx.doi.org/10.1016/j.carbon.2014.12.068(2015).

25 Sevinçli, H. & Cuniberti, G. Enhanced thermoelectric figure of merit in edge-disorderedzigzaggraphenenanoribbons.PhysicalReviewB81,113401(2010).

26 García-Cañadas, J.&Min,G.LowFrequency ImpedanceSpectroscopyAnalysisofThermoelectric Modules. Journal of Electronic Materials 43, 2411-2414,doi:10.1007/s11664-014-3095-4(2014).

27 Wei,Z.,Ni,Z.,Bi,K.,Chen,M.&Chen,Y.Interfacialthermalresistanceinmultilayergraphene structures. Physics Letters A 375, 1195-1199,doi:http://dx.doi.org/10.1016/j.physleta.2011.01.025(2011).

28 Yusuke, N. et al. Giant Seebeck coefficient in semiconducting single-wall carbonnanotubefilm.AppliedPhysicsExpress7,025103(2014).