LASER ABLATIVE PROPULSION.pdf

  • Upload
    tekbox6

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    1/51

    PROPULSIONSUBSYSTEMSIZINGTOOL:

    LASERABLATIVEPROPULSION

    AProject

    Presentedto

    TheFacultyoftheDepartmentofAerospaceEngineering

    SanJosStateUniversity

    InPartialFulfillment

    oftheRequirementsfortheDegree

    MasterofEngineering

    by

    JohnA.DonovanV

    May2012

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    2/51

    ii

    2012

    JohnA.DonovanV

    ALLRIGHTSRESERVED

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    3/51

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    4/51

    iv

    Abstract

    Conventionalpropulsionsystemswillnotfeasiblyallowmankindtoexploreoutsideof

    thissolarsystem,oreventhegalaxy. Costsaretoolargetoraisematerialsintospacetobuild

    largerobjectsonorbit.Moreefficient,advancedpropulsionsystemsareneededtoenablethe

    dreamsoflargeronorbitstructures,possiblecolonizationofotherobjectswithinoursolar

    system,andexplorationbeyond. LaserAblativePropulsion(LAP)isoneoftheseadvanced

    propulsionsystems,andthetopicofthisreport.

    Oneofthemajorissuesconventionalpropulsiontechnologiesisthemassratio. These

    technologies(solid andliquidfueledchemicalsystems)relyonalargeamountofpropellant

    carriedonboardtopropelarelativelysmallamountofmassintospace. LAPandother

    advancedtechnologieslooktoimproveefficiencybyremovingpropellantweightfromthecraft,

    whilestilldeliveringtherequiredenergytoachievethedesiredincreaseinvelocity(v).

    Thisisaninnovativetechnology,withverylittleresearchandfieldtestingoflarge

    systems. Someexperimentsandanalyseshavebeendocumentedonasmallscalewithspecific

    solidmaterials. Thegoalofthisreportistofurtherunderstandingofthistopic,anddevelopa

    tooltobeginsizing/tradingthistechnologyforthepropulsionsubsystem. UsingConservationof

    Energyequations,thesimplerelationshipsbetweeneventsintheenergytransferchainwillbe

    describedanddiscussed.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    5/51

    v

    AcknowledgementsIwouldliketothankmyfatherforalwaysenablingandencouragingmetostudyand

    learnmore. HefosteredmyloveofouterspaceandtalentforengineeringsinceIwasachild.

    IwouldliketothankDr.AlecGallimore,professorattheUniversityofMichigan

    AerospaceEngineeringdepartment. Hetaughtandinspiredmetothinkofmoreadvanced

    propulsionsystemsandthedoorstheywillopenforhumankind.

    JerryOckermanandBlakeHaufofLockheedMartinwereinstrumentalinadministering

    theSJSUoncampusprograms,enablingmetoearnthisdegreewhileworkingintheindustry.

    Dr.NikosMourtos,Dr.PeriklisPapadopoulos,andMs.CandySimelassistedmewith

    manyhurdlesandmuchpaperworkthatwererequiredtoenablemyworkonthisproject,and

    finallycommencemydegree.

    IwouldliketothankNikDjordjevicandLeeLundsfordfortheirguidanceontheresearch

    andpresentationofthematerialscontainedwithinthisreport.

    Also,thankstomygirlfriendwholetmetaketimetoworkonthisproject,whilestill

    ensuringIhadenoughtimetopayattentiontoher.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    6/51

    vi

    TableofContents1 INTRODUCTION........................................................................................................................ 1

    1.1 Motivation........................................................................................................................ 1

    1.2 HistoryandBackground................................................................................................... 2

    1.3 LaserAblativePropulsionConcept.................................................................................. 3

    1.4 PotentialBenefitsandApplications................................................................................. 7

    2 THEORY.................................................................................................................................... 9

    2.1 LaserProperties............................................................................................................... 9

    2.2 ConservationofEnergy.................................................................................................. 12

    2.3 RocketPropulsion.......................................................................................................... 13

    2.4 LAPSubsystemDesign................................................................................................... 16

    3 PROPELLANTEVALUATIONANDSELECTION......................................................................... 18

    3.1 PropellantsConsidered.................................................................................................. 18

    3.2 PropellantProperties..................................................................................................... 19

    3.3 FuturePropellantConsiderations.................................................................................. 21

    4 BENCHMARKING.................................................................................................................... 22

    4.1 CorrelationtoExperimentalResults.............................................................................. 22

    4.2 DiscussionofDifferences............................................................................................... 29

    5 PARAMETRICAPPROACH....................................................................................................... 31

    5.1 ToolParameters............................................................................................................. 31

    5.2 Determiningpropulsivecharacteristics......................................................................... 32

    5.3 ToolLayoutandCalculations......................................................................................... 33

    5.4 FutureAnalyses.............................................................................................................. 36

    6 DISCUSSIONANDRESULTS.................................................................................................... 38

    6.1 DiscussionofContinuousWavevs.PulsedLaserPower............................................... 38

    6.2 ToolAnalysisResults...................................................................................................... 396.3 FutureStudy................................................................................................................... 40

    7 CONCLUSIONANDRECOMMENDATIONS.............................................................................. 41

    REFERENCES................................................................................................................................... 42

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    7/51

    vii

    ListofFiguresFigure1 GeometryofLaserIrradiationonaSolidSurface 5

    Figure2 PhaseChangeExampleforWater(H2O) 6

    Figure3 LAPThrustConceptVaporizationofLiquefiedSolidMaterial 7

    Figure4 PulsedLaserOperation 10

    Figure5 Asurveyofreportedmaximumcouplingintensities 11

    Figure6 ConservationofMomentumVisualExample 14

    Figure7 LAPConceptSequenceofEvents 17

    Figure8 Ablatedmasspershotvs.irradianceonPOM 23

    Figure9 Momentumofprojectilevs.massreductionbyablation 25

    Figure10 ElectronandLatticetemperatureforCoppertarget 26

    Figure11 Surfacestructuralfeaturesinducedbytrainsoflaserpulses 27

    Figure12 Surfacestructuralfeaturesinducedbytrainsoflaserpulses 28

    Figure13 Surfaceripplesinducedbytrainof17laserpulsesforAg(a)andCu(b) 28Figure14 Beamprofilerecordedontothermalpaper 32

    Figure15 ToolscreenshotwithLaserParameterInputsforAluminumpropellant 34

    Figure16 ScreenshotofGeneratedDataforAluminumpropellant 35

    ListofTablesTableI Aluminum(Al)Properties 19

    TableII Copper(Cu)Properties 19

    TableIII Silver(Ag)Properties 19

    TableIV Silicon(Si)Properties 20

    TableV Uranium(U)Properties 20

    TableVI DelrinProperties 20

    TableVII PercentageofLaserPowerforHeatFlow 24

    TableVIII MaterialAnalysisResultsforOne200ns,1x109W/cm2Pulse 25

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    8/51

    viii

    NomenclatureA beamspotsize(m2)

    CP specificheatatconstantpressure(J/kgK)

    dm depth(thickness)ofmaterialablated(m)E changeinenergy(J)

    E totalenergy(J)

    Ep energyperpulse(J)

    F thrust(N)

    f pulsefrequency(1/s)

    g0 gravitationalacceleration

    Isp specificimpulse(s)

    ma massablated(kg)

    mi initial,orwetmass(kg)

    mf final,ordrymass(kg)

    n numberofmolesP laserpower(W)

    PPeak peaklaserpower(W)

    PAvg averagelaserpower(W)

    p pressure(N/m2)

    R specificgasconstant(J/kgK)

    Ru universalgasconstant(8.314J/molK)

    T0 initialtemperature(K)

    Tc chambertemperature(K)

    Te exit(ambient)temperature(K)

    TM meltingtemperature(K)

    T incrementaltemperature

    t time(s)

    t timeincrementorlaserpulsewidth(s)

    V volume(m3)

    Vv volumeofmaterialvaporized(m3)

    ve exitvelocity(m/s)

    vrms electronmeanvelocity(m/s)

    Greek

    incrementorchange

    density(kg/m3)

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    9/51

    1

    1 INTRODUCTION1.1

    Motivation

    Conventionalpropulsionsystemswillnotfeasiblyallowmankindtoexploreoutsideofthis

    solarsystem,oreventhegalaxy. Costsaretoolargetoraisematerialsintospacetobuildlarger

    objectsonorbit.Withoutanachievableandaffordablespacetransportationsystem,

    explorationofspacewillnotreachitspotential.Moreefficient,advancedpropulsionsystems

    areneededtoenablethedreamsoflargeronorbitstructures,possiblecolonizationofother

    objectswithinoursolarsystem,andexplorationbeyond.

    Oneofthemajorissuesfacingconventionalpropulsiontechnologiesisthemassratio.

    Thesetechnologies(solid andliquidfueledchemicalsystems)relyonalargeamountof

    propellantcarriedonboardtopropelarelativelysmallamountofmassintospace. Laser

    propulsionandotheradvancedtechnologieslooktoimproveefficiencybyremovingpropellant

    weightfromthecraft,whilestilldeliveringtherequiredenergytoachievethedesiredincrease

    invelocity(v).

    Thisisaninnovativepropulsiontechnology,withverylittleresearchandfieldtestingof

    largesystems. Someexperimentsandanalyseshavebeendocumentedonasmallscalewith

    specificsolidmaterials. Thegoalofthisreportistofurtherunderstandingofthistopic,and

    developatooltoanalyzetheconceptformultiplematerials.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    10/51

    2

    1.2 History and BackgroundConventionalrocketpropulsiondependsoncarryingtheentireamountofenergy

    requiredforthemission. Thisisamajorcontributortothelargepropellantmassratio. Typical

    missionscontainupwardsof85%ofthevehiclemassaspropellant. Theseenergyrequirements

    varydependingonthetypeofmaneuverstobeexecuted:orbitraisingorinsertion,

    orbit/attitudecontrolanddeorbitingattheendofasatelliteslifetime.

    Forfuturemissionssuchasdeepspaceexploration,thepowerrequirementforafixed

    payloadmasssimplyscaleswiththedistance:typically200kWforareturnmissiontotheouter

    solarsystem,200600kWforacargotugtoMars,orover1MWforamannedMarsmission[1].

    Carryingthisamountofpoweronboardcannotbeachievedwithtodaysconventional

    propulsionsystems. Thesetypesofmissionswouldrequireestablishmentofanorbiting

    platformfromwhichtobuildlargerstructuresforlongrangemissions. Theenergyrequiredto

    beginbuildingsuchaplatform,keepitonorbit,andmanthisplatformwouldbeimmense!

    Then,transportationofmaterialstothisplatformcanbeginforconstructionofalargescale

    spacecraft.

    Clearly,futuremissionswillneedtodevelopmuchmoreefficientenergyusageintheir

    propulsionsystems,ortheywillneedtoharnessexternalenergysources. Theuseoflasersto

    beampowertothespacecraftprovidesafavorablealternative. Sincethereisanexternal

    energysource,thespacecraftcanshedthelargeofthepropellantweightrequiredby

    conventionalpropulsionsystems.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    11/51

    3

    Oneofthemajoradvantagesoflaserpropulsioncomparedtotraditionalchemical

    propulsionisthatpracticallyanyobjectofcondensedmattercanbeusedasafuel. Aslongas

    thematterwillablatewhenalaserisfocusedonit,theenergeticexhaustwillactasthrust. This

    ablationexhaustwillbeintheformofvaporizedmatteruntiltheplasmagenerationthreshold,

    whereplasmaswillbegenerated.[2]

    Conventionalpropellantsarematerialsthatareexplosive,corrosive,and/orpoisonous,

    makingthemgenerallydangerousanddifficulttohandle. Sincenearlyanymaterialcanbe

    selectedasthepropellantforthistypeofsystem,safetyisnotalargeconcern.Thisfactoralone

    willdrivedownthecost,complexity,andsocialpressuresagainstconventionalpropulsion

    systems,aswellasadvancedsystemsusingsomeformofnuclearpower.

    Theperfectpropellantforlaserpropulsionisnotknownatthistime,duetolimited

    researchinthearea. Researchconductedsofarhasnotidentifiedwhichmaterialproperties

    leadtothebestthrustorspecificimpulseforagivenmission.

    1.3 LaserAblativePropulsionConceptLaserAblativePropulsion(LAP)canresultinvaryingphysicalmechanisms,includingthermal

    (vaporization,explosiveboiling)andnonthermal(plasmagenerationandacceleration)[3]. In

    thisreport,thethermalaspectsofthisprocesswillbeassessedduetotimeconstraintsforthe

    explorationoftheplasmaphysicsatthistime. Theplasmaphysicsareanareaoffurtherstudy

    forfollowonprojects.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    12/51

    4

    ThebasicsofLAPcanbedescribedinthefollowingenergytransferchain:

    Laserenergyistransmittedthroughspace

    Thisenergybeingtransmittedbylaserdoesnotpassthroughanyatmosphere,orvery

    littleatmosphere,sothatahigherpercentageofthepowertransmittedisusableto

    generatepropulsionforthespacecraft. Furtherdiscussionsoftheselossesareincluded

    inSection2.3titledConservationofEnergy.

    Futurestudy: Theinstallationofvariouslaserpowerstationsonorbitoronthesurface

    ofothercelestialbodieswillenabletravelthroughthespacewithoutrequiringlarge

    amountsofpropellant.

    Laserisfocusedontothesolidmaterialthatactsaspropellant

    ThiscanbeANYmaterial! Thisincreaseseaseofmanufacturingandavailability,and

    decreasessafetyconcerns,costs,handling,permits,storagerequirements,etc.

    Laserheatssolidmaterialtomeltingpointandchangesphasetotheliquidstate

    Thepropellantisexposedtothevacuumofspace,sotheinitialtemperatureofthe

    propellantisassumedtospaceambient,ornearabsolutezero(Approximatedat3.15

    Kelvin). Themaximumtemperatureachievableforthisstateofmatterwillbethe

    meltingpointofthematerial,atwhichpointthesolidtransformstoaliquid(with

    thicknessS(t)asseeninFigure1below:

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    13/51

    5

    Figure1: GeometryofLaserIrradiationonaSolidSurface

    S(t)=0priortothelaserbeamheatingthesolidmaterial(t=0). Oncethelaserenergy

    isdeliveredtothesurface,thesurfaceofthesolidismeltedandchangesphasesto

    liquid.

    Liquidmaterialisvaporizedtothegaseousstate

    Themaximumtemperatureachievableforthisstatewillbetheboilingpointofthe

    material,atwhichpointthematerialablatesintheformofgas. Theliquidregionseen

    inFigure1willvaporizetoagaseousstateintheoppositedirectionofthelaser.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    14/51

    6

    Inaccordancewiththephasechangefigurebelow,theenergyrequiredtovaporizethe

    solidmaterialcanbedeterminedbyintegratingtheenergyequationsforeachregionof

    thermalabsorption: Heatingofsolid,heatoffusion,heatingofliquid,andheatof

    vaporization.

    Figure2: PhaseChangeExampleforWater(H2O)

    GasmovesawaywithVelocity(VE)

    Theadditionofenergy(intheformofheat)excitesthemoleculeswithinthematerial,

    causingthemtoincreasetheirvelocityastheyexittherearofthespacecraft. Thisgasis

    expelledtoprovidethrustforthespacecraft.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    15/51

    7

    Figure3: LAPThrustConceptVaporizationofLiquefiedSolidMaterial

    Inthisreport,thefocusiswhatoccurswhenhighlypressurized,heatedmaterialexpands

    intovacuumandtransformsintoagaseousstate.

    1.4 PotentialBenefitsandApplicationsThebenefitsofLAPincludeadramaticweightsavingsintermsofpropellantneededfor

    themission. Asaresult,morepayloadcanbedeliveredforasimilarsizedcraft. Another

    approachistominimizethesizeofacrafttoachieveasimilarmission. Thiscanalsoincrease

    thefrequencyofmissions,assystemsbecomelesscomplexandcanbemanufacturedona

    largerscale.

    Initialmissionscouldbepowergenerationsatellitesand/orplatforms,whichcouldabsorb

    theraysofthesunwhileonorbit. Thispowercanbeconvertedintolaserenergyand

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    16/51

    8

    transmittedtospacecraftthatarefartherfromthesun,wheresolarpowerislessfeasible,or

    notfeasibleatall.

    BenefitsofLasersforEnergyTransmission

    Thedevelopmentofprogressivelymorepowerfullasersiscloselyrelatedtothe

    advancementofthistechnology,butwillnotsolelybenefitLaserAblativePropulsion.

    Astheselaserpowersystemsgrowmorepowerful,theyprovideawidevarietyofpossibleuses:

    Beamedenergytoearthfromspace

    Beamedenergyfromspacetospace

    Shortrangesatellitedefensefromincomingspacedebris

    Beamedlaserlightreflectedoffasatellitecouldprovidegroundtogroundenergy

    transmission

    Beamedlaserlightreflectedoffasatellitecouldprovidedaylighttoanotherareaofthe

    earth

    Atmosphericapplicationsinclude:

    Boostphasemissiledefense(AirborneLaserTestBedALTB)

    Laserpoweredaircraft

    Highpowereddata/signaltransmissions

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    17/51

    9

    2 THEORY2.1 LaserProperties

    ThewordLASERstandsforLightAmplifiedbyStimulatedEmissionofRadiation. Energy

    istransferredintheformoflightwhenenergyisremovedfromtheelectronatacertain

    potential. Absorptionoflaserenergy(light)willcauseanelectrontobebumpeduptothenext

    highestlevel. Sincelaserstransmitenergyintheformoflight,thetargetrequiresadirectlineof

    sight,andanydisturbancesinthemediumitistravellingthroughwillreducetheenergy

    transmitted.

    Typicallaserproperties

    TheenergytransmittedbyalaserismeasuredinJoules(J). Lasersystemsaretypically

    ratedintermsofthepower(P,inWatts)thattheycandeliver. Powerisameasureofthelasers

    rateofenergytransfer,inJoulespersecond(J/s). Acommonlyusedpropertyisthefocused

    intensity(I,inW/cm2). Thisparameterdescribesthepowerofthelaserdeliveredtoaspecific

    area,whichisusefulindeterminingthepowerdeliveredforaparticularbeamsize. Thisbeam

    spotsizeisdenotedasanarea(A,inm2).

    Thereareseveralmethodstodescribethepoweroutputofalasersystem. Peakpower

    andaveragepowerdescribeusefulcharacteristicsforanenergyfocusedviewoflasers. This

    projectisspecificallyexaminingthelaserpropellantinteraction,soanassumedamountof

    energyisdeliveredtothesurfaceofthepropellant. Thedesigndetailsregardingenergylosses,

    pointingrequirementsandotherconsiderationsaretopicsforfuturestudiesonthistechnology.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    18/51

    10

    Therearemanyotherpropertiestoconsider,dependingontheparticularapplicationof

    thelasersystem. Examplesare:beamdiameter,spatialintensitydistribution(beamprofile),

    divergence,andbeamqualityfactor[4].

    Whyuseapulsedlaser?

    Oneadvantageofpulsedlasersforthistechnologyisthatenergyisdeliveredin

    consistentlysizedpulses,withenoughtiminginbetweensothatthepropellantreactionis

    completebeforethenextpulseisdelivered. Thisallowsthereactiontoremainina

    thermodynamicstate(solidtogasreaction)versushighertemperaturesandionizationthat

    wouldleadtoplasmageneration.

    Pulsedlasersalsoenablehigherenergyleveldelivery. Powersourcescangeneratea

    fixedamountofpoweroveronewholesecond,butahigherlevelofpowercanbeachievedfora

    fractionofthatsecond. Inthefigurebelow,aconstantenergylevelisdeliveredperpulse(Ep).

    Thefrequencyofrepetitionisdefinedbyf=1/t.

    Figure4: PulsedLaserOperation[5]

    PeakPowerisdefinedastherateofenergyflowineachpulse,ofdurationt.

    (1) PPeak=Ep/t

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    19/51

    11

    Foralaserenergyof0.01Jandpulsedurationof8nanoseconds,thePeakPowerisasfollows

    PPeak=0.01J/.000000008s=1,250,000Wor1.25MW

    AveragePowerisdefinedastherateofenergyflowaveragedovereachperiod,ofdurationt.

    (2) PAvg=Ep/t

    Forafrequency(f)of10,000Hz,thedurationbetweenpulsesis0.0001seconds,whichimplies

    PAvg=0.01J/0.0001s=100W

    Whyshorterpulses?

    Practicallyspeaking,shorterpulsesallowthepowersourceofthelasertocoolbetween

    pulsessothatitdoesnotoverheat,andcanoperateforalongerduration. Asseeninequation

    (1)above,ashorterpulseyieldshigherPeakPowerdeliveredtothesystem. Thefigurebelow

    showshowthemaximumintensityofalaserdecreasesasthelaserpulsedurationincreases.

    Therefore,shorterpulseswillenablehigherintensitiestobeachieved.

    Figure5: Asurveyofreportedmaximumcouplingintensities[6]

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    20/51

    12

    2.2 ConservationofEnergyTransmittedlaserenergyabsorbedbythepropellantisbasedontheabsorptivityofthe

    surface. Somesurfacecoatingswillreflectmoreenergythantheyabsorb. Othersaredesigned

    tomaximizeabsorptivity. Inthisstudy,thesurfaceisassumedtoabsorballdirectedenergy.

    Possibletypesofenergylosses

    Therearenumeroustypesofenergylosswhichoccurfromthetimetheenergyisgenerated

    untilitisdeliveredtothetarget. Theseinclude,butarenotlimitedto:

    Energyconversiontolightlosses

    Imperfectfocusingofthebeam

    Heatenergylostintransmissionthroughspace

    Oncetheenergyhasreachedthecraft,therearemoreopportunitiesforenergylosses

    topresentthemselves:

    Imperfectreflectionofthecollectoronthespacecraft

    Focusedenergyreflectedbythepropellant(Absorptivity

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    21/51

    13

    Energyeffectonsolidmaterial

    Typicalphasechangesprogressfromsolidtoliquidtogas(thenplasma,butthiswillnot

    beexaminedinthisreport). Intermsofenergy,thematerialwillheatasasolidaccordingtothe

    specificheatcapacityofthematerialinsolidform. Oncethemeltingpointisreached,aphase

    changeoccurs. Thisphasechangefromsolidtoliquidrequiresanenergyinputcalledthe

    enthalpyoffusion. Duringthisphasechange,thereisnochangeintemperature,eventhough

    thereisheatbeingaddedtothematerial. Oncemelted,thematerialwillheatasaliquid

    accordingtothespecificheatcapacityofthematerialinliquidform. Oncetheboilingpointis

    reached,asecondphasechangeoccurs. Thisphasechangefromliquidtogasrequiresan

    energyinputcalledtheenthalpyofvaporization. Thetemperatureremainsconstantduringthis

    phasechange,butthenheatingcontinuesaccordingtothespecificheatcapacityofthematerial

    ingaseousform. EnthalpyisdefinedastheEnergyInput(laserenergyinthiscase)dividedby

    themassofthematerialandthechangeintemperature.

    2.3 RocketPropulsionConservationofMomentumisthefoundationforthebasicthrustequationsutilizedinthis

    paper. Theconservationofmomentumsaysthatinthebelowfigure,thefollowingequation

    holdstrue:

    (1) (mm)*(v+v)=m*ve

    Theunitsofmomentum(orimpulse)arekgm/s.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    22/51

    14

    Figure6:ConservationofMomentumvisualexample

    Thrust,aforcemeasuredinNewtons(N,orkgm/s2),isthederivativeofmomentum(impulse).

    Byapplyingthetimederivativetotheexitvelocity(ve),theequationbecomesthestandard

    forceequationofmasstimesthesecondderivativeofposition,whichisacceleration.

    (2) F=m*

    (ve)=F=m*acceleration

    Sincetheexitvelocityismoreeasilydeterminedthantheaccelerationofparticlesleavingthe

    spacecraft,thetimederivativeisappliedtothemassofthepropellantinsteadoftheexit

    velocityasshownbelow

    (3)

    (m)*ve=*ve

    Withaconsistentpulsedlaserenergysource,themassflowratewillbeveryconstantand

    predictable. Sincemassflowrateisdefinedasmasspersecond,thentheaveragematerial

    ablatedpersecondwouldbeusedinthisequation. Theexitvelocityisalsorelatedtothe

    specificimpulse(Isp)bythegravitationalaccelerationoftheobject(g0)

    4 ve Isp* g0

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    23/51

    15

    ThrustEquations

    Chemicalpropulsionsystemshaveathermodynamiccharacterization,whichrelates

    temperature in the chamber to the temperature at the exit, shownbelow

    5 Egas Cp* mp* Tc Te

    Startingfromthekineticenergyequation

    6 E * m * v2

    Thenrearrangingtosolveforvelocity

    7 v 2 * E / m0.5

    Combiningequations(7)and(9)provideanewrelationforvelocity

    8 v 2 * Cp* Tc Te 0.5

    Equation 10 states the variables affecting velocity in a constant pressure condition, where

    there is only heating of the material.

    IdealRocketEquationTheIdealRocketEquationapplieswhenacraftcanapplyaccelerationtoitselfby

    ejectingsomeofitsmassatahighspeedintheoppositedirection,asgovernedbythe

    conservationofmomentum. Theequation,derivedbyTsiolkovsky,statesthatthechangein

    velocityofacraftisproportionaltothemassratio(initialmass,includingpropellant,dividedby

    thefinalmass).

    9 v veln mi/ mf

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    24/51

    16

    Thisequationisusefultoshowusthelimitationsofconventionalpropulsionsystems.

    Thebasisofthisequationisthatthecraftistheonlysourceofenergy. Therefore,thecraft

    needsalargeamountofpropellanttogeneratetheenergynecessarytoachieveacertainvalue

    ofv.Withalaserpoweredpropulsionsystem,theenergyisnotstoredonthecraft,and

    thereforesignificantlyreducestheinitialmassofthecraft.

    Ifthesamevcanbeachievedwithamuchsmallerinitialmass,thenthecraftcanbe

    sizeddowntoperformthemission. Anotheroptionistoincreasethepayloadofthemission,

    whichwouldrequireasimilaroverallsizeofthecraft,butahigherpercentageofthemass

    wouldbepayload.

    2.4 LAPSubsystemDesignThedesignofthespacecrafttakesonsomeuniquecharacteristicsduetotheadvancesin

    technologythatcomewithusingtheLAPsystem. Thefirstexampleisthesignificantreduction

    ofonboardpropellantstorage. Thelaserenergycapturewillrequirereceivingopticsmounted

    onthespacecraftfacingthedirectionofthelasersource. Alimitationtousinglaserenergy

    transmissionisthatdirectlineofsightisnecessary. Oncethelaserenergyiscaptured,focusing

    mirrorswillshinethelightontothepropellantsurface.

    Duetotheequalheatingwithinthelaserspotarea,theangleofincidencebetweenthe

    laserandthesurfaceofthepropellantisnotafactorinthedirectionofthrust. Theablationof

    propellantmaterialwillejectmaterialnormaltothesurfaceofthepropellant,inagaseous

    form. AstudyontheeffectsofdifferentconicalnozzlesontheperformanceofanLAPsystem

    [7]describestheperformanceimprovementsthatcanbeachievedbytheuseofanozzleonthe

    gasplume. However,theuseofanozzle,whichnozzleworksbest,andgasperformanceare

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    25/51

    17

    outsideofthescopeofthispaper. Intheconclusionsectionofreference7,itisstatedthatthe

    ablatedmassperareaappearedtoremainapproximatelyconstant. Thisisfurtherproofthata

    nozzleisnotnecessaryinanLAPsystem.

    Oneconcept[8]tookthenozzlelessapproachevenfurther. Amicrothrusterwas

    developedandtestedthatutilizesapropellanttapethatispassedoveranonboardlaserfor

    thrustgeneration.

    Figure7:LAPConceptSequenceofEvents

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    26/51

    18

    3 PROPELLANTEVALUATIONANDSELECTION3.1 PropellantsConsidered

    Severalexperiments[3,9,18,19]wereconductedusingAluminum(Al),Copper(Cu),

    Silver(Ag),and/orSilicon(Si)aspropellants. Theseexperimentsusedshort(femto tomilli

    second)laserpulsestodeliverenergytothematerials. Inadditiontothosepropellantsfoundin

    experiments,Uranium(U)wasaddedtounderstandthebehaviorofamuchheavierelement.

    Propellantdesign

    Nonozzleisusedinthedesign,sothecrosssectionalareaofthepropellantisequaland

    theareaoftheexitareequal. Theambientpressureisthevacuumofspace,whichhasan

    approximatevalueof0Pa Thepropellantforthiscraftisshapedsuchthattheareaheatedby

    thelaserenergyisexactlythespotareaofthelaser. Thiswillensureevenheating,a

    consistentlysizedheatingsurface,andacontinuousthrustlevel. Thelaserfocusing/pointing

    systemcanaccountforthedistancefromsourceandanglefromsourcetoalwaysfocusthe

    energyonthepropellantface.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    27/51

    19

    3.2 PropellantPropertiesTablesinthissectionoutlinerelevantmaterialpropertiesforeachpropellantselected.

    TableI:Aluminum(Al)Properties

    Property Value Units Source

    Molar Mass 0.02698 kg/mol [10]

    Specific Heat 900 J/kg-K [10]

    Density 2702 kg/m^3 [10]

    Enthalpy of Fusion 395478 J/kg [10]

    Enthalpy of Vaporization 10885841 J/kg [10]

    Melting Temperature 933.4 K [10]

    Boiling Temperature 2740 K [10]

    TableII:Copper(Cu)Properties

    Property Value Units Source

    Molar Mass 0.06355 kg/mol [11]

    Specific Heat 384.56 J/kg-K [11]

    Density 8960 kg/m^3 [11]

    Enthalpy of Fusion 204721 J/kg [11]

    Enthalpy of Vaporization 4793076 J/kg [11]

    Melting Temperature 1357.75 K [11]

    Boiling Temperature 2840 K [11]

    TableIII:Silver(Ag)Properties

    Property Value Units Source

    Molar Mass 0.10787 kg/mol [12]

    Specific Heat 235 J/kg-K [12]

    Density 10500 kg/m^3 [12]

    Enthalpy of Fusion 104756 J/kg [12]

    Enthalpy of Vaporization 2364884 J/kg [12]

    Melting Temperature 1234 K [12]

    Boiling Temperature 2436 K [12]

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    28/51

    20

    TableIV:Silicon(Si)Properties

    Property Value Units Source

    Molar Mass 0.02809 kg/mol [13]

    Specific Heat 710 J/kg-K [13]Density 2330 kg/m^3 [13]

    Enthalpy of Fusion 1653257 J/kg [13]

    Enthalpy of Vaporization 15628337 J/kg [13]

    Melting Temperature 1683 K [13]

    Boiling Temperature 2628 K [13]

    TableV:Uranium(U)Properties

    Property Value Units Source

    Molar Mass 0.23803 kg/mol [14]

    Specific Heat 120 J/kg-K [14]Density 18950 kg/m^3 [14]

    Enthalpy of Fusion 65034 J/kg [14]

    Enthalpy of Vaporization 2003949 J/kg [14]

    Melting Temperature 1405 K [14]

    Boiling Temperature 4407 K [14]

    TableVI:DelrinProperties

    Property Value Units Source

    Molar Mass - kg/mol -

    Specific Heat 1450 J/kg-K [2]Density 1410 kg/m^3 [2]

    Enthalpy of Fusion - J/kg -

    Enthalpy of Vaporization 172000 J/kg [2]

    Melting Temperature 448 K [2]

    Boiling Temperature - K -

    ThereisnotenoughinformationabouttheDelrinmaterialtoincludeitinthisstudy,butit

    islistedasadditionalinformationwhichmaybeusefulinafuturestudy.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    29/51

    21

    3.3 FuturePropellantConsiderationsOnlysolidmaterialswereconsideredatthistime,butliquidscouldalsobeutilizedina

    systemsuchasthis. Theliquidpropellantswouldhavetobeanalyzedtodetermineiftheir

    materialpropertiesweremoresuitabletothisapplication. Thedesignofthesystemwouldbe

    morecomplex,includingpressurizationtanks,spraynozzles,etc. Oneimmediatelyobvious

    advantageofusingliquidpropellantisthataconsistentsprayofpropellantcanbe

    accomplished. Also,theseliquidswouldrequirelessexternalenergytovaporizeintothe

    gaseousstate.

    Therearemorepossibilitiesforcreatingandtailoringmaterialstofittheneedsofthe

    mission. Ifahigherdensitymaterialisdesired,whilestillworkingwithliquids,thenhighdensity

    solidscanbedissolvedinacidtoyieldahighdensityliquid.

    Advancedsolidmaterialswithtailoredproperties

    Liquidswithhighdensity,molecularweight,etc.

    AdvancedmaterialsperNASAInSpacePropulsionSystemsRoadmap[15]

    Evensolidwater(H2O)wasdiscussedinafewstudies.Waterhasthehighestspecificheat

    ofANYknownmaterial. Asmentionedabove,itisunknownwhichpropertiesmaketheperfect

    propellant,butsolidwaterwouldbeagoodwaytoexaminespecificheatasaperformance

    contributor.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    30/51

    22

    4 BENCHMARKING4.1 CorrelationtoExperimentalResults

    Thetoolcannotbecheckedforcorrelationwithanyfullsizeexperimentorstudy,

    becausethisconcepthasnotbeentestedinspace. Thesmallscaleexperimentsavailablewillbe

    utilizedtodiscusstheunderstandingoftheprocess,despitetheresultsnotcorrelatingtothe

    conditionspresentinthistool. Sincethereisnodirectcorrelationforthisstudy,thisreportwill

    discussthedifferencesofthoseexperiments,aswellaswhattheyimplyaboutthefeasibilityof

    theconditionspresentedinthistool.

    Severalorganizationshaveconductedexperimentsusingsmallscalelaserpowerlevels

    ablatingtinyamountsofmaterialwithapulsedlaserapproach. Themostcommonpower

    sourcewasaCO2laser.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    31/51

    23

    Onestudy[2]examinedthepropulsivecharacteristicsofPolyoxymethylene(POM),a.k.a.Delrin

    astheyarerelatedtolaserirradiance. Thisstudyassessedveryrelevanttopicssuchas

    momentumcoupling,specificimpulse,efficiency,andablatedmasspershot,whichisseenin

    thefigurebelow:

    Figure8:Ablatedmasspershotvs.irradianceonPOM[2]

    ThevaluesinTableVIIbelowareagoodmeasureoftheactualpowerlossesdueto

    conversionoflaserenergyintoheating. Thisinformationwasntincorporatedintothetool,

    becausetheywereperformedwithinatmosphere,andothertestconditionsmayhavebeen

    presenttofurtheralterthesevalues. Futurestudiescanlookatreplicatingthesetestsina

    vacuumenvironmentattemperaturesthataremorerepresentativeofthespaceenvironment.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    32/51

    24

    TableVII: Percentageoflaserpowerforheatflow[9]

    Specimens

    Spotsize

    (mm)

    Averageincident

    laserpower(mW)

    Peakfluence

    (mJ/cm2)

    Percentageoflaser

    powerforheatflow(%)

    Steel 0.3 26 74 76.9

    50 141 74

    90 254 67.7

    150 424 70

    210 594 67.6

    Silicon(a) 0.3 26 74 69.2

    50 141 82

    66 186 87.8

    150 424 68210 594 66.7

    0.6 30 21 73.3

    75 53 73.3

    120 84 72.5

    170 120 70.6

    300 212 68.3

    Copper(b) 0.3 90 254 77.8

    150 424 86.7260 736 50

    300 849 50

    467 1321 50.3

    Fromtheabovetable,theexperimentalaveragepercentageofpowerforheatflowisasfollows:

    Steel(with0.3mmdiameterbeam)is71.24%

    Silicon(with0.3mmdiameterbeam)is74.74%

    Silicon(with0.6mmdiameterbeam)is71.60%

    Copper(with0.3mmdiameterbeam)is62.96%

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    33/51

    25

    AnexperimentoutlinedinReference[15]documentsaccelerationduetoalaser

    inducedshockimpulse. However,itwasdiscoveredthroughexperimentationthataprojectile

    constructedofpolyacetal(POM)withmassof1.36gwaspropelledatavelocityof32.2m/sin

    atmosphere. Thiswasaccomplishedbyablatingamassof10.7mgofmaterialperpulse.

    Withoutthespecificmassoftheprojectileandmassablatedateachpointintime,the

    momentumoftheablatedmaterialcannotbedetermined.

    Figure9:Momentumofprojectilevs.massreductionbyablation[15]

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    34/51

    26

    Figure10:ElectronandLatticetemperatureforCoppertarget[16]

    Figure10showsthetimedependenceofelectronandlatticetemperatureofsurfacefor

    coppertargetirradiatedby60fs,800nmpulseatdifferentlaserenergyirradiancelevels.

    Higherirradiancesleadtohigherequilibriumtemperaturesduetohigherenergylevelsbeing

    addedtothesystem.

    Thisshowsthatitispossibletoaddalargeamountofenergyandraisethetemperature

    ofanobjectveryquickly. Forexample,witha200nanosecondpulse(200,000picoseconds),the

    temperatureofthematerialwillcertainlyequalizeatahighenoughvaluetovaporizethe

    propellantmaterial.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    35/51

    27

    Figure11:Surfacestructuralfeaturesinducedbytrainsoflaserpulses[17]

    Theabovefigureshowsthesurfacestructuralfeaturesinducedbydifferenttrainof

    pulsesat0.8mJpulseforCopper. Thenumberofpulsesusedforeachpictureare(Nisnumber

    ofpulses):(a),(a)N=4;(b),(b)N=17. Thebelowfigureshowsthesameforalargernumberof

    pulses:(c),(c)N=67;(d),(d)N=500.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    36/51

    28

    Figure12:Surfacestructuralfeaturesinducedbytrainsoflaserpulses[17]

    Figure13:Surfaceripplesinducedbytrainof17laserpulsesforAg(a)andCu(b)[17]

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    37/51

    29

    Figure13showsthesurfaceripplesinducedbytrainof17femtosecondlaserpulsesat0.8

    mJpulseforSilver(a)andCopper(b). Thisstudywasexaminingthesurfaceripplesthat

    occurredonthemetalsurfaces,butillustratesthebehaviorofLAPsurfaceinteractionsona

    smalltimescale.

    4.2 DiscussionofDifferencesTheexperimentsconductedbytheseorganizationswerewitnessingtherealworld

    powertransmissionlossesthatwerediscussedinsection1.3,aswellasatmosphericconditions

    whicharenotpresentinthespaceenvironmentforwhichthistoolisbeingdesigned.

    Forthisstudyinreference[2],amaximumof20Jperpulsewasdelivered,which

    resultedfromamaximumirradianceof500W/cm2. Itisdifficulttocorrelatetothisdata,

    becausethecorrelationbetweenIrradianceandenergydeliveredisdependentonthebeam

    size,andareabeingirradiated. FromFigure10,itappearsthattheirradiatedareawasa150mm

    x150mmsquare,whichwouldbe15cmx15cmsquare,oranareaof225cm2.Withthis

    information,since1W=1J/s,itcanbeestimatedthatthetimeofthepulsewasequalto500*

    225/20=5625s1,soeachpulsewas0.00018s,or180s. Thisseemslikealongerpulsethan

    mostotherstudies,sothemissinginformationaboutthebeamprofileisnecessarybeforeitcan

    bedeterminedwhetherthisdatacorrelatesornot.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    38/51

    30

    ThelaserinducedshockimpulseexperimentoutlinedinReference[15]isnot

    representativeofLAP,sinceitreliesonashockwavepropagatingthroughatmosphereto

    providethrust. Thisexperimentlookedverypromisingwiththelevelofdetailthatwasprovided

    documentingtheexperiment. However,withoutthespecificmassoftheprojectileandmass

    ablatedateachpointintime,themomentumoftheablatedmaterialcannotbedetermined.

    Figure10[16]showstheelectrontemperaturesunderdifferentlaserirradiancelevels,

    whicharenearthelevelsutilizedinthisreport. However,temperatureconditionsthishighwill

    produceplasmasthatareoutofthescopeofthisreport. NASAsonlineThermoBuildtool[18]

    isusefulinexaminingthebehaviorofelementalmaterialsatthetemperaturesseenhere.

    However,agreaterunderstandingofthenomenclatureusedinNASAsprogramisneeded.

    Thereisalotofroominthisareaforfuturestudies,andespeciallyexperimentstogaina

    betterunderstandingofthisprocess,andthegoverningphysics.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    39/51

    31

    5 PARAMETRICAPPROACH5.1 ToolParameters

    Thetooldevelopedforthisprojectfocusedonseveralkeyvariablesbasedonthedesired

    outputs. Theoutputscouldbeusedasinputsiftheproperinformationisnotavailable.

    UsingtheConservationofEnergyequationsabove,andtheMaterialPropertiesofSection

    3.2,theamountofenergycominginfromthelaserisusedtovaporizethesolidpropellant

    material. Thismaterialthenexitsthespacecraftwithvelocity(ve),whichprovidesthethrustfor

    thecraft.

    ThetoolwasdevelopedusingMicrosoftExcel,andcanbeappliedforanymaterialfor

    whichthecharacteristicsinsection3.2areknown. Screenshotsofthecode,alongwiththe

    equationsusedinthecode,willbeprovidedinthissection.

    BeamPropertiesThelaserenergydeliveredtothepropellantisassumedtobetheamountofenergythat

    istransmittedtothepropellant. Thisenergyisalsoassumedtobe100%usedforheating. The

    valuesshownareforonelaserpulse,sothattheresultscanbescaledupforlargersystems,or

    correlatedtofutureexperimentsthatwillproveordisprovethisanalysis.

    Inthisstudy,abeamsizeof0.3mmwasused. This0.3mmrepresentsthediameterofa

    beamsize,inacircularbeamshape. Thebeamspotsizeistheareaofthecircle,or7.069x108

    m2. Laserirradianceisassumedtobe1x109W/cm

    2,withapulsewidthof200nanoseconds.

    Thisyieldsavalueof14.138Jperpulse.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    40/51

    32

    Forreference,asamplediagramofbeamareafromanotherstudy[2]wasincluded.

    Figure14: Beamprofilerecordedontothermalpaper. (a)Beampatternofcrosssection

    (150mmx150mmsquare),(b)Focusedbreampatternonablator(30mmx30mmsquare)[18]

    5.2 DeterminingpropulsivecharacteristicsTheoutputsofthetoolinthisconfigurationarethekeypropulsivecharacteristics,including:

    MassAblatedperpulse

    ExitVelocity(ve)ofablatedmaterial

    Force

    SpecificImpulse(Isp)

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    41/51

    33

    Thiscanbeusefulifthereareseveraltradestobemadeeitherinthepropellant

    materialorthelaserbeingutilizedforthemission.

    BasisofEquations

    Oncethe14.138Jofenergyisreceived,thisenergyheatsthesurfaceaccordingtothe

    specificheatofthematerial,passesthroughenthalpyoffusiontoliquidform,heatsagain

    accordingtospecificheat,andpassesthroughenthalpyofvaporizationbeforeablatingto

    providethrust.

    Fromthemassablatedvalue,densitycanbeusedtocalculatethedepthofvaporization

    inconjunctionwiththespotarea.

    ExitvelocityisdeterminedusingtheZerothLawofThermodynamicsattheboiling

    temperatureofthematerial.

    Ispisdeterminedbydividingtheexitvelocitybythegravitationalforce.(Assumedtobe

    9.8m/s2fornearearthoperations)

    Forceisdeterminedbytheexitvelocitytimestheproductofnumberofpulsesper

    secondandthemassablatedineachpulse(massflowrate).

    5.3 ToolLayoutandCalculationsThistoolcanbeutilizedinmultipleways. Thissectionshowsanexampleofthetoolused

    forthepurposesstatedinsection5.2above. ItisshownforthecaseofanAluminum

    Propellant.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    42/51

    34

    Figure15: ToolscreenshotwithLaserParameterInputsandPropulsiveCharacteristicOutputs

    forAluminumpropellant.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    43/51

    35

    Figure16: ScreenshotofGeneratedDatawithequationsofeachcelllistedforAluminum

    propellant.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    44/51

    36

    5.4 FutureAnalysesThistoolcanbeutilizedinmultipleways. Ifthedesiredoutputsareknown,acceptable

    inputscanbedeterminedfromthoseanswers. Theequationsgoverningthisconditioncanbe

    rearrangedtosolvearelateddesignproblem.

    Determininglaserinputrequirements

    Theoutputsofthetoolinthisconfigurationwouldbealistofkeylaserproperties

    requiredtoprovidesufficientpowerforthemission. Thekeylaserpropertiesinclude:

    LaserPower

    LaserPulseWidth

    PulseFrequency

    Density

    Thiscanbeusefulifthereareseveralmaterialsbeingconsideredduetovolumetricor

    weightconstraintsofthemission. Itcanalsoservetoalleviatepossibleinteractionsbetween

    materialsofthespacecraftandthepropellantsbeingablated.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    45/51

    37

    Determiningpropellantmaterialproperties

    Thisconditionwasnotstudiedinthisproject,butcouldeasilybeconstructed.

    Theoutputsofthetoolinthisconfigurationwouldbealistofkeymaterialproperties

    thatwouldfitthemissionconstraints. Thekeymaterialpropertiesdeterminedinthismission

    designsituationinclude:

    Molarmass

    HeatofVaporization

    SpecificHeat

    Density

    Thiscanbeusefulifthereareseveralmaterialsbeingconsideredduetovolumetricor

    weightconstraintsofthemission. Itcanalsoservetoalleviatepossibleinteractionsbetween

    materialsofthespacecraftandthepropellantsbeingablated.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    46/51

    38

    6 DISCUSSIONANDRESULTS6.1 DiscussionofContinuousWavevs.PulsedLaserPower

    Intheliteraturesearchtherewereseveralexperimentsusingsmallscalelaserpower

    levelsablatingtinyamountsofmaterialwithapulsedlaserpowersource.

    TheresultsoftheseexperimentswouldworkdifferentlyifaContinuousWavelaser

    wereusedasthepowersource. TheContinuousWavelaserwoulddelivermorepower,but

    systemgeneratingthepowerwouldneedtobemuchlargertodeliverthesamelevelofenergy

    tothepropellant. TheremaybeanissuewiththeCWlaserprovidingenergycontinually,where

    theremaybeexcessenergyputintothematerialthatisntusedtogeneratepropulsion.

    Withoutthetimeinbetweenpulses,thephysicswouldbeentirelydifferent. Therewould

    almostimmediatelybegenerationofplasma,whichwasavoidedinthisreportbykeepingthe

    pulsesfarenoughaparttoensureonereactionwascompletedbeforethenextbegan.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    47/51

    39

    6.2 ToolAnalysisResultsTheresultsofthetoolprovidedthekeypropulsiveparametersdeliveredforonelaser

    pulseofenergy. Asexplainedearlier,thepulsedlaserapproachallowstimeforthereactionto

    completebeforeantherreactionisstarted. Thiswillalsomaketheresultseasiertocorrelateto

    futurestudiessincetherehavenotbeenanystudiesofthistypetodate.

    TableVIII:MaterialAnalysisResultsforOne200ns,1x109W/cm2Pulse

    MaterialMass Ablated

    (grams)Exit Velocity

    (m/s)Force

    (N)Isp

    (Seconds)

    Aluminum 0.00001029 2219.5 0.000023 226.5

    Copper 0.15329947 1477.1 0.2264 150.7Silver 0.4462870 1069.3 0.4774 109.1

    Silicon 0.06445467 1930.6 0.1244 197.0

    Uranium 0.64794445 1028.1 0.6661 104.9

    Basedontheseparametersalone,thereislittlethatcanbeknownaboutthe

    applicabilityofeachmaterialtoaspecificmission. AluminumandSiliconseemtoablatethe

    leastamountofmaterialperpulse,whichmeanstheycanbeusedforlongerdurationmissions,

    wherehigherIspismoreimportantthanalargeamountofthrust. SilverandUraniumseemto

    ablatesignificantlylargeramountsofmaterial,whichresultsinalargerforceperpulse. Copper

    seemstobeawellbalancedmaterialamongstthefive. Itprovidesamoderateamountofboth

    ThrustandIsp. Therearemanymorematerialstoselectfrom,sincealmostanymaterialcanbe

    thepropellantforLaserAblativePropulsion.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    48/51

    40

    6.3 FutureStudyVaryingthetimescalewillyielddifferentresultsinthephysicsoftheproblem. Inthis

    report,thelengthsofpulsesdiscussedareconsideredlongintermsofpulsedlaserpower. If

    muchshorterpulsesaredelivered,thesolidwouldnotfullytransitiontogaseousstatewithin

    thetimeframeofonepulse. Inthisscenario,heatingwouldoccuroveranumberofpulses,and

    oncetheenergyinputwassufficienttoablatethematerial,thereactionwouldbecompleted

    andthrustgenerated. Reference[19]coverstheseinteractionsinmoredetail.

    FutureMissionDesign: Theinstallationofvariouslaserpowerstationonorbitoronthe

    surfaceofothercelestialbodieswillenabletravelthroughspacewithoutrequiringlarge

    amountsofpropellant.

    Thereisalotofroominthisareaforfuturestudies,andespeciallyexperimentstogaina

    betterunderstandingofthisprocessandthegoverningphysics.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    49/51

    41

    7 CONCLUSIONANDRECOMMENDATIONSAttheonsetofthisresearch,itwasexpectedthatathoroughunderstandingofthekey

    propertiesofmaterialswouldbeobtainedandanalyzed. Basedontheresultsofthisstudy,

    thereismuchmoretolearnaboutthesematerialsandtheirinteractionswithlaserexcitation.

    Thelistofacceptablematerialsforthistechnologyissovastthatitwouldtakeaverylongtime

    tofindtheperfectpropellant.

    Significantresearchinthehardwareaspectofthistechnologyisreallyneededtoenable

    widespreadacceptanceanduseofthistechnology. Thedifficultyofpointingand

    collecting/focusingthelaserenergywillprovetobeverydifficult.

    Thecalculationsperformedinthisreportwereverydifficultwithoutexperimental

    resultstocorrelatewith. Experimentationundertheconditionsofthespaceenvironmentis

    difficult,butthetechnologywillbestoperatewherethereareasfewenergylossesaspossible

    duringtheenergytransmission.

    Thisreportrepresentsamajorleapfromthedataandstudiesthathavepreviouslybeen

    conducted. Itrepresentsmoreofatheoreticalapproachtothetechnology,sincethereisno

    datatoprovethattheconceptworksaspresentedhere.

    Onceconcretedatacanbeobtainedfromexperiments,thematerialpropertiesthat

    contributemosttothrustefficiencycanbeidentified,andthesearchfortheperfect

    propellantcanbegin.

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    50/51

    42

    REFERENCES[1] CHARLESC.PlasmasforspacecraftpropulsionJournalofPhysicsD:AppliedPhysics

    163001.

    [2] SINKOJ,PAKHOMOVA.DelrinforPropulsionwithCO2Laser:CarbonDopingEffects

    AmericanInstituteofPhysics9780735405165/08.

    [3] PAKHOMOVA,THOMPSONMS,GREGORYD.AblativeLaserPropulsion: AStudyof

    SpecificImpulse,ThrustandEfficiencyAmericanInstituteofPhysics0735401268/03.

    [4] COHERENTIncorporated.UnderstandingLaserBeamParametersLeadstoBetter

    SystemPerformanceandCanSaveMoneyAccessedonOctober25,2011from

    http://www.coherent.com/download/6807&cmpid=EMC450

    [5] NEWPORTCorporation.AverageandPeakPowerATutorialAccessedonOctober23,

    2011fromhttp://www.newport.com/images/webdocumentsen/images/20063.pdf

    [6] PHIPPSCR,etal.ImpulsecouplingtotargetsinvacuumbyKrF,HF,andCO2single

    pulselasersJournalofAppliedPhysicsvolume64(3),1August1988

    [7] SINKOJE,etal.ConicalnozzlesforpulsedlaserpropulsionSocietyofPhotoOptical

    InstrumentationEngineersSPIE0277786X/08

    [8] PHIPPSCR,etal.LaserAblationPoweredMiniThrusterSocietyofPhotoOptical

    InstrumentationEngineersSPIE0277786X/02

    [9] TRANDV,LAMYC,ZHENGHY,WONGBS,HARDTDE.Directobservationofthe

    temperaturefieldduringablationofmaterialsbymultiplefemtosecondlaserpulses

    AppliedSurfaceScienceVolume253(2007)p72907294

    [10]PeriodicTableofElements:AluminumAlAccessedonDecember8,2011from

    http://environmentalchemistry.com/yogi/periodic/Al.html

    [11]PeriodicTableofElements:CopperCuAccessedonDecember8,2011from

    http://environmentalchemistry.com/yogi/periodic/Cu.html

  • 7/22/2019 LASER ABLATIVE PROPULSION.pdf

    51/51

    [12]PeriodicTableofElements:SilverAgAccessedonDecember8,2011from

    http://environmentalchemistry.com/yogi/periodic/Ag.html

    [13]PeriodicTableofElements:SiliconSiAccessedonDecember8,2011from

    http://environmentalchemistry.com/yogi/periodic/Si.html

    [14]PeriodicTableofElements:UraniumUAccessedonDecember8,2011from

    http://environmentalchemistry.com/yogi/periodic/U.html

    [15]MEYERM,JOHNSONL,PALASZEWSKIB,GOEBELD,WHITEH,COOTED.NASADRAFT

    InSpacePropulsionSystemsRoadmapTechnologyArea02November2010

    [16]WATANABEK,TAKAHASHIT,SASOHA.UsefulInspaceImpulseGenerationPoweredby

    LaserEnergyAmericanInstituteofPhysics0735401756/04.

    [17]TANX,ZHANGD,MAOF,LIZ,YIDI,ZHANGX.Theoreticalandexperimentalstudyof

    energytransportationandaccumulationsinfemtosecondlaserablationonmetals

    TransactionsofNonferrousMetalsSocietyofChinaVolume19(2009)p16451650

    [18]NASACEAThermoBuildOnlineToollocatedat:

    http://www.grc.nasa.gov/WWW/CEAWeb/ceaThermoBuild.htm

    [19]RETHFELDB,TEMNOVVV,SOKOLOWSKITINTENK,ANISIMOVSI,VONDERLINDE,D.

    Dynamicsofultrashortpulselaserablation:equationofstateconsiderationsSociety

    ofPhotoOpticalInstrumentationEngineersSPIE0277786X/02

    [20]MicrosoftExcelToolforPropulsionSubsystemSizing