39
Lattice QCD and the search for new physics from the perspective of the Budapest-Marseille-Wuppertal collaboration (BMWc) Laurent Lellouch CPT Marseille Excuses to ALPHA, CLS, ETMC, JLQCD, MILC, PACS-CS, QCDSF, RBC/UKQCD, . . . , for not having the time to cover some of their very nice work Labex OCEVU lavi net Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Lattice QCD and the search for new physics

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lattice QCD and the search for new physics

Lattice QCD and the search for new physicsfrom the perspective of the Budapest-Marseille-Wuppertal

collaboration (BMWc)

Laurent Lellouch

CPT Marseille

Excuses to ALPHA, CLS, ETMC, JLQCD, MILC, PACS-CS, QCDSF,RBC/UKQCD, . . . , for not having the time to cover some of their very nice

work

Labex OCEVU

lavinet

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 2: Lattice QCD and the search for new physics

The place of low-energy searches for New Physics

Standard model: SU(3)c × SU(2)L × U(1)Y is an effective theory

LSM = LG&M(Aµ, ψ, φ) + LH&Y(φ, ψ, v) +1MO(5)

Maj +∑d≥6

∑i

Cd,i

Λd−4i

O(d)i

LG&M: 3 couplings; well tested

LH&Y: ≥ 15 couplings ; less well tested ⊃ 10 quark Yukawas→ flavor physics

Naturalness: δm2H ∼

3GF√2π2 m2

t Λ2 ' (0.3Λ)2

−→ Λ <∼ few TeV

Constraints on flavor conserving ops from precision EW data−→ Λ >∼ 5 TeV

FCNC: e.g. K 0−K 0 mixing−→ Λ ∼ 103 TeV

If there are no RH ν’s−→ M ∼ 1015 GeV

⇒ low-energy processes can be sensitive to very high-energy scales⇒ if quarks are involved, have to deal w/ confinement

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 3: Lattice QCD and the search for new physics

Motivation for lattice QCD

Verify that QCD is theory of strong interaction at low energies↔ verify the validity of the computational framework

→ light hadron masses→ hadron widths→ look for exotics→ . . .

Fix fundamental parameters and help search for new physics

→ mu, md , ms, . . .→ 〈N|mq qq|N〉, q = u,d , s for dark matter→ FK/Fπ ↔ Gq

[|Vud |2 + |Vus|2 + |Vub|2

]= 1 ?

→ BK ↔ consistency of CPV in K and B decays ?→ . . .

Make predictions in nuclear physics?Full description of low energy particle physics→ include QED

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 4: Lattice QCD and the search for new physics

Why do we need lattice QCD?

QCD fundamental d.o.f.: q and gQCD observed d.o.f.: p, n, π, K , . . .

q and g are permanently confined w/in hadronshadrons hugely different from d.o.f. present in the Lagrangian

⇒ perturbation in αs has no chance⇒ Need a tool to solve low energy QCD to address important

questions above→ numerical lattice QCD

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 5: Lattice QCD and the search for new physics

What is lattice QCD?

Lattice gauge theory −→ mathematically sound definition of NP QCD:

UV (and IR) cutoffs and a well defined pathintegral in Euclidean spacetime:

〈O〉 =

∫DUDψDψ e−SG−

∫ψD[M]ψ O[U, ψ, ψ]

=

∫DU e−SG det(D[M]) O[U]Wick

DUe−SG det(D[M]) ≥ 0 and finite # of dof’s→ evaluate numerically using stochasticmethods

rrrrrrrrrr

rrrrrrrrrr

rrrrrrrrrr

rrrrrrrrrr

rrrrrrrrrr

rrrrrrrrrr

rrrrrrrrrr

rrrrrrrrrr

-6�?

6

?

T

-�L

?6a

Uµ(x) = eiagAµ(x) ψ(x)

NOT A MODEL: LQCD is QCD when a→ 0, V →∞ and stats→∞

In practice, limitations . . .

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 6: Lattice QCD and the search for new physics

Ingredients of my dream calculation

Nf = 2 + 1 simulations to include u, d and s sea quark effectsSimulations all the way down to Mπ <∼ 135 MeV to allow smallinterpolation to physical mass pointLarge L >∼ 5 fm to have sub-percent finite V errorsAt least three a <∼ 0.1 fm for controlled continuum limitReliable determination of the scale w/ a well measured physicalobservableUnitary, local gauge and fermion actionsFull nonperturbative renormalization and nonperturbativecontinuum running if necessaryComplete analysis of systematic uncertainties

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 7: Lattice QCD and the search for new physics

Huge challenge

# of d.o.f. ∼ O(109) and large overhead for computing det(D[M]) (∼ 109 × 109 matrix)

+ Capri 1989: LQCD will require “both a 108 increase in computing power AND spectacularalgorithmic advances before a useful interaction with experiments starts taking place”⇒ 1−10 Exaflop/s = 106−107 Tflop/s→ nevertheless quenched LQCD provided useful interaction

+ Berlin wall ca. 2001: beginning of unquenched calculations

cost ∼ Nconf(L3 × T )cL m−cmud a−ca

with cm ∼ 2.5−3, ca ∼ 7, cL ∼ 5/4 and large prefactor (Gottlieb ’02, Ukawa ’02)

⇒ Mπ <∼ 300 MeV and a <∼ 0.1 fm completely out of reach

+ >∼ 2004:

algorithmic breakthroughs: DD-HMC (Lüscher ’03-’04), multiple time scale integrationand mass preconditioning (Sexton et al ’92, Hasenbusch ’01, Urbach et al ’06, BMWc ’07), . . .more effective unitary discretizations of QCD which allow mud ↘ mph

ud (BMWc ’07 using

Morningstar et al ’04 & Hasenfratz et al ’01)

⇒ cm ↘ 1−2, ca ↘ 4−6, cL ↘ 1−5/4 and much reduced prefactor (e.g. Jansen ’08)

+ >∼ 2008: supercomputers capable of 102−103 Tflop/s

⇒ calculations w/ full control over errors are becoming possible

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 8: Lattice QCD and the search for new physics

Not far from dream in 2008

Dürr et al (BMWc) Science 322 ’08, PRD79 ’09

20 large scale Nf = 2 + 1 Wilson fermion simulations

Mπ >∼ 190 MeV a ≈ 0.065,0.085,0.125 fm L→ 4 fm

00 2002

3002

4002

5002

6002

2 [MeV

2]

0

0.0502

0.1002

0.1502

a2 [

fm2]

BMWc ’08

1002

2002

3002

4002

5002

6002

2 [MeV

2]

2

3

4

5

6

7

L[f

m]

0.1%

BMWc ’08

0.3%

1%

Good enough for ab initio calculation of light hadron masses, . . .

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 9: Lattice QCD and the search for new physics

Postdiction of the light hadron masses

0

500

1000

1500

2000M

[MeV

]

p

K

rK* N

LSXD

S*X*O

experiment

width

input

Budapest-Marseille-Wuppertal collaboration

QCD

(Partial calculations by MILC ’04-’09, RBC-UKQCD ’07, Del Debbio et al ’07, JLQCD ’07, QCDSF ’07-’09, Walker-Loud et al ’08,

PACS-CS ’08-’10, ETM ’09, Gattringer et al ’09, . . .)

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 10: Lattice QCD and the search for new physics

Dream comes true in 2010

Dürr et al (BMWc) PLB 701 (2011); JHEP 1108 (2011)

47 large scale Nf = 2 + 1 Wilson fermion simulations

Mπ >∼ 120 MeV 5a’s ≈ 0.054÷ 0.116 fm L→ 6 fm

00 2002

3002

4002

5002

6002

2 [MeV

2]

0

0.0502

0.1002

0.1502

a2 [

fm2]

BMWc ’08BMWc ’10

1002

2002

3002

4002

5002

6002

2 [MeV

2]

2

3

4

5

6

7

L[f

m]

0.1%

BMWc ’08BMWc ’10

0.3%

1%

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 11: Lattice QCD and the search for new physics

State of the art in 2011

Comparison of parameters reached by different LQCD collaborations

00 2002

3002

4002

2 [MeV

2]

0

0.0502

0.1002

0.1502

a2 [

fm2]

MILC ’10JLQCD/TW. ’09

QCDSF/UK. ’10

PACS-CS ’09RBC/UK. ’10HSC ’08ETMC ’10BMWc ’08BMWc ’10

1002

2002

3002

4002

2 [MeV

2]

2

3

4

5

6

7

L[f

m]

0.1%

MILC ’10JLQCD/TW. ’09

QCDSF/UK. ’10

PACS-CS ’09RBC/UK. ’10HSC ’08ETMC ’10BMWc ’08BMWc ’10

0.3%

1%

(only Nf ≥ 2 + 1 simulations are shown)

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 12: Lattice QCD and the search for new physics

Direct WIMP dark matter detectionχ χ

N N

H

Lqχ =∑

q

λq qqχχ −→ LNχ = λNNNχχ

→: requires nonperturbative tool

Spin-independent WIMP-N cross section (Ellis et al ’08)

σSI =4M2

r

π[Zfp + (A− Z )fn]2 Mr = MχMN/(Mχ + MN)

where

fNMN

=∑

q=[ud ],s

fqNλq

mq+

227

fGN

∑q=c,b,t

λq

mqfGN = 1−

∑q=[ud ],s

fqN

and, in terms of sigma terms,

fudNMN = σπN = mud〈N|uu + dd |N〉 fsNMN = σssN/2 = ms〈N|ss|N〉

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 13: Lattice QCD and the search for new physics

Sigma terms from phenomenology

σπN = mud〈N|uu + dd |N〉 σssN = 2ms〈N|ss|N〉yN = 2〈N|ss|N〉/〈N|uu + dd |N〉

Besides DM, important for: hadron spectrum, ms/mud , πN and KN scattering,counting rates in Higgs search . . .

Not measured directly in experiment⇒ history of phenomenological determinations from relation to Born-subtracted,

I = 0, πN amplitude at Cheng-Dashen point, Σ (Brown et al ’71)

Using Gasser et al ’91 and Bernard et al ’96 to get σπN , then Borasoy et al ’97 for yN

and ms/mud = 24.4(1.5) (Leutwyler ’96) for fsN , find

Canonical result

Σ = 59(2) MeV [3%](Gasser et al ’88)

→ σπN = 44(3) MeV [6%]→ fudN = 0.047(3) [7%]→ yN = 0.18(17) [95%]→ fsN = 0.10(10) [100%]

← differ by > 3σ →

← differ by ×1.5→

← differ by ×4→

More recent

Σ = 81(6) MeV [7%](Hite et al ’05)

→ σπN = 66(6) MeV [10%]→ fudN = 0.070(7) [10%]→ yN = 0.45(12) [26%]→ fsN = 0.39(11) [29%]

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 14: Lattice QCD and the search for new physics

Sigma terms from the latticeσπN = mud〈N|uu + dd |N〉 σssN = 2ms〈N|ss|N〉

Matrix element (ME) method

straightforward challenging

Spectrum method: Feynman-Hellmann (FH) theorem, X = N, Λ, Σ, Ξ

σπX = mud∂MX

∂mud−→ M2

π∂MX

∂M2π

σssX = 2ms∂MX

∂ms−→ 2M2

ss∂MX

∂M2ss

Pros: - Can use hadron spectrum result (e.g. from BMWc ’08)

- Can use whole octet and symmetry constraints

Con: - Model dependence when no lattice results at Mphπ or symmetry

constraints not checked w/ LQCD

−→ fix w/ e.g. BMWc ’10 simulations at Mphπ

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 15: Lattice QCD and the search for new physics

Combined analysis of baryon octet

Dürr et al PRD85 ’12 w/ BMWc ’08 simulations

σπX ' M2π∂MX

∂M2π

σssX ' 2M2ss∂MX

∂M2ss

Example CBχPT fits

MX = M0 − 4cπX M2π − 4cssX M2

ss +∑

α=π,K ,η

gαX

F2α

M30 h

(MαM0

)+ 4dπM4

π + 4dssM4ss

h(x) = −x3

4π2

1−( x

2

)2arccos

x

2+

x

2log x

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

MX [G

eV

]

2 [GeV

2]

Σ

Ξ

Fit 0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0.45 0.5 0.55 0.6 0.65 0.7

MX [G

eV

]

2MK2 - M

π

2 [GeV

2]

Σ

Ξ

Fit

Mπ < 410 MeV, χ2/dof = 39/34

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 16: Lattice QCD and the search for new physics

Error analysis and results864 distinct analyses of octet spectrum corresponding to different choices for:a↘ 0, Mπ ↘ 135 MeV, . . .

Weigh each one by fit quality→ systematic error distribution

repeat for 2000 bootstrap samples

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-10 0 10 20 30 40 50 60 70 80 90σ

πN

χPTTaylorPade

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

-20 0 20 40 60 80 100 120σ

πN

M < 410.0 MeV

M < 550.0 MeV

σπX [MeV] σssX [MeV] yX fudX fsXN 39(4)(+18

−7 ) 67(27)(+55−47) 0.20(7)(+13

−17) 0.042(5)(+21−4 ) 0.036(14)(+30

−25)

Λ 29(3)(+11−5 ) 180(26)(+48

−77) 0.51(15)(+48−27) 0.027(3)(+5

−10) 0.083(12)(+23−31)

Σ 23(3)(+19−3 ) 245(29)(+50

−72) 0.82(21)(+87−39) 0.019(3)(+17

−3 ) 0.104(12)(+23−31)

Ξ 16(2)(+8−3) 312(32)(+72

−77) 1.7(5)(+1.9−0.7) 0.0116(18)(+59

−22) 0.120(13)(+30−30)

Significant improvements are possible w/ BMWc ’10 simulations at Mphπ

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 17: Lattice QCD and the search for new physics

Comparison and impact

0.02

0.02

0.04

0.04

0.06

0.06

0.08

0.08

fudN

GLS 88

HKJ 05

JLQCD 08, FH

YT 09, XPT+LQCD

BMWc 11, FH

QCDSF 11, FH

Bali et al 11, FH

Pheno.N

f=2

Nf=2+1

0

0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

fsN

MILC 10, FH

GLS 88

HKJ 05

JLQCD 10, ME

YT 09, XPT+LQCD

BMWc 11, FH

QCDSF 11, FH

ETM 12, ME (Nf=2+1+1)

Bali et al 11, ME

Pheno.N

f=2

Nf=2+1

[caveat: most calculations have incomplete systematic error analysis]

2 4 6 8 10 12 14 16 18 20

10 (GeV)

1e−43

1e−42

1e−41

1e−40

1e−39

σS

I

P(c

m2) XENON−100

CDMS−II

XENON−10

DAMA

DAMA (with channeling)

CoGeNT

CDMS−09 fit

NMSSM upper limit

Impact of lattice results on DM search

fudN fsN

dashed-red: 0.078 0.63red: 0.059 0.29BMWc ’11: 0.042(5)(+21

−4 ) 0.036(14)(+30−25)

⇒ σSI(lattice) < σSI(red)

e.g. Das et al ’10

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 18: Lattice QCD and the search for new physics

Light quark masses: motivation

Determine mu, md , ms ab initio

Fundamental parameters of the standard modelPrecise values→ stability of matter, N-N scattering lengths,presence or absence of strong CP violation, etc.Information about BSM: theory of fermion masses must reproducethese valuesNonperturbative (NP) computation is requiredWould be needle in a haystack problem if not for χSB

⇒ interesting first “measurement” w/ physical point LQCD

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 19: Lattice QCD and the search for new physics

Light quark masses circa Aug. 2010FLAG→ analysis of unquenched lattice determinations of light quark masses(arXiv:1011.4408v1)

2

2

3

3

4

4

5

5

6

6

MeV

CP-PACS 01-03JLQCD 02

SPQcdR 05QCDSF/UKQCD 04

QCDSF/UKQCD 06ETM 07RBC 07

HPQCD/MILC/UKQCD 04HPQCD 05MILC 07CP-PACS 07RBC/UKQCD 08PACS-CS 08

FLAG 10v1 Nf = 2

Dominguez 09

mud

Nf=

2+

1N

f=2

Narison 06Maltman 01

PDG 09

MILC 09MILC 09AHPQCD 09PACS-CS 09Blum 10

JLQCD/TWQCD 08A

FLAG 10v1 Nf = 2+1

mMSud (2 GeV) =

{3.4(4) MeV [12%] FLAG3.0÷ 4.8 MeV [25%] PDG

60

60

80

80

100

100

120

120

140

140

MeV

CP-PACS 01-03JLQCD 02

ALPHA 05SPQcdR 05

QCDSF/UKQCD 04

QCDSF/UKQCD 06ETM 07RBC 07

HPQCD/MILC/UKQCD 04HPQCD 05MILC 07CP-PACS 07RBC/UKQCD 08PACS-CS 08

FLAG 10v1 Nf = 2

PDG 09

ms

Nf=

2+

1N

f=2

Dominguez 09Chetyrkin 06Jamin 06Narison 06Vainshtein 78

MILC 09MILC 09AHPQCD 09PACS-CS 09Blum 10

FLAG 10v1 Nf = 2+1

mMSs (2 GeV) =

{95.(10) MeV [11%] FLAG80÷ 130 MeV [25%] PDG

Even extensive study by MILC still has:

MRMSπ ≥ 260 MeV ⇒ mMILC,eff

ud ≥ 3.7×mphysud

perturbative renormalization (albeit 2 loops)

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 20: Lattice QCD and the search for new physics

Light quark masses: overall strategy

Dürr et al (BMWc) PLB 701 (2011); JHEP 1108 (2011)

BMWc ’10 set: 47 large scale Nf = 2 + 1 simulations w/ Mπ >∼ 120 MeV,5a’s ≈ 0.054÷ 0.116 fm and L→ 6 fm

improved definition of quark masses

full nonperturbative renormalization in RI/MOM scheme w/ improvements⇒ 21 additional Nf = 3 simulations at same 5a’s

full nonperturbative running up to high µ and four-loop conversion to RGI⇒ masses in other schemes w/ only errors proper to that scheme

renormalized mud (µ) and ms(µ) fitted as fn of (M2π, 2M2

K −M2π, a, L)

→ fully controlled V →∞ extrapolation→ fully controlled interpolation to mph

ud and mphs

→ fully controlled a→ 0 extrapolation

use phenomenology to determine individual mu and md

extensive systematic and statistical error analysis: 288 full analyses on 2000bootstrap samples

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 21: Lattice QCD and the search for new physics

Combined mass interp. and continuum extrap. (1)

Project onto mud axis: chiral interpolation to Mphπ

Illustration of chiral behavior (4/47 simulations)• Fixed a'0.09 fm and Mπ∼130÷ 410 MeV

0.005 0.01

amud

PCAC

2.4

2.5

2.6

2.7

2.8

aM

π2/m

ud

PC

AC

131 MeV

258 MeV368 MeV

409 MeV

• Fit to NLO SU(2) χPT (Gasser et al ’84)

0.005 0.01

amudPCAC

0.04

0.045

0.05

0.055

aFπ

3 Consistent w/ NLO χPT for Mπ <∼ 410 MeV

⇒ 2 safe interpolation ranges: Mπ < 340, 380 MeV

⇒ SU(2) NLO χPT & Taylor interpolations to physical point

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 22: Lattice QCD and the search for new physics

Combined mass interp. and continuum extrap. (2)

Project onto a axis: continuum extrapolation

Leading order is O(αsa)

Allow also domination of sub-leading O(a2)a=

0.0

6 f

m

a=

0.0

8 f

m

a=

0.1

0 f

m

a=

0.1

2 f

m

0

1

2

3

4

mu

d

RI (4

GeV

) [M

eV

]

0 0.01 0.02 0.03 0.04α

sa[fm]

a=

0.0

6 f

m

a=

0.0

8 f

m

a=

0.1

0 f

m

a=

0.1

2 f

m

0

40

80

120

msR

I (4G

eV

) [M

eV

]

0 0.01 0.02 0.03 0.04α

sa[fm]

(continuum extrapolation examples – errors on points are statistical)

⇒ fully controlled continuum limitLaurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 23: Lattice QCD and the search for new physics

Individual mu and md

Calculation performed in isospin limit:

mu = md NO QED⇒ leave ab initio realm

Use dispersive Q from η → πππ

Q2 ≡m2

s −m2ud

m2d −m2

u

* Precise mud and ms/mud ⇒

mu/d = mud

{1∓ 1

4Q2

[(ms

mud

)2

− 1

]}

Use conservative Q = 22.3(8) (Leutwyler ’09)

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 24: Lattice QCD and the search for new physics

Results

RI 4 GeV RGI MS 2 GeVms 96.4(1.1)(1.5) 127.3(1.5)(1.9) 95.5(1.1)(1.5)mud 3.503(48)(49) 4.624(63)(64) 3.469(47)(48)mu 2.17(4)(3)(10) 2.86(5)(4)(13) 2.15(4)(3)(9)md 4.84(7)(7)(10) 6.39(9)(9)(13) 4.79(7)(7)(9)

ms

mud= 27.53(20)(8)

mu

md= 0.449(6)(2)(29)

Additional consistency checks

3 Additional continuum, chiraland FV terms+ all compatible with 0

3 Unweighted final result andsystematic error+ negligible impact

3 Use mPCAC only+ compatible, slightly largererror

3 Full quenched check ofprocedure + cf. referencecomputation (Garden et al ’00)

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 25: Lattice QCD and the search for new physics

Comparison

2

2

3

3

4

4

5

5

6

6

MeV

CP-PACS 01JLQCD 02

SPQcdR 05QCDSF/UKQCD 04

QCDSF/UKQCD 06ETM 07RBC 07

MILC 04, HPQCD/MILC/UKQCD 04HPQCD 05MILC 07CP-PACS/JLQCD 07RBC/UKQCD 08PACS-CS 08

FLAG 10v1 Nf = 2

Dominguez 09

mud

Nf=

2+

1N

f=2

Narison 06Maltman 01

PDG 10

MILC 09MILC 09AHPQCD 09PACS-CS 09Blum 10

JLQCD/TWQCD 08A

FLAG 10v1 Nf = 2+1

HPQCD 10RBC/UKQCD 10A

ETM 10B

MILC 10APACS-CS 10BMWc 10A

70

70

80

80

90

90

100

100

110

110

120

120

MeV

CP-PACS 01JLQCD 02

ALPHA 05SPQcdR 05

QCDSF/UKQCD 04

QCDSF/UKQCD 06ETM 07RBC 07

HPQCD/MILC/UKQCD 04HPQCD 05MILC 07CP-PACS/JLQCD 07RBC/UKQCD 08PACS-CS 08

FLAG 10v1 Nf = 2

PDG 10

ms

Nf=

2+

1N

f=2

Dominguez 09Chetyrkin 06Jamin 06Narison 06Vainshtein 78

MILC 09MILC 09AHPQCD 09PACS-CS 09Blum 10

FLAG 10v1 Nf = 2+1

HPQCD 10RBC/UKQCD 10A

ETM 10B

PACS-CS 10BMWc 10A

mud and ms are now known to 2%, ms/mud to 0.7%. . . mu to 5% and md to 3% w/ help of phenomenology

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 26: Lattice QCD and the search for new physics

Quark flavor mixing constraints in the SM and beyond

Test SM paradigm of quark flavor mixing and CP violation and look for new physics

Unitary CKM matrix

V

u

b W

ub

d s b

→ V =

u

c

t

1− λ

2 λ Aλ3(ρ− iη)

−λ 1− λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4)

Test CKM unitarity/quark-lepton universality and constrain NP using, e.g.

1st row unitarity:G2

q

G2µ

|Vud |2[1 + |Vus/Vud |2 + |Vub/Vud |2

]= 1 + O

(M2

W

Λ2NP

)

Unitarity triangle:G2

q

G2µ

(Vcd V ∗cb)

[1 +

Vud V ∗ub

Vcd V ∗cb+

Vud V ∗ub

Vcd V ∗cb

]= O

(M2

W

Λ2NP

)

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 27: Lattice QCD and the search for new physics

CKM matrix and lattice QCD

CKM process LQCD precision (%)|Vus| K → `ν fK ≤ 1.5

K → π`ν f Kπ+ (0) 1.0

|Vus|/|Vud | K → µν/π → µν fK/fπ ≤ 1.5|Vcd | D → `ν fDs/fD 4.0

D → π`ν f Dπ+ (0) ∼ 10

|Vcs| Ds → `ν fDs 2.5D → K `ν f DK

+ (0) ∼ 7|Vub| B → `ν fB 6.0

fBs/fB 4.0B → π`ν f Bπ

+ (q2) ∼ 15|Vcb| B → D(∗)`ν FB→D(∗) (1) 4.0(ρ, η) ε BK ≤ 1.5

ε′ K → ππ

|V ∗tbVtq | ∆md BBs/BBd , ξ ∼ 3.0∆ms BBs ∼ 6.0

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 28: Lattice QCD and the search for new physics

CPV and the K 0-K 0 system

Two neutral kaon flavor eigenstates: K 0(ds) & K 0(sd)

In experiment, have predominantly:

K 0S → ππ ⇒ K 0

S ∼ K1, the CP even combination

K 0L → πππ ⇒ K 0

L ∼ K2, the CP odd combination

However, CP violation⇒ K 0L → ππ

Experimentally:(PDG ’11)

∆MK ≡ MKL −MKS = 3.483(6)× 10−12 MeV [0.2%]

∆ΓK ≡ ΓKS − ΓKL = 7.339(4)× 10−12 MeV [0.05%]

|ε| = 2.228(11) · 10−3 [0.5%]

Re(ε′/ε) = 1.65(26) · 10−3 [16%]

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 29: Lattice QCD and the search for new physics

K 0-K 0 mixing in the SM

u, c, t W W

su, c, ts dd d

s

u, c, t

Wd

sdsWs d u, c, t

M12−i2

Γ12 =〈K 0|H∆S=2

eff |K 0〉2MK

− i2MK

∫d4x〈K 0|T {H∆S=1

eff (x)H∆S=1eff (0)}|K 0〉︸ ︷︷ ︸

gives Γ12 and LD contributions to M12

+O(G3F )

Neglecting long-distance (LD) corrections

2MK M∗12SD= 〈K 0|H∆S=2

eff |K 0〉 = CSM1 (µ)〈K 0|O1(µ)|K 0〉

O1 = (sd)V−A(sd)V−A 〈K 0|O1(µ)|K 0〉 =163

M2K F 2

K BK (µ)

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 30: Lattice QCD and the search for new physics

Indirect CPV in K → ππ

Parametrized by

Re ε = ReT [KL → (ππ)0]

T [KS → (ππ)0]= cosφε sinφε

[ImM12

2 ReM12− ImΓ12

2 ReΓ12

]w/ φε = tan−1 (2∆MK/∆ΓK ) = 43.51(5)o, ∆MK ' 2 Re M12, ∆ΓK ' −2 Re Γ12

−→ ε = κεeiφε√

2ImM12

∆MK

w/ κε = 0.94(2) (Buras et al. (2010))

To NLO in αs

|ε| = κεCε Imλt {Reλc [η1Scc

−η3Sct ]− Reλtη2Stt} BK

∝ A2λ6η [cst + cst

×A2λ4(1− ρ)]

BK

w/ λq = Vqd V ∗qs

γ

α

α

dm∆

Kεsm∆ & dm∆

ubV

βsin 2(excl. at CL > 0.95)

< 0βsol. w/ cos 2

α

βγ

ρ

­0.4 ­0.2 0.0 0.2 0.4 0.6 0.8 1.0

η

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

exclu

ded

are

a h

as

CL >

0.9

5

Winter 12

CKMf i t t e r

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 31: Lattice QCD and the search for new physics

Overall strategy for BK

Dürr et al [BMWc], PLB705 ’11

BMWc ’10 set: 47 large scale Nf = 2 + 1 simulations w/ Mπ >∼ 120 MeV,5a’s ≈ 0.054÷ 0.116 fm and L→ 6 fm

bare Q1,...,5 computed on Nf = 2 + 1 ensembles

full nonperturbative renormalization and mixing in RI/MOM scheme w/improvements⇒ 21 additional Nf = 3 simulations at same 5a’s

full nonperturbative running up to high µ and two-loop conversion to RGI⇒ BK in other schemes w/ small conversion errors

renormalized BK (µ) fitted as fn of (M2π, 2M2

K −M2π, a, L)

→ fully controlled V →∞ extrapolation (using Becirevic et al. ’04)

→ fully controlled interpolation to mphud and mph

s

→ fully controlled a→ 0 extrapolation w/ 4 smallest a’s

extensive systematic and statistical error analysis: 5760 full analyses on 2000bootstrap samples

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 32: Lattice QCD and the search for new physics

Combined chiral interp. and continuum extrap. (1)

Project onto M2π and M2

ss axes: interpolation to Mπ = 134.8(3) MeV andMK = 494.2(5) MeV

→ nearly flat mud -dependence near mphud

→ much steeper ms-dependence near mphs

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 33: Lattice QCD and the search for new physics

Combined chiral interp. and continuum extrap. (2)Project onto a axis: continuum extrapolation

→ mild extrapolation for β ≥ 3.5

→ β ≥ 3.31 was found to be outside scaling regime

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 34: Lattice QCD and the search for new physics

Systematic and statistical error2 time-fit ranges for π and K masses

2 time-fit ranges for Q1,...,5

O(αsa) or O(a2) for running

3 intermediate renormalization scales

2 fit fns and 4 ranges in p2 for ∆1i

5 fit fns for mass interpolation

2 pion mass cuts (Mπ < 340, 380 MeV)

BKRI

(3.5 GeV)

0.51 0.52 0.53 0.54 0.55

BKRI

(3.5 GeV)

0.51 0.52 0.53 0.54 0.55

→ 5760 analyses, each of which is a reasonablechoice, weighted by fit quality

→ median and central 68% give central value andsystematic uncertainty

2000 bootstraps of the median give statisticalerror

Many cross checks

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 35: Lattice QCD and the search for new physics

Results

Procedure gives BRIK (3.5 GeV) fully nonperturbatively

Can convert to other schemes w/ perturbation theory (PT)→ perturbative uncertainty

conv. RGI MS-NDR 2 GeV4-loop β, 1-loop γ 1.427 1.0474-loop β, 2-loop γ 1.457 1.062

ratio 1.021 1.01376

Take blanket 1% for 3 loop uncertainty

RI @ 3.5 GeV RGI MS-NDR @ 2 GeVBK 0.5308(56)(23) 0.7727(81)(34)(77) 0.5644(59)(25)(56)

Total error 1.1-1.5%, statistical (and PT) dominated

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 36: Lattice QCD and the search for new physics

BK comparison

BK

CKM Fitter (LP 2011)

this work (2011, 2HEX-CIW)

SWME (2011, HYP-STAG/MILC)

Laiho et al. (2011, DW/MILC)

Aubin et al. (2010, DW/MILC)

RBC-UKQCD (2010, DW)

ETMC (2009, TM)

0.6 0.8 1 1.2

Dominant error in CKMfitter global fit results is |Vcb|4 ∼ (Aλ2)4

→ our result is an encouragement to reduce uncertainties in otherparts of the calculation of ε

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 37: Lattice QCD and the search for new physics

∆S = 2 processes beyond the SM

e.g. gluino mediated FCNC in mass insertion approximation (Ciuchini et al ’99)

+ · · · OPE−→

O1 = [sd ]V−A[sd ]V−A

O2,3 = [sd ]S−P [sd ]S−P (unmix,mix)

O4,5 = [sd ]S−P [sd ]S+P (unmix,mix)

〈K 0|H∆S=2eff,BSM|K 0〉 =

5∑i=1

CBSMi (µ)Qi (µ) =

5∑i=1

CBSMi (µ)〈K 0|Oi (µ)|K 0〉

CBSMi (µ) short distance coefficients ⊃ flavor mixing parameters of BSM model

Qi (µ) are chirally enhanced

Qi (µ)

Q1(µ)∼ 〈qq〉(µ)

F 2π(ms + mud )(µ)

∼ 10, i = 2, · · · , 5

⇒ ε and ∆MK impose strong constraints on Im and Re of BSM parameters

only 2 old quenched calculations of Qi (µ), i = 2, · · · , 5 (Donini et al ’99, Babich et al ’06)

⇒ modern calculation required

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 38: Lattice QCD and the search for new physics

Conclusion

After > 30 years we are finally able to perform fully controlled LQCDcomputations all the way down to Mπ ≤ 135 MeV

Presented fully controlled results for sigma terms and for light quark masses andBK w/ σtot < 2%

There Nf = 2 + 1 LQCD calculations of many observables relevant for particlephenomenology, some of which have fully controlled errors, see e.g.http://itpwiki.unibe.ch/flag (Colangelo et al EPJC71 ’11)

http://www.latticeaverages.org (Laiho et al PRD81 ’10)

⇒ LQCD has become an indispensable tool in the search for new physics

2 4 6 8 10 12 14 16 18 20

10 (GeV)

1e−43

1e−42

1e−41

1e−40

1e−39

σS

I

P(c

m2) XENON−100

CDMS−II

XENON−10

DAMA

DAMA (with channeling)

CoGeNT

CDMS−09 fit

NMSSM upper limit

σSI(lattice) < σSI(red)

γ

α

α

dm∆

Kεsm∆ & dm∆

ubV

βsin 2(excl. at CL > 0.95)

< 0βsol. w/ cos 2

α

βγ

ρ

­0.4 ­0.2 0.0 0.2 0.4 0.6 0.8 1.0

η

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

exclu

ded

are

a h

as

CL >

0.9

5

Winter 12

CKMf i t t e r

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012

Page 39: Lattice QCD and the search for new physics

Conclusion

Lattice QCD is undergoing a major shift in paradigm

it is now possible to control and reliably quantify all systematic errors with“data” (for processes w/ at most 1 initial and/or final hadron state)

⇒ we are getting QCD NOT LQCD predictionsrequires numerous simulations with Mπ < 200 MeV and preferably↘ 135 MeV, more than 3 a < 0.1 fm and lattice sizes L→ 4÷ 6 fmrequires trying all reasonable analyses of “data” and combining results insensible way to obtain a reliable systematic error

A LQCD result is only as good as its systematic error

Calculations with anything less can yield very interesting results which are not,however, QCD only predictions

Expect many more very interesting nonperturbative QCD predictions in comingyears

Laurent Lellouch RPP 2012, Montpellier, 14-16 May 2012