Lect15 Distofb Ann

Embed Size (px)

Citation preview

  • 8/15/2019 Lect15 Distofb Ann

    1/31

    EECS 142/242M

    Effect of Feedback on Distortion

    Prof. Ali M. Niknejad

    U.C. BerkeleyCopyright   c 2013 by Ali M. Niknejad

    October 29, 2013Niknejad   Feedback and Distortion

  • 8/15/2019 Lect15 Distofb Ann

    2/31

    Effect of Feedback on Disto

    +   a

    si sϵ   so

    We usually implement the feedback with a passive network

    Assume that the only distortion is in the forward path  a

    s o  = a1

    s  + a2

    s 2

      + a3

    s 3

      +· · ·

    s  = s i  − fs o s o  = a1(s i  − fs o ) + a2(s i  − fs o )2 + a3(s i  − fs o )3 + · · ·

    Niknejad   Feedback and Distortion

  • 8/15/2019 Lect15 Distofb Ann

    3/31

    Feedback and Disto (cont)

    We’d like to ultimately derive an equation as follows

    s o  = b 1s i  + b 2s 2i   + b 3s 

    3i   + · · ·

    Substitute this solution into the equation to obtain

    b 1

    s i  + b 2

    s 2

    i   + b 

    3s 3

    i   +· · ·

      =   a1

    (s i  −

    fb 1

    s i  −

    fb 2

    s 2

    i  −fb 

    3s 3

    i   +· · ·

    )

    +   a2(s i  − fb 1s i  − fb 2s 2i  − fb 3s 3i   + · · · )2+   a3(s i  − fb 1s i  − fb 2s 2i  − fb 3s 3i   + · · · )3

    Solve for the first order terms

    b 1s i   = a1(s i  − fb 1s i )

    b 1  =  a1

    1 + a1f    =

      a1

    1 + T 

    Niknejad   Feedback and Distortion

  • 8/15/2019 Lect15 Distofb Ann

    4/31

    Feedback and Disto (square)

    The above equation is the same as linear analysis (loop gain

    T   = a1f   )

    Now let’s equate second order terms

    b 2s 2i    = −a1fb 2s 2i   + a2(s i  − fb 1s i )2

    b 2(a + a1f   ) = a2

    1−   fa11 + T 

    2b 2(1 + T )

    3 = a2(1 + T  − T )2 = a2

    b 2  =

      a2

    (1 + T )3

    Same equation holds at high frequency if we replace withT ( j ω)

    Niknejad   Feedback and Distortion

  • 8/15/2019 Lect15 Distofb Ann

    5/31

    Feedback and Disto (cube)

    Equating third-order terms

    b 3s 3i    = a1(−fb 3s 3i  ) + a2(−fb 22s 3i  ) + a3(s i  − fb 1s i )3 + · · ·

    b 3(1 + a1f   ) = −2a2b 2f    1

    1 + T   +

      a3

    (1 + T )3

    b 3(1 + T ) = −2a2f  

    1 + T 

    a2

    (1 + T )3 +

      a3

    (1 + T )3

    b 3  =  a

    3(1 + a

    1f   )−

    2a22

    f  

    (1 + a1f   )5

    Niknejad   Feedback and Distortion

  • 8/15/2019 Lect15 Distofb Ann

    6/31

    Second Order Interaction

    The term 2a22f    is the second order interaction

    Second order disto in fwd path is fed back and combined with

    the input linear terms to generate third order distoCan get a third order null if 

    a3(1 + a1f   ) = 2a22f  

    Niknejad   Feedback and Distortion

  • 8/15/2019 Lect15 Distofb Ann

    7/31

    HD 2   in Feedback Amp

    HD 2  = 1

    2

    b 2

    b 21s om

    = 1

    2

    a2

    (1 + T )3

    (1 + T )2

    a21s om

    = 1

    2

    a2

    a21

    s om

    1 + T 

    Without feedback  HD 2  =  1

    2

    a2a21 s om

    For a  given output  signal, the negative feedback reduces thesecond order distortion by   11+T 

    Niknejad   Feedback and Distortion

  • 8/15/2019 Lect15 Distofb Ann

    8/31

  • 8/15/2019 Lect15 Distofb Ann

    9/31

    HD 3   in Feedback Amp

    HD 3  = 1

    4

    b 3

    b 31s 2om

    = 14

    a3(1 + T )− 2a22f  (1 + T )5

    (1 + T )3a31

    s 2om

    =  1

    4

    a3

    a31s 2om

       disto with no fb1

    (1 + T )

    1−   2a

    22f  

    a3(1 + T )

    Niknejad   Feedback and Distortion

  • 8/15/2019 Lect15 Distofb Ann

    10/31

    F db k I A i

  • 8/15/2019 Lect15 Distofb Ann

    11/31

    Feedback versus Input Attenuation

    af si   soso

    Notice that the distortion is improved for a given outputsignal level. Otherwise we can see that simply decreasing the

    input signal level improves the distortion.Say s o 1  = fs i   with  f   

  • 8/15/2019 Lect15 Distofb Ann

    12/31

    BJT With Emitter Degeneration

    vi

    V  Q

    RE 

    I C  The total input signal applied

    to the base of the amplifier is

    v i  + V Q  = V BE  + I E R E 

    The  V BE   and   I E  terms can be split into DC and AC currents(assume  α ≈ 1)

    v i  + V Q  = V BE ,Q  + v be  + (I Q  + i c )R E 

    Subtracting bias terms we have a separate AC and DCequation

    V Q  = V BE ,Q  + I Q R E 

    v i  = v be  + i C R E 

    Niknejad   Feedback and Distortion

  • 8/15/2019 Lect15 Distofb Ann

    13/31

    BJT ith E itt D (II)

  • 8/15/2019 Lect15 Distofb Ann

    14/31

    BJT with Emitter Degen (II)

    Now we know that

    i c  = a1v be  + a2v 2be  + a3v 

    3be  + · · ·

    where the coefficients  a1,2,3,···  come from expanding the

    exponential into a Taylor series

    a1  = g m   a2  = 1

    2

    I Q 

    V 2t · · ·

    With feedback we have

    i c  = b 1v i  + b 2v 2i   + b 3v 

    3i   + · · ·

    Niknejad   Feedback and Distortion

    Emitter Degeneration (cont)

  • 8/15/2019 Lect15 Distofb Ann

    15/31

    Emitter Degeneration (cont)

    The loop gain  T   = a1f    = g mR E 

    b 1  =   g m

    1 + g mR E 

    b 2  =12

      q kT 

    2

    I Q 

    (1 + g mR E )3

    b 3  =  1

    4 · 6

      q kT 

    3I Q 

    (1 + g mR E )4

    1−2

    12

      q kT 

    2I Q 

    2R E 

    16

      q kT 

    3

    I Q (1 + g mR E )

    For large loop gain  g mR E  → ∞

    b 3  = −1

    12

      q kT 

    3I Q 

    (1 + g mR E )4

    Niknejad   Feedback and Distortion

    Harmonic Distortion with Feedback

  • 8/15/2019 Lect15 Distofb Ann

    16/31

    Harmonic Distortion with Feedback

    Using our previously derived formulas we have

    HD 2  = 1

    2

    b 2

    b 21s om

    = 14

    î c 

    I Q 11 + g mR E 

    HD 3  = 1

    4

    b 3

    b 31s 2om

    =  124

     î c I Q 

    2 1−   3g mR E 1+g mR E 1 + g mR E 

    Niknejad   Feedback and Distortion

    Harmonic Distortion Null

  • 8/15/2019 Lect15 Distofb Ann

    17/31

    Harmonic Distortion Null

    We can adjust the feedback to obtain a null in  HD 3

    HD 3  = 0 can be achieved with

    3g mR E 

    1 + g mR E  = 1

    or

    R E   =  1

    2g m

    Niknejad   Feedback and Distortion

    HD3 Null Example

  • 8/15/2019 Lect15 Distofb Ann

    18/31

    HD 3  Null Example

    0 20 40 60 80 100

    -70

    -65

    -60

    -55

    -50

    -45

    -40

    RE  =  1

    2gmRE 

    HD3

    Example: For   I Q  = 1mA,  R E   = 13Ω

    Niknejad   Feedback and Distortion

    BJT with Finite Source Resistance

  • 8/15/2019 Lect15 Distofb Ann

    19/31

    BJT with Finite Source Resistance

    vi

    V  Q

    RE 

    I C 

    RS 

    v i  + V Q  − I B R B  = V BE  + I E R E Assuming that  α ≈ 1,  β  = β 0   (constant). Let  R B  = R S  + r b represent the total resistance at the base.

    v i  + V Q  = V BE  + I C 

    R E  + R B 

    β 0

    The formula is the same as the case of a BJT with emitterdegeneration with  R E   = R E  + R B /β 0

    Niknejad   Feedback and Distortion

    Emitter Follower

  • 8/15/2019 Lect15 Distofb Ann

    20/31

    Emitter Follower

    vi

    V  Q

    I C 

    vo

    RL

    The same equations asbefore with  R E   = R L

    Niknejad   Feedback and Distortion

    Common Base

  • 8/15/2019 Lect15 Distofb Ann

    21/31

    Common Base

    vi

    RE   I 

    RL

    −V  Q

    V  CC 

    Same equation as CE with  R E 

      feedback

    v i  − V Q  + I C R E   = −V BE 

    Niknejad   Feedback and Distortion

  • 8/15/2019 Lect15 Distofb Ann

    22/31

    Calculation Tools: Multi-Tone Excitation

    Niknejad   Feedback and Distortion

    N Tones in One Shot

  • 8/15/2019 Lect15 Distofb Ann

    23/31

    N  Tones in One Shot

    Consider the effect of an  m’th order non-linearity on an input

    of  N   tones

    y m  =

      N n=1

    An cos ωnt 

    m

    y m  =   N n=1

    An2e ωnt  + e −ωnt m

    y m =

      N 

    n=−N An

    2  e ωnt 

    m

    where we assumed that  A0 ≡ 0 and  ω−k  = −ωk .

    Niknejad   Feedback and Distortion

    Product of sums...

  • 8/15/2019 Lect15 Distofb Ann

    24/31

    The product of sums can be written as lots of sums...

    =

    ()×

    ()×

    () · · · ×

    ()

       m−times

    =N 

    k 1=−N 

    N k 2=−N 

    · · · N 

    k m=−N 

    Ak 1 Ak 2 · · ·Ak m2m

      × e  j (ωk 1 +ωk 2 +···+ωk m )t 

    Notice that we generate frequency componentωk 1 + ωk 2 +

    · · ·+ ωk m , sums and differences between  m

    non-distinct frequencies.

    There are a total of (2N )m terms.

    Niknejad   Feedback and Distortion

  • 8/15/2019 Lect15 Distofb Ann

    25/31

    Frequency Mix Vector

  • 8/15/2019 Lect15 Distofb Ann

    26/31

    q y

    Let the vector  k  = (k −N , · · ·  , k −1, k 1, · · ·   , k N ) be a 2N -vectorwhere element  k  j  denotes the number of times a particularfrequency appears in a given term.

    As an example, consider the frequency terms

    ω2 + ω1 + ω2ω1 + ω2 + ω2ω2 + ω2 + ω1

     k  = (0, 0, 1, 2)

    Niknejad   Feedback and Distortion

    Properties of       k 

  • 8/15/2019 Lect15 Distofb Ann

    27/31

    p

    First it’s clear that the sum of the  k  j  must equal  m

    N  j =−N 

    k  j  = k −N  + · · ·+ k −1 + k 1 + · · ·+ k N  = m

    For a fixed vector    k 0, how many different sum vectors arethere?

    We can sum  m   frequencies  m! ways. But the order of the sumis irrelevant. Since each  k  j  coefficient can be ordered  k  j ! ways,the number of ways to form a given frequency product is

    given by

    (m; k ) =  m!

    (k −N )! · · · (k −1)!(k 1)! · · · (k N )!

    Niknejad   Feedback and Distortion

    Extraction of Real Signal

  • 8/15/2019 Lect15 Distofb Ann

    28/31

    g

    Since our signal is real, each term has a complex conjugate

    present. Hence there is another vector    k 

    0  given by

     k 0  = (k N , · · ·  , k 1, k −1, · · ·  , k −N )

    Notice that the components are in reverse order since

    ω− j  = −ω j . If we take the sum of these two terms we have2

    e  j (ωk 1 +ωk 2 +···+ωk m )t 

     = 2cos(ωk 1 + ωk 2 + · · ·+ ωk m)t 

    The amplitude of a frequency product is thus given by

    2× (m; k )2m

      = (m; k )

    2m−1

    Niknejad   Feedback and Distortion

    Example:   IM 3  Again

  • 8/15/2019 Lect15 Distofb Ann

    29/31

    Using this new tool, let’s derive an equation for the   IM 3

    product more directly.Since we have two tones,  N  = 2.   IM 3  is generated by a  m = 3non-linear term.

    A particular   IM 3  product, such as (2ω1 − ω2), is generated bythe frequency mix vector  k  = (1, 0, 2, 0).

    (m; k ) =  3!

    1! · 2! = 3   2m−1 = 22 = 4

    So the amplitude of the   IM 3  product is 3/4a3s 3i   . Relative to

    the fundamental

    IM 3  = 3

    4

    a3s 3i 

    a1s i =

     3

    4

    a3

    a1s 2i 

    Niknejad   Feedback and Distortion

    Harder Example: Pentic Non-Linearity

  • 8/15/2019 Lect15 Distofb Ann

    30/31

    Let’s calculate the gain expansion/compression due to the 5thorder non-linearity. For a one tone, we have  N  = 1 and  m = 5.

    A pentic term generates fundamental as follows

    ω1 + ω1 + ω1

    −ω1

    −ω1  = ω1

    In terms of the  k  vector, this is captured by  k  = (2, 3). Theamplitude of this term is given by

    (m; k ) =  5!

    2! · 3! =

     5 · 42

      = 10   2m−1 = 24 = 16

    So the fundamental amplitude generated is  a5 1016 S 

    5i  .

    Niknejad   Feedback and Distortion

    Apparent Gain Due to Pentic

  • 8/15/2019 Lect15 Distofb Ann

    31/31

    The apparent gain of the system, including the 3rd and 5th, is

    thus given by

    AppGain = a1 + 3

    4a3S 

    2i   +

     10

    16a5S 

    4i 

    At what signal level is the 5th order term as large as the 3rdorder term?

    3

    4a3S 

    2i    =

     10

    16a5S 

    4i    S i   =

     1.2

    a3

    a5

    For a bipolar amplifier, we found that  a3  = 1/(3!V 3t  ) and

    a5  = 1/(5!V 5t  ). Solving for  S i , we have

    S i  = V t √ 

    1.2× 5× 4 ≈ 127mV

    Niknejad   Feedback and Distortion