15
Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-1 CMOS Analog Circuit Design © P.E. Allen - 2010 LECTURE 040 - ULTRA-DEEP SUBMICRON AND BiCMOS TECHNOLOGIES LECTURE ORGANIZATION Outline • Ultra-deep submicron CMOS technology - Features - Advantages - Problems • BiCMOS technology process flow - CMOS is typical submicron (0.5 μm) • Summary CMOS Analog Circuit Design, 2 nd Edition Reference New material Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-2 CMOS Analog Circuit Design © P.E. Allen - 2010 ULTRA-DEEP SUBMICRON (UDSM) CMOS TECHNOLOGY USDM Technology L min 0.1 microns Minimum feature size less than 100 nanometers Today’s state of the art: - 65 nm drawn length - 15 nm lateral diffusion (35 nm gate length) - 1.2 nm transistor gate oxide - 8 layers of copper interconnect Specialized processing is used to increase drive capability and maintain low off currents

Lect2 up040 (100324)

Embed Size (px)

Citation preview

Page 1: Lect2 up040 (100324)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-1

CMOS Analog Circuit Design © P.E. Allen - 2010

LECTURE 040 - ULTRA-DEEP SUBMICRON AND BiCMOSTECHNOLOGIES

LECTURE ORGANIZATIONOutline• Ultra-deep submicron CMOS technology

- Features- Advantages- Problems

• BiCMOS technology process flow- CMOS is typical submicron (0.5 μm)

• SummaryCMOS Analog Circuit Design, 2nd Edition ReferenceNew material

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-2

CMOS Analog Circuit Design © P.E. Allen - 2010

ULTRA-DEEP SUBMICRON (UDSM) CMOS TECHNOLOGYUSDM Technology• Lmin 0.1 microns

• Minimum feature size less than 100 nanometers• Today’s state of the art:

- 65 nm drawn length- 15 nm lateral diffusion (35 nm gate length)- 1.2 nm transistor gate oxide- 8 layers of copper interconnect

• Specialized processing is used to increase drive capability and maintain low offcurrents

Page 2: Lect2 up040 (100324)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-3

CMOS Analog Circuit Design © P.E. Allen - 2010

65 Nanometer CMOS TechnologyTEM cross-section of a 35 nm NMOS and PMOS transistors.†

NMOS: PMOS:

These transistors utilize enhanced channel strains to increase drive capability and toreduce off currents.

† P. Bai, et. Al., “A 65nm Lobic Technology Featuring 35nm Gate Lengths, Enhanced Channel Strain, 8 Cu Interconnect Layers, Low-k ILD and 0.57

μm2 SRAM Cell, IEEE Inter. Electron Device Meeting, Dec. 12-15, 2005.

NMOS

220 nm pitch

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-4

CMOS Analog Circuit Design © P.E. Allen - 2010

UDSM Metal and InterconnectsPhysical aspects:

Layer Pitch(nm)

Thickness(nm)

AspectRatio

Isolation 220 230 -Polysilicon 220 90 -Contacted Gate Pitch 220 - -Metal 1 210 170 1.6Metal 2 210 190 1.8Metal 3 220 200 1.8Metal 4 280 250 1.8Metal 5 330 300 1.8Metal 6 480 430 1.8Metal 7 720 650 1.8Metal 8 1080 975 1.8

Page 3: Lect2 up040 (100324)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-5

CMOS Analog Circuit Design © P.E. Allen - 2010

What are the Advantages of UDSM CMOS Technology?Digital Viewpoint:• Improved Ion/Ioff 70 Mbit SRAM chip:

• Reduced gate capacitance• Higher drive current capability• Reduced interconnect density• Reduction of active powerAnalog Viewpoint:• More levels of metal• Higher fT• Higher capacitance density• Reduced junction capacitance per gm

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-6

CMOS Analog Circuit Design © P.E. Allen - 2010

What are the Disadvantages of UDSM CMOS Technology (for Analog)?• Reduction in power supply resulting in reduced headroom• Gate leakage currents• Reduced small-signal intrinsic gains• Increased nonlinearity (IIP3)• Noise and matching??Intrinsic gain and IP3 as a function of the gate overdrive for decreasing VDS:†

† Anne-Johan Annema, et. Al., “Analog Circuits in Ultra-Deep-Submicron CMOS,” IEEE J. of Solid-State Circuits, Vol. 40, No. 1, Jan. 2005, pp. 132-

143.

Page 4: Lect2 up040 (100324)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-7

CMOS Analog Circuit Design © P.E. Allen - 2010

What is the Gate Leakage Problem?Gate current occurs in thin oxide devices due to direct tunneling through the thin oxide.Gate current depends on:1.) The gate-source voltage (and the drain-gate voltage)

iGS = K1vGS exp(K2vGS) and iGD = K3vGD exp(K4vGD)

2.) Gate area – NMOS leakage 6nA/μm2 and PMOS leakage 3nA/μm2

Unfortunately, the gate leakage current is nonlinear with respect to the gate-source andgate-drain voltages. A possible model is:

051205-03

f(vGS)

f(vGD)+

−vGD

+

−vGS f(vDG)

f(vSG)+

−vSG

+

−vDG

NMOS PMOS

Large Signal Models

ggd

ggs

NMOS

gsg

gdg

PMOS

Small Signal Models

Base current cancellation schemes used for BJTs are difficult to apply to the MOSFET.

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-8

CMOS Analog Circuit Design © P.E. Allen - 2010

Gate Leakage and fgateThe gate leakage can be represented by a conductance, ggate, in parallel with the

gate capacitance, Cgate. Since these two elements have identical area dependence, theyresult in a frequency, fgate, that is fairly independent of the drain-source voltage, vds.

fgate = ggate

2 Cgate

1.5·1016 vGS2etox(vGS-13.6) (NMOS)

0.5·1016 vGS2etox(vGS-13.6) (PMOS)

where tox is in nm and vGS is in V.

For frequencies above fgate theMOSFET looks capacitive and belowfgate, the MOSFET looks resistive (gateleakage).

Page 5: Lect2 up040 (100324)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-9

CMOS Analog Circuit Design © P.E. Allen - 2010

UDSM CMOS Technology Summary• Increased transconductance and frequency capability• Low power supply voltages• Reduced parasitics• Gate leakage causes challenges for analog applications of UDSM technology

- Can no longer use the MOSFET for capacitance- Conflict between matching and gate leakage

• Other issues- Noise- Zero temperature coefficient behavior- Etc.

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-10

CMOS Analog Circuit Design © P.E. Allen - 2010

BiCMOS TECHNOLOGYTypical 0.5μm BiCMOS TechnologyMasking Sequence: 1. Buried n+ layer 9. Base oxide/implant 17. Contacts

2. Buried p+ layer 10. Emitter implant 18. Metal 1 3. Collector tub 11. Poly 1 19. Via 1 4. Active area 12. NMOS lightly doped drain 20. Metal 2 5. Collector sinker 13. PMOS lightly doped drain 21. Via 2 6. n-well 14. n+ source/drain 22. Metal 3 7. p-well 15. p+ source/drain 23. Nitride passivation 8. Emitter window 16. Silicide protectionNotation used in the following slides:

BSPG = Boron and Phosphorus doped Silicate Glass (oxide)Kooi Nitride = A thin layer of silicon nitride on the silicon surface as a result of thereaction of silicon with the HN3 generated, during the field oxidation.TEOS = Tetro-Ethyl-Ortho-Silicate. A chemical compound used to deposit conformaloxide films.

Page 6: Lect2 up040 (100324)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-11

CMOS Analog Circuit Design © P.E. Allen - 2010

n+ and p+ Buried Layers

Starting Substrate:

p-substrate 1μm

5μmBiCMOS-01

n+ and p+ Buried Layers:

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

1μm

5μm

NMOS TransistorPMOS TransistorNPN Transistor

BiCMOS-02

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-12

CMOS Analog Circuit Design © P.E. Allen - 2010

Epitaxial Growth

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layerp+ buried layer

p-typeEpitaxialSilicon

p-well n-well p-well

1μm

5μm

NMOS TransistorPMOS TransistorNPN Transistor

n-well

BiCMOS-03

Comment:• As the epi layer grows vertically, it assumes the doping level of the substrate beneathit.• In addition, the high temperature of the epitaxial process causes the buried layers to

diffuse upward and downward.

Page 7: Lect2 up040 (100324)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-13

CMOS Analog Circuit Design © P.E. Allen - 2010

Collector Tub

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

p-welln-well

p-well

1μm

5μm

Collector Tub

NMOS TransistorPMOS TransistorNPN Transistor

BiCMOS-04

Original Area of CollectorTub Implant

Comment:• The collector area is developed by an initial implant followed by a drive-in diffusion to

form the collector tub.

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-14

CMOS Analog Circuit Design © P.E. Allen - 2010

Active Area Definition

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

p-welln-well

p-well

1μm

5μm

Collector Tub

NMOS TransistorPMOS TransistorNPN Transistor

BiCMOS-05

Nitrideα-Silicon

Comment:• The silicon nitride is use to impede the growth of the thick oxide which allows contact

to the substrate• -silicon is used for stress relief and to minimize the bird’s beak encroachment

Page 8: Lect2 up040 (100324)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-15

CMOS Analog Circuit Design © P.E. Allen - 2010

Field Oxide

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

FOX

p-welln-well

p-well

1μm

5μm

Collector Tub

Field Oxide Field Oxide

NMOS TransistorPMOS TransistorNPN Transistor

BiCMOS-06

FOX Field Oxide

Comments:• The field oxide is used to isolate surface structures (i.e. metal) from the substrate

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-16

CMOS Analog Circuit Design © P.E. Allen - 2010

Collector Sink and n-Well and p-Well Definitions

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

p-well p-well

1μm

5μm

Collector Tub

Field Oxide

NMOS TransistorPMOS TransistorNPN Transistor

BiCMOS-07

FOX

Field Oxide

Collector Sink Anti-Punch ThroughThreshold Adjust

Anti-Punch ThroughThreshold Adjust

n-well

FOX Field Oxide

Page 9: Lect2 up040 (100324)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-17

CMOS Analog Circuit Design © P.E. Allen - 2010

Base Definition

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

FOX

p-well p-well

1μm

5μm

Collector Tub

NMOS TransistorPMOS TransistorNPN Transistor

BiCMOS-08

Field Oxide Field Oxide

n-well

FOX Field Oxide

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-18

CMOS Analog Circuit Design © P.E. Allen - 2010

Definition of the Emitter Window and Sub-Collector Implant

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

p-well p-well

1μm

5μm

NMOS TransistorPMOS TransistorNPN Transistor

BiCMOS-09

Field Oxide

n-well

Sub-Collector

FOX

Field Oxide

Sacrifical Oxide

FOX Field Oxide

Page 10: Lect2 up040 (100324)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-19

CMOS Analog Circuit Design © P.E. Allen - 2010

Emitter Implant

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

p-well p-well

1μm

5μm

Collector Tub

NMOS TransistorPMOS TransistorNPN Transistor

BiCMOS-10

Field Oxide

n-well

Sub-CollectorFO

X

Field Oxide

Emitter Implant

FOX Field Oxide

Comments:• The polysilicon above the base is implanted with n-type carriers

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-20

CMOS Analog Circuit Design © P.E. Allen - 2010

Emitter Diffusion

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

p-well p-well

1μm

5μm

NMOS TransistorPMOS TransistorNPN Transistor

BiCMOS-11

Field Oxide

n-well

FOX

Field Oxide

Emitter

FOX Field Oxide

Comments:• The polysilicon not over the emitter window is removed and the n-type carriers diffuse

toward the base forming the emitter

Page 11: Lect2 up040 (100324)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-21

CMOS Analog Circuit Design © P.E. Allen - 2010

Formation of the MOS Gates and LD Drains/Sources

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

p-well p-well

1μm

5μm

NMOS TransistorPMOS TransistorNPN Transistor

BiCMOS-12

Field Oxide

n-well

FOX

Field OxideFOX Field Oxide

Comments:• The surface of the region where the MOSFETs are to be built is cleared and a thin gate

oxide is deposited with a polysilicon layer on top of the thin oxide• The polysilicon is removed over the source and drain areas• A light source/drain diffusion is done for the NMOS and PMOS (separately)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-22

CMOS Analog Circuit Design © P.E. Allen - 2010

Heavily Doped Source/Drain

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

p-well p-well

1μm

5μm

NMOS TransistorPMOS TransistorNPN Transistor

BiCMOS-13

Field Oxide

n-well

FOX

Field OxideFOX Field Oxide

Comments:• The sidewall spacers prevent the heavy source/drain doping from being near the

channel of the MOSFET

Page 12: Lect2 up040 (100324)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-23

CMOS Analog Circuit Design © P.E. Allen - 2010

Siliciding

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

p-well p-well

1μm

5μm

NMOS TransistorPMOS TransistorNPN Transistor

BiCMOS-14

Field Oxide

n-wellFO

X

Field Oxide

Silicide TiSi2 Silicide TiSi2 Silicide TiSi2

FOX Field Oxide

Comments:• Siliciding is used to reduce the resistance of the polysilicon and to provide ohmic

contacts to the base, emitter, collector, sources and drains

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-24

CMOS Analog Circuit Design © P.E. Allen - 2010

Contacts

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

p-well p-well

1μm

5μmBiCMOS-15

Field Oxide Field Oxide

n-well

FOX

Field Oxide Field Oxide

Tungsten Plugs Tungsten PlugsTungsten PlugsTEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG

FOX

Comments:• A dielectric is deposited over the entire wafer• One of the purposes of the dielectric is to smooth out the surface• Tungsten plugs are used to make electrical contact between the transistors and metal1

Page 13: Lect2 up040 (100324)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-25

CMOS Analog Circuit Design © P.E. Allen - 2010

Metal1

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

p-well p-well

1μm

5μmBiCMOS-16

Field Oxide Field Oxide

n-wellFO

X

Field Oxide Field Oxide

TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG

Metal1 Metal1Metal1

FOX

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-26

CMOS Analog Circuit Design © P.E. Allen - 2010

Metal1-Metal2 Vias

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

p-well p-well

1μm

5μmBiCMOS-17

Field Oxide Field Oxide

n-well

FOX

Field Oxide Field Oxide

TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG

Tungsten Plugs Oxide/SOG/Oxide

FOX

Page 14: Lect2 up040 (100324)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-27

CMOS Analog Circuit Design © P.E. Allen - 2010

Metal2

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

p-well p-well

1μm

5μmBiCMOS-18

Field Oxide Field Oxide

n-well

FOX

Field Oxide Field Oxide

TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG

Metal 2

FOX

Oxide/SOG/Oxide

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-28

CMOS Analog Circuit Design © P.E. Allen - 2010

Metal2-Metal3 Vias

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

p-well p-well

1μm

5μmBiCMOS-19

Field Oxide Field Oxide

n-well

FOX

Field Oxide Field Oxide

TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG

FOX

TEOS/BPSG/SOG

Oxide/SOG/Oxide

Comments:• The metal2-metal3 vias will be filled with metal3 as opposed to tungsten plugs

Page 15: Lect2 up040 (100324)

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-29

CMOS Analog Circuit Design © P.E. Allen - 2010

Completed Wafer

p-substrate

n+ buried layer p+ buriedlayer

n+ buried layer p+ buried layer

p-typeEpitaxialSilicon

p-well p-well

1μm

5μmBiCMOS-20

Field Oxide Field Oxide

n-well

FOX

Field Oxide Field Oxide

TEOS/BPSG/SOG TEOS/BPSG/SOG TEOS/BPSG/SOG

Nitride (Hermetically seals the wafer)

FOX

TEOS/BPSG/SOG

Metal3

Oxide/SOG/Oxide

Oxide/SOG/Oxide

Metal3Vias

Lecture 040 – UDSM and BiCMOS Technologies (3/24/10) Page 040-30

CMOS Analog Circuit Design © P.E. Allen - 2010

SUMMARY• UDSM technology typically has a minimum channel length less than 0.1μm• UDSM transistors utilize enhanced channel strains to increase drive capability and

reduce off currents• Advantages of UDSM technology include:

- Smaller devices- Higher speeds and transconductances- Improved Ion/Ioff

• Disadvantages of UDSM technology include:- Gate leakage currents- Reduced small signal gains- Increased nonlinearity

• BiCMOS technology- Offers both CMOS transistors and a high performance vertical BJT- CMOS is typically a generation behind- Silicon germanium can be used to enhance the BJT performance