Lect22HydroPower2-2012 [Compatibility Mode]

Embed Size (px)

Citation preview

  • 7/30/2019 Lect22HydroPower2-2012 [Compatibility Mode]

    1/13

    11/14/2012

    1

    Hydro PowerLecture 2

    Sergio CaparedaBAEN, TAMU

    HydraulicRam

    Theenergystoredinwaterdescendingfromacomparativelylowelevationisutilizedtoraisepartof

    thesamewatertoamuchhigherlevelvaryingfrom

    220timestheheightoftheoriginalfall.

    Inventedin1796byJosephMichaelMontgolfier

    Oneofthesimplest,mostdurable,efficientwater

    raisingmachines

    for

    use

    in

    locations

    where

    favorable

    topographicalconditionsexist.

    TypicalInstallationofaHydraulicRam

    A air chamber; B check valve; C Adjustment weight;

    D Drive pipe; E Gate valve; F Impulse valve; G

    Base; H Air feeder valve; I Delivery pipe; J Return

    spring; K Spring tension adjustment

    Other

    Ram

    Designs

  • 7/30/2019 Lect22HydroPower2-2012 [Compatibility Mode]

    2/13

    11/14/2012

    2

    Componentsof

    Hydraulic

    Ram

    Efficiencies

    DAubuissonsEfficiency

    VolumetricEfficiency

    Wateruseefficiency

    %100%100 xsourcewaterofenergy

    deliveredwaterofenergyx

    QH

    qhEw

    %100)(x

    qQ

    qEv

    %100)(

    %100)(

    xHqQ

    qhx

    HqQ

    qhEDA

    = density of water

    q = volume of water delivered by ram

    Q = Volume of water source

    h = effective delivery head

    H = supply head

    DriveandDischargePipes Typically,nominalsizeofdischargepipeisatleasthalfthe

    diameterofthedrivepipe

    SuggestionbyKrol,1977

    6H< L< 12H

    Empiricalrelations

    Where,

    N=numberofpulsationspermin

    H=supplyheadinmeters

    D=diameterofdrivepipeinmeters

    L=lengthofdrivepipeinmeters

    DNHL 2

    900

    Example: Use empirical

    equation to calculate L if H =

    10 meters; D = 4 or 0.1 m;

    and N = 40/min;

    Solution:

    1. L = (900)*(10)/(40x40)(0.1)

    2. L = 56 m

  • 7/30/2019 Lect22HydroPower2-2012 [Compatibility Mode]

    3/13

    11/14/2012

    3

    PerformanceChart

    for

    Rife

    Hydraulic

    Ram

    (%waterdelivered)

    Fall

    (ft)

    Vertical lift in ft including delivery pipe friction

    8 16 25 50 75 100 125 150 200 250 300 400 500

    4 22.5 12.5 8.0 3.6 1.6

    8 22.5 16.0 9.6 6.4 4.8 3.5 2.7 2.0

    12 21.5 13.2 9.6 7.2 5.7 4.8 3.3 2.4 2.0

    16 16.0 11.7 9.6 7.7 6.4 4.8 3.8 2.9 2.0

    20 18.0 14.7 12.0 9.6 8.0 6.0 4.8 4.0 2.5 2.0

    25 22.5 16.7 13.8 12.0 10.0 7.5 6.0 5.0 3.8 2.5

    30 18.0 15.0 13.2 12.0 9.0 7.2 6.0 4.5 3.3

    35 21.0 17.5 15.2 14.0 10.5 8.4 7.0 5.3 4.2

    40 18.0 16.0 14.7 12.0 9.6 8.0 6.0 4.8

    50 22.5 18.0 16.7 13.8 12.0 10.0 7.5 6.0

    Source: Rife Hydraulic Engine manufacturing Co., Nanticoke, PA

    RecommendedValues

    of

    Q

    (L/s)

    Diameter of

    drive pipe, DSupply head, H in meters

    1-2 2.01-5 5.01-10 10.01-20 20.01-30 30.01-40

    75 mm (3) 2 2 3 5 6 7

    100 mm (4) 3 4 6 8 10 12

    150 mm (6) 8 10 15 20 25 30

    200 mm (8) 15 20 30 40 50 60

    250 mm (10) 25 35 50 60 70 80

    Source: Krol, J. 1976. The Automatic Hydraulic Ram: Its Theory and Design

    EfficienciesofHydraulicRams

    Ratio (h/H) 2 3 4 5 6 7 8 9 10 12 14 16 18 20

    (%) 85 78 72 76 63 60 57 54 52 47 44 40 37 34

    Ram Discharge and Head Ratios

    HR (h/H) 2 4 6 12 20

    QR (q/Q) 0.35 0.16 0.10 0.05 0.03

    Example:Calculatethedrivepipesizeforaramthatwouldlift50L/minofwater4.5(14.76ft)mabovethesource.Averticalfallof1.5m(4.92ft)isavailable.UsetheRiferamdata.

    Solution:

    1. Determineh/Hfromtable

    2. Estimateefficiencytouse.Forh/H=3, =78%

    3. EstimateQ

    4. TheIntakewatersupplymustbeatleastq+Q=242L/min

    5. Selectrecommendedpipesize.Fromtabled=4(100mm)

    6. Selectappropriatepipelengths

    7. Ramswithsizesof3ormorehave2545beats/min.

    33.1

    6

    5.1

    5.15.4

    H

    h

    ]/2.3[min/19278100350%100 sLLxxx

    HqhQ

    mx

    DN

    HL 11

    )10.0(35

    5.190090022

  • 7/30/2019 Lect22HydroPower2-2012 [Compatibility Mode]

    4/13

    11/14/2012

    4

    WorldwideManufacturers

    BillabongRams Australia

    CecocoRams Japan

    BlakeRams UK

    LasGaviotas Columbia

    PremierRams India

    Rockfer Brazil

    Schlumf Switzerland

    Riferams US

    Sano Germany

    Referenceson

    Hydraulic

    Rams

    1. Krol,J.1976.Theautomatichydraulicram:Itstheoryanddesign.PaperpresentedattheDesignEngineeringConferenceandShow,Chicago,IL,April58,1976.PublishedbytheASME,UnitedEnggCenter,345East47th St.,NewYork.

    2. Orozco,J.C.1999.Hydraulicwaterrams:ConstructionandDesign.Agricultural

    MechanizationDevelopment

    Program

    (AMDP),

    CollegeofEngineeringandAgroIndustrialTechnology(CEAT),UniversityofthePhilippinesatLosBaos,College,Laguna.

    TidalandWaveEnergy

    SourceofTidalEnergy

    Attractiveforcesbetweenearthandsunandmoon Semidiurnaltides theriseandfallofwaterlevelas

    aresultofgravitationalattractionofmoon/sunandcenterofearth

    Duration:12hrs25minutes

    Springtides

    full

    moon

    and

    new

    moon

    lines

    joining

    centersofearth,sunandmoonarelinear,tideshigherthannormal

    Neaptides earthmoonandearthsunlinesareatrightangles,gravitationalforcesaresubtractivecausingsubduedtides

  • 7/30/2019 Lect22HydroPower2-2012 [Compatibility Mode]

    5/13

    11/14/2012

    5

    Average force

    Actual force

    Two humps occur twice every 24 hrs 50 minutes

    the time of the moons apparent rotation of the earth.

    Similar tides are produced by the sun.

    Mean sea level

    Variations in tides of sea. The peak occurs

    every 12 hrs and 25 min.

    BestPlacetoSeeHighestTides(12 16meters)

  • 7/30/2019 Lect22HydroPower2-2012 [Compatibility Mode]

    6/13

    11/14/2012

    6

    Howit

    Works Schemes

    of

    Power

    Generation

    SingleBasinEbbCycleGeneration Basinfilledduringhightide,powergenerated

    duringlowtide

    SingleBasinTideCycleGeneration Powerisgeneratedandbasinfilledduringhigh

    tide

    SingleBasin

    Two

    way

    Generation

    Powerisgeneratedbothduringhighandlowtides

    DoubleBasinSystems Powerisgeneratedcontinuously

    Single Basin

    Arrangement

    Single Basin

    Options

    A.Single Basin

    Tide Cycle

    System

    B.Single Basin

    Double Cycle

    System

  • 7/30/2019 Lect22HydroPower2-2012 [Compatibility Mode]

    7/13

    11/14/2012

    7

    Multiple Basin

    Systems

    a.Double Basin

    System

    b.Operating

    regime

    TidalTurbines

    Potential

    2 3TWenergyisdissipatedthroughtides

    Thisamountis1/3rd oftodaysworldconsumption

    Onlyasmallfractioncouldbederiveddueto

    limitednumber

    of

    locations

    240MWplantinLaRance,France

    800kWexperimentalunitinKislogubsk,Russia

    Cost

    LaRance,France=$500/kWofinstalledcapacityandcostofelectricityof0.0026/kWh

    (Built1966)

    BayofFundy =$0.18 0.30/kWh

    Sunderbans,India=$0.60 0.90/kWh

  • 7/30/2019 Lect22HydroPower2-2012 [Compatibility Mode]

    8/13

    11/14/2012

    8

    EnvironmentalConcerns

    Beneficial

    Useofroadacrossthebarrage/damstructure

    Landreclamation

    Tourism

    Nonbeneficial

    Landdrainage

    problems

    Affectwildlifeandfisheries

    Floodinginsomeareas

    WaveEnergy

    Waveenergyisderivedfromwindenergywhichderivesinturnfromsolarenergy

    Energyisavailableonlyinoceans

    Extractionequipmentmustoperateinmarineenvironment

    Implications:

    maintenance,

    construction

    cost,

    lifetimeandreliability

    Energyconvertersmustbecapableofwithstandingveryseverepeakstressesinstorms

    Worlds Wave Power Resource

  • 7/30/2019 Lect22HydroPower2-2012 [Compatibility Mode]

    9/13

    11/14/2012

    9

    WaveEnergy

    Extractors

    RusselRectifier

    MasudaBouy

    IsaacsSeymourSystem

    WaveContouringrafts(CockerellRafts)

    Salter

    Ducks

    RusselRectifier

    Highandlow

    level

    reservoir

    withnon

    returnflaps

    withlow

    head

    turbines

    IsaacWave

    Energy

    Converter

    Airpressure,

    P,combined

    with

    hydrostatic

    headforces

    waterinto

    turbine

    SalterDucks(

    Scotland)

    fourdouble

    actingpumps

    withnon

    returnvalves

    inwalls

    of

    ridgesof

    cylinder

  • 7/30/2019 Lect22HydroPower2-2012 [Compatibility Mode]

    10/13

    11/14/2012

    10

    CockerellWave

    Contouring

    Raft

    hydraulic

    pumps

    betweeneach

    raft(double

    actingpiston)

    MasudasPneumatic

    Wave

    Energy

    Conversion

    Device

    BasicPrinciples:MasudaBouy PelamisWaveEnergyConverter(SeaSnake)

    Seriesofcylindricalsegmentsconnectedbyhingedjoints Aswavesrundownthelengthofthedeviceandactuatethe

    joints,hydrauliccylindersincorporatedinthejointspumpoiltodriveahydraulicmotorviaanenergysmoothingsystem.

    Electricitygeneratedineachjointistransmittedtoshorebyacommonsubseacable.

    Theslack

    moored

    device

    will

    be

    around

    130m

    long

    and

    3.5m

    indiameter.

    Thepelamisisintendedforgeneraldeploymentoffshoreandisdesignedtousetechnologyalreadyavailableintheoffshoreindustry.

    Thefullscaleversionhasacontinuouslyratedpoweroutputof0.75MW.

    Currentlyaoneseventhscaleprototypeisbeingpreparedfordeployment

  • 7/30/2019 Lect22HydroPower2-2012 [Compatibility Mode]

    11/13

    11/14/2012

    11

    PelamisWave

    Energy

    Converter Commercial

    Scale

    Pelamis

    Picturesfromlefttoright:PicoPowerPlant,Azores;Pelamis;WaveDragon;Artist'simpressionAWSArray. WaveDragon

  • 7/30/2019 Lect22HydroPower2-2012 [Compatibility Mode]

    12/13

    11/14/2012

    12

    EnvironmentalAspects

    Advantages Workswellwithwindenergyextractors

    Supplyismoreinwinter

    Disadvantages Highinitialcost

    Drasticallyalterlittoralprocessesalongcoasts(e.g.

    energyextraction

    in

    ashoaling

    region,

    i.e.

    where

    the

    wavefeelsthebottomsurface)

    Erosionandaccretion(buildup)ofsand

    Formationofdeltaifplacednearmouthofriver

    Possible Coastal Alterations EconomicAspects

    Alittlemoreexpensivethannucleartechnologies

    Capitalcost~$1,000/kW

  • 7/30/2019 Lect22HydroPower2-2012 [Compatibility Mode]

    13/13

    11/14/2012

    13

    Countries

    with

    Wave

    Energy

    Studies Australia 300500kWwaveenergygenerator

    China 100kWandseveralsmallunits

    Denmark

    Greece

    India 150kWpilot(Kerala)

    Indonesia 1.1MWwedgegrooveplant

    Ireland

    Japan 200kWandsomesmallunits(30,40,60,110kW)

    Maldives Norway 350 500kW

    Portugal 400kW

    Sweden 15kWand150kW

    UnitedKingdom 500kW

    REFERENCES

    EnergiesfromtheSea Towards2020,MarineForesightPanel,DTI/Pub

    4064/2k/3/99/NP,April1999

    Thorpe,TW.1998.AnOverviewofWaveEnergyTechnologies,ETSU.

    WaveEnergyCenter