59
Lecture 02 Image Formation Davide Scaramuzza Institute of Informatics – Institute of Neuroinformatics

Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

  • Upload
    others

  • View
    5

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Lecture 02Image Formation

Davide Scaramuzza

Institute of Informatics – Institute of Neuroinformatics

Page 2: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Outline of this lecture

• Image Formation

• Other camera parameters

• Digital camera

• Perspective camera model

• Lens distortion

Page 3: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Historical context• Pinhole model: Mozi (470-390 BCE),

Aristotle (384-322 BCE)

• Principles of optics (including lenses):

Alhacen (965-1039 CE)

• Camera obscura: Leonardo da Vinci

(1452-1519), Johann Zahn (1631-1707)

• First photo: Joseph Nicephore Niepce (1822)

• Daguerréotypes (1839)

• Photographic film (Eastman, 1889)

• Cinema (Lumière Brothers, 1895)

• Color Photography (Lumière Brothers, 1908)

• Television (Baird, Farnsworth, Zworykin, 1920s)

• First consumer camera with CCD:

Sony Mavica (1981)

• First fully digital camera: Kodak DCS100 (1990)

Niepce, “La Table Servie,” 1822

CCD chip

Alhacen’s notes

Page 4: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Image formation

• How are objects in the world captured in an image?

Page 5: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

filmobject

• Place a piece of film in front of an object Do we get a reasonable image?

How to form an image

Page 6: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

filmobject

Pinhole camera

• Add a barrier to block off most of the rays

– This reduces blurring

– The opening is known as the aperture

barrier

Page 7: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Camera obscura

• Basic principle known to Mozi (470-390 BC), Aristotle (384-322 BC)

• Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

• Image is inverted

• Depth of the room (box) is the effectivefocal length

"Reinerus Gemma-Frisius, observed an eclipse of the sun at Louvain on January 24, 1544, and later he used this illustration of the event in his book De Radio Astronomica et Geometrica, 1545. It is thought to be the first published illustration of a camera obscura..." Hammond, John H., The Camera Obscura, A Chronicle

In Latin, means ‘dark room’

Page 8: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Camera obscura at home

Sketch from http://www.funsci.com/fun3_en/sky/sky.htmhttp://www.youtube.com/watch?v=B2aOs8RWntg

Page 9: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Home-made pinhole camera

What can we do to reduce the blur?

Page 10: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Effects of the Aperture Size

• In an ideal pinhole, only one ray of light reaches each point on the film the image can be very dim

• Making aperture bigger makes the image blurry

Page 11: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Shrinking the aperture

Why not make the aperture as small as possible?

Page 12: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Shrinking the aperture

Why not make the aperture as small as possible?

• Less light gets through (must increase the exposure)

• Diffraction effects…

Page 13: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

filmobject Lens

Image formation using a converging lens

• A lens focuses light onto the film

• Rays passing through the Optical Center are not deviated

Page 14: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

• All rays parallel to the Optical Axis converge at the Focal Point

Lensobject

Focal Point

f

Optical Axis

Focal Length:

Image formation using a converging lens

Page 15: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Thin lens equation

Object Lens

Focal Point

Image

B

A

z e

f

• Similar Triangles:

z

e

A

B

Find a relationship between f, z, and e

Page 16: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Thin lens equation

• Similar Triangles:

Object Lens

Focal Point

Image

f

fe

A

B

B

A

z e

f

A

1f

e

z

e

A

B

ezfz

e

f

e 1111

“Thin lens equation”

Any object point satisfying this equation is in focus

Page 17: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

“In focus”

• There is a specific distance from the lens, at which world points are “in focus” in the image

• Other points project to a “blur circle” in the image

Lensobject

f

Optical Axis Focal Point

“Circle of Confusion”or

“Blur Circle”

film

Page 18: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Blur Circle

• Object is out of focus Blur Circle has radius: – A minimal L (pinhole) gives minimal R

– To capture a ‘good’ image:adjust camera settings, such that R remains smaller than the image resolution

e

LR

2

Object

Lens

R

Image Plane

Blur Circle of radius

L

Focal Plane

f

z e

Page 19: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

The Pin-hole approximation

• What happens if 𝑧 ≫ 𝑓 ?

• We need to adjust the image plane such that objects at infinity are in focus

Lens

Focal Point

Image

B

Object

A

z e

f

A

ezf

111 ef

ef

11

0

Page 20: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

The Pin-hole approximation

• What happens if 𝑧 ≫ 𝑓 ?

• We need to adjust the image plane such that objects at infinity are in focus

ezf

111 ef

ef

11

0

Lens

Focal Point

'h

Object

h

z

f

COptical Center

orCenter of Projection

Focal Plane

Page 21: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

The Pin-hole approximation

• What happens if 𝑧 ≫ 𝑓 ?

• We need to adjust the image plane such that objects at infinity are in focus

• The dependence of the apparent size of an object on its depth (i.e. distance from the camera) is known as perspective

Lens

Focal Point

'h

Object

h

z

f

COptical Center

orCenter or Projection

hz

fh

z

f

h

h '

'

Page 22: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Perspective effects

• Far away objects appear smaller

Page 23: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Perspective effects

Page 24: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Perspective and art• Use of correct perspective projection indicated in 1st century BCE

frescoes

• During Renaissance time, artists developped systematic methods to determine perspective projection (around 1480-1515)

DurerRaphael

Page 25: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Playing with Perspective• Perspective gives us very strong depth cues

hence we can perceive a 3D scene by viewing its 2D representation (i.e. image)

• An example where perception of 3D scenes is misleading is the Ames room

A clip from "The computer that ate Hollywood" documentary.

Dr. Vilayanur S. Ramachandran.

“Ames room”

Page 26: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Projective Geometry

What is preserved?

• Straight lines are still straight

Page 27: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Projective Geometry

What is lost?

• Length

• Angles

Perpendicular?

Parallel?

Page 28: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Vanishing points and lines

Parallel lines in the world intersect in the image at a “vanishing point”

Page 29: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Vanishing points and lines

Vanishingpoint

Vanishingline

Vanishingpoint

Vertical vanishingpoint

(at infinity)

Parallel lines in the world intersect in the image at a “vanishing point”

Page 30: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Vanishing points and lines

oVanishing Point o

Vanishing Point

Vanishing Line

Parallel planes in the world intersect in the image at a “vanishing line”

Page 31: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Outline of this lecture

• Image Formation

• Other camera parameters

• Digital camera

• Perspective camera model

• Lens distortion

Page 32: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Focus and depth of field

• Depth of field (DOF) is the distance between the nearest and farthest objects in a scene that appear acceptably sharp in an image.

• Although a lens can precisely focus at only one distance at a time, the decrease in sharpness is gradual on each side of the focused distance, so that within the DOF, the unsharpness is imperceptible under normal viewing conditions

Depth of field

Page 33: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Focus and depth of field• How does the aperture affect the depth of field?

• A smaller aperture increases the range in which the object appears approximately in focus but reduces the amount of light into the camera

Page 34: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

• As f gets smaller, image becomes more wide angle

– more world points project onto the finite image plane

• As f gets larger, image becomes more narrow angle

– smaller part of the world projects onto the finite image plane

Field of view depends on focal length

Page 35: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Field of view

Smaller FOV = larger Focal Length

Page 36: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Field of view

Angular measure of portion of 3D space seen by the camera

Page 37: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Outline of this lecture

• Image Formation

• Other camera parameters

• Digital camera

• Perspective camera model

• Lens distortion

Page 38: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Digital cameras

• Film sensor array

• Often an array of charge coupled devices

• Each CCD/CMOS is light sensitive diode that converts photons (light energy) to electrons

Page 39: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

im[176][201] has value 164 im[194][203] has value 37

width 500j=1

height300

i=1Pixel Intensity with 8 bits ranges between [0,255]

Digital images

NB. Matlab coordinates: [rows, cols]; C/C++ [cols, rows]

Page 40: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Color sensing in digital cameras

Bayer grid • The Bayer pattern (Bayer 1976) places green filters over half of the sensors (in a checkerboard pattern), and red and blue filters over the remaining ones.

• This is because the luminance signal is mostly determined by green values and the human visual system is much more sensitive to high frequency detail in luminance than in chrominance.

Page 41: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Color sensing in digital cameras

Estimate missing components from neighboring values(demosaicing)

Bayer grid

Foveon chip design (http://www.foveon.com) stacks the red, green, and blue sensors beneath each other but has not gained widespread adoption.

Page 42: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

R G B

Color images:

RGB color space

… but there are also many other color spaces… (e.g., YUV)

Page 43: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

An example camera datasheet

Page 44: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Outline of this lecture

• Image Formation

• Other camera parameters

• Digital camera

• Perspective camera model

• Lens distortion

Page 45: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Perspective Camera

For convenience, the image plane is usually represented in front of C such that the image preserves the same orientation (i.e. not flipped)

Note: a camera does not measure distances but angles! a camera is a “bearing sensor”

C = optical center = center of the lens

Image plane

Pc

C

O

u

v

p

Zc

f

O = principal point

Zc = optical axis

Xc

Yc

Page 46: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Find pixel coordinates (u,v) of point Pcin the camera frame:

1. Convert Pc to image-plane

coordinates (x,y)

2. Convert Pc to (discretised) pixel

coordinates (u,v)

0. Convert world point Pw to

camera point Pc

Pc

O

u

v

p

Xc

y

x

C

Zc

Yc

Find pixel coordinates (u,v) of point Pwin the world frame:

[R|T]

W

Zw

Yw

Xw

Pw

From World to Pixel coordinates

Page 47: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Perspective Projection (1)

The Camera point Pc=( Xc , 0 , Zc )T projects to p=(x, y) onto the image plane

From similar triangles:

Similarly, in the general case:

c

c

c

c

Z

fXx

Z

X

f

x

Image Planef

Pc=( Xc , 0 , Zc )T

C

p

xXc

Xc

Zc

O

c

c

c

c

Z

fYy

Z

Y

f

y

1. Convert Pc to image-plane

coordinates (x,y)

2. Convert Pc to (discretised) pixel

coordinates (u,v)

From the Camera frame to the image plane

Page 48: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Perspective Projection (2)

To convert p from the local image plane coords (x,y) to the pixel coords (u,v), we need to account for:

the pixel coords of the camera optical center

Scale factors for the pixel-size in both dimensions

So:

Use Homogeneous Coordinates for linear mapping from 3D to 2D, by introducing an extra element (scale):

),( 00 vuO

From the Camera frame to pixel coordinates

O

v

(0,0)u

(u0,v0) x

y p

Image plane

vu kk ,

c

cvv

c

cuu

Z

fYkvvykvv

Z

fXkuuxkuu

00

00

v

up

1~

~

~

~ v

u

w

v

u

p

Page 49: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

So:

Expressed in matrix form and homogenerous coordinates:

c

c

c

v

u

Z

Y

X

vfk

ufk

v

u

100

0

0

0

0

c

c

c

c

c

c

v

u

Z

Y

X

K

Z

Y

X

v

u

v

u

100

0

0

0

0

Or alternatively

c

cv

c

cu

Z

fYkvv

Z

fXkuu

0

0

Image plane (CCD)

Pc

C

O

u

v

p

Zc

f

Xc

Yc

Focal length in pixels

K is called “Calibration matrix” or “Matrix of Intrinsic Parameters”

Sometimes, it is common to assume a skew factor (𝐾12 ≠ 0) to account for possible misalignments between CCD and lens. However, the camera manufacturing process today is so good that we can safely assume 𝐾12 = 0 and 𝛼𝑢= 𝛼𝑣.

Perspective Projection (3)

Page 50: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Exercise 1

• Determine the Intrinsic Parameter Matrix (K) for a digital camera with image size 640 × 480 pixels and horizontal field of view equal to 90°

• Assume the principal point in the center of the image and squared pixels

• What is the vertical field of view?

Page 51: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Exercise 1

• Determine the Intrinsic Parameter Matrix (K) for a digital camera with image size 640 × 480 pixels and horizontal field of view equal to 90°

• Assume the principal point in the center of the image and squared pixels

• What is the vertical field of view?

𝑓 =640

2 tan𝜃2

= 320 𝒑𝒊𝒙𝒆𝒍𝒔

100

2403200

3200320

K

𝜃𝑉 = 2 tan−1𝐻

2𝑓= 2 tan−1

480

2 ∙ 320= 73.74°

Page 52: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Exercise 2

• Prove that world’s parallel lines intersect at a vanishing point in the camera image

Vanishingpoint

Vanishingline

Vanishingpoint

Vertical vanishingpoint

(at infinity)

Slide from Efros, Photo from Criminisi

Page 53: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Exercise 2

• Prove that world’s parallel lines intersect at a vanishing point in the camera image

• Let’s consider the perspective projection equation in calibrated coordinates:

• Two parallel 3D lines have parametric equations:

• Now substitute this into the camera perspective projection equation and compute the limit for 𝑠 → ∞

• The result solely depends on the direction vector of the line. These are the image coordinates of the vanishing point (VP).

• What is the intuitive interpretation of this?

n

m

l

s

Z

Y

X

Z

Y

X

0

0

0

Z

Yy

Z

Xx ,

n

m

l

s

Z

Y

X

Z

Y

X

1

1

1

VP

i

i

sVP

i

i

sy

n

m

snZ

smYx

n

l

snZ

slX

lim,lim

Page 54: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Perspective Projection (4)

c

c

c

Z

Y

X

Kv

u

1

From the World frame to the Camera frame

Projection Matrix (M)

11

w

w

w

Z

Y

X

TRKv

u

3

2

1

333231

232221

131211

t

t

t

Z

Y

X

rrr

rrr

rrr

Z

Y

X

w

w

w

c

c

c

113333231

2232221

1131211

w

w

w

w

w

w

c

c

c

Z

Y

X

TRZ

Y

X

trrr

trrr

trrr

Z

Y

X

Pc

O

u

v

p

XcCZc

Yc[R|T]

Extrinsic Parameters

W

Zw

Yw

Xw

= Pw

Perspective Projection Equation

Page 55: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Outline of this lecture

• Image Formation

• Other camera parameters

• Digital camera

• Perspective camera model

• Lens distortion

Page 56: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Radial Distortion

PincushionBarrel distortionNo distortion

Page 57: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Radial Distortion

• The standard model of radial distortion is a transformation from the ideal coordinates (𝑢, 𝑣) (i.e., undistorted) to the real observable coordinates (distorted) (𝑢𝑑 , 𝑣𝑑)

• The amount of distortion of the coordinates of the observed image is a nonlinear function of their radial distance . For most lenses, a simple quadratic model of distortion produces good results

where

• Depending on the amount of distortion (an thus on the camera field of view), higher order terms can be introduced:

𝑢𝑑𝑣𝑑

= 1 + 𝑘1𝑟2

𝑢 − 𝑢0𝑣 − 𝑣0

+𝑢0𝑣0

𝑟2= 𝑢 − 𝑢02+ 𝑣 − 𝑣0

2

𝑢𝑑𝑣𝑑

= 1 + 𝑘1𝑟2 + 𝑘2𝑟

4 + 𝑘3𝑟6

𝑢 − 𝑢0𝑣 − 𝑣0

+𝑢0𝑣0

𝑟2= 𝑢 − 𝑢02+ 𝑣 − 𝑣0

2

Page 58: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

• To recap, a 3D world point 𝑃 = 𝑋𝑤, 𝑌𝑤, 𝑍𝑤 projects into the image point 𝑝 =𝑢, 𝑣

where

and λ is the depth (λ = 𝑍𝐶) of the scene point

• If we want to take into account the radial distortion, then the distorted coordinates 𝑢𝑑, 𝑣𝑑 (in pixels) can be obtained as

where

• See also the OpenCV documentation:

Summary: Perspective projection equations

1

1~

~

~

~

w

w

w

Z

Y

X

TRKv

u

w

v

u

p

100

0

0

0

0

v

u

K

𝑢𝑑𝑣𝑑

= 1 + 𝑘1𝑟2

𝑢 − 𝑢0𝑣 − 𝑣0

+𝑢0𝑣0

𝑟2= 𝑢 − 𝑢02+ 𝑣 − 𝑣0

2

http://docs.opencv.org/2.4.13.3/modules/calib3d/doc/camera_calibration_and_3d_reconstruction.html

Page 59: Lecture 02 Image Formation - Davide Scaramuzzarpg.ifi.uzh.ch/docs/teaching/2017/02_image_formation_1.pdf · 2017-10-05 · • First photo: Joseph Nicephore Niepce (1822) • Daguerréotypes

Summary (things to remember)• Perspective Projection Equation

• Intrinsic and extrinsic parameters (K, R, t)

• Homogeneous coordinates

• Normalized image coordinates

• Image formation equations (including radial distortion)

• Chapter 4 of Autonomous Mobile Robot book