31
Lecture 06 Chap 3&4 10/13/2021 甘宏志, 物理館 416 , [email protected]

Lecture 06 Chap 3&4

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 06 Chap 3&4

Lecture 06Chap 3&4

10/13/2021

甘宏志, 物理館 416 室 , [email protected]

Page 2: Lecture 06 Chap 3&4

A.B.C.D.

9%

79%

2%9%

Page 3: Lecture 06 Chap 3&4

A.B.C.D.

3%

76%

11%10%

1𝑏 1

1𝑎 1

𝑒 𝑒

𝑙𝑛𝑏 1𝑎 1

Page 4: Lecture 06 Chap 3&4

Chapter 3 Kinematics in Two or Three Dimensions

Vectors and Scalars

Vector Kinematics

Two Dimensional Motion with Constant Acceleration

Relative Velocity

Page 5: Lecture 06 Chap 3&4

Solving Problems Involving Projectile Motion

(Most common type of motions on earth)Projectile motion is motion with constant acceleration in two dimensions, where the acceleration is g and is downward (toward the earth).

Page 6: Lecture 06 Chap 3&4

3-7 Projectile MotionIf an object is launched at an initial angle of θ0 with the horizontal, the analysis is similar except that the initial velocity has a vertical component.

Page 7: Lecture 06 Chap 3&4

As shown in Figure, a ski-jumper leaves the ski track which is curved so that the jumper is projected upward at an angle from the end of the track with a speed of v0 m/s,. The landing incline below him falls off with a slope of tan . Where does he land on the incline?

D

Page 8: Lecture 06 Chap 3&4

D

tvx )cos( 0

20 2

1)sin( gttvy

xy tan

When landing on the slope,

tvgttv )cos(tan21)sin( 0

20

cossincoscossin2 0

gvt

cos)sin(2 0

gv

Page 9: Lecture 06 Chap 3&4

tvx )cos( 0

cos

)sin(cos2 20

gv

xy tan

2

20

cos)sin(cossin2

gv

cosxD

2

20

cos)sin(cos2

gv

How to find maximum D?

Page 10: Lecture 06 Chap 3&4

5 3( ) 15y x x x 2 25 ( 9) 0dy x x

dx

22

2 10 (2 9)d dy d y x xdx dx dx

How to find the max. or min. of a function ? *

Extreme value at 0dydx

;

2

2 0d ydx

2

2 0d ydx

2

2 0d ydx

Min.

Max.

Saddle point

0, 3x

Page 11: Lecture 06 Chap 3&4

12

x

Example : 3 2( ) 2 3 12 5y x x x x

Find the max. and min. of y(x)

2

212 6d dy d y x

dx dx dx

6( 2)( 1) 0x x 0dydx

1x 2

2 18 0d ydx

min 2 3 12 5 2y

2x 2

218 0d y

dx

max 16 12 24 5 25y

Page 12: Lecture 06 Chap 3&4

cosxD

20

2

2 cos sin( )cos

vg

What is the maximum D?20

2( ) 2 cos sin( )( )

cosdD d v

d d g

20

22 sin sin( ) cos cos( )( )

cosvg

20

22 cos( 2 )( )

cosvg

( ) 0, cos(2 ) 0,dDFord

2 ,2 ,

4 2

20

max 2

cos( ) sin( )2 4 2 4 2cos

vDg

20

22 1 sin( )

2cosvg

Page 13: Lecture 06 Chap 3&4

cosxD

2

20

cos)sin(cos2

gv

20

2( ) 2 cos( 2 )

cosdD v

d g

2 20

2 2( ) 4 sin( 2 )

cosd D v

d g

,4 2

2 20

2 2

sin( )( ) 4 2 0cos

d D vd g

Page 14: Lecture 06 Chap 3&4

' - r r u t

Origin O and O’coincide at t = 0, S’moves at u relative to S

dttud

dtrd

dtrd )(

uvv

dtud

dtvd

dtvd

aa

0

u

vv

Relative Velocity

Page 15: Lecture 06 Chap 3&4

Relative Velocity for 1D motion

MCv

MG MC CGv v v

M : Man ; C : Car ; G : Ground

CGv

ABv : Velocity of A relative to B

If vMC = 5 m/s and vCG = 3 m/s, then vMG = 8 m/s .

If vMC = 5 m/s and vCG = -3 m/s, then vMG = 2 m/s .

1. Motion in one dimension

Page 16: Lecture 06 Chap 3&4

Example 3-20 Car velocities at 900 . What is the velocity of A relative to B ( vAB ) ?

A

B

ˆ40.0( / )AGv m s i

ˆ40.0( / )BGv m s j

AB AG GB AG BGv v v v v

ˆ ˆ40.0( / ) 40.0( / )ABv m s i m s j

AGv

BGv ABv

2 240 40 ( / ) 56.6( / )ABv m s m s

Page 17: Lecture 06 Chap 3&4

vA =10m/s, vB =18m/s, D=36m, = 370 ,u=?

A Av0( 37 )

B Bv

D

u 210 /g m s

Page 18: Lecture 06 Chap 3&4

vA =10m/s, vB =18m/s, D=36m, = 370 ,u=? for hitting B

A Av0( 37 )

B Bv

ˆ ˆcos sinCAv u i u j

ˆ ˆ( )BA B A BAv v v i v i

; 0BA BA BAx D v t y

12 sin0CAuy t

g

2 2 sin2 cos sin 0BAvu u Dg g

;

D

u

1 1cosBAD v t u t

2 10 375 0u u 25( / )u m s

210 /g m sC

When C hits B, xCA = xBA and yCA = yBA

;cos tuxCA 2

21sin gttuyCA

sin 37 3 / 5cos 37 4 / 5

Page 19: Lecture 06 Chap 3&4

BG BW WGv v v

PG PA AGv v v

P : Plane ; A : Air ; G : Ground

B : Boat ; W : Water ; G : Ground

Real-Life Occasions for Relative Coordinate Systems

Page 20: Lecture 06 Chap 3&4

Example 4.10 A boat heading due north crosses a wide river with a speed of 10.0 km/h relative to the water. The water in the river has a uniform speed of 5.00 km/h due east relative to the Earth. Determine the velocity of the boat relative to an observer standing on either bank.

bE br rEv v v

2 2

2 2(10.0) (5.0) /11.2 /

bE br rEv v v

km hkm h

1tan ( ) 26.6rE

br

vv

brv

rEv

bEv

Page 21: Lecture 06 Chap 3&4

TEST 3-1

A

B

060

wind

The distance between A and B is 500 Km. The speed of the airplane relative to air is 500km/h.The speed of wind relative to earth is 40 Km/h.

What should it heading be ?

How long it take ?

Page 22: Lecture 06 Chap 3&4

Solution : sin sinA Ba b

0sin 40sin120sin 0.069500

a BAb

0 04 ; 56A C

02

0

sin 40sin 56 475.4 /sin sin 4

b Cc m sB

500 1.05475.4 /

Kmt hKm h

Bwind

C

A 060

A

CB a

bc

Page 23: Lecture 06 Chap 3&4

Solving Problem wih Newton’s Laws :Free Body Diagrams**

Chapter 4 The Law of Motion

Newton’s Laws

Page 24: Lecture 06 Chap 3&4

Copyright © 2012 Pearson Education Inc.

What are some properties of a force? - Figure 4.1

Page 25: Lecture 06 Chap 3&4

Contact forces Field forcesP. 84

Page 26: Lecture 06 Chap 3&4

Copyright © 2012 Pearson Education Inc.

Drawing force vectors - Figure 4.3

• Use a vector arrow to indicate the magnitude and direction of the force.

Page 27: Lecture 06 Chap 3&4

Copyright © 2012 Pearson Education Inc.

Superposition of forces - Figure 4.4

• Several forces acting at a point on an object have the same effect as their vector sum acting at the same point.

Page 28: Lecture 06 Chap 3&4

Copyright © 2012 Pearson Education Inc.

Decomposing a force into its component vectors• Choose perpendicular x and y axes.

• Fx and Fy are the components of a force along these axes.

• Use trigonometry to find these force components.

Figure 4.5 :

Page 29: Lecture 06 Chap 3&4

Copyright © 2012 Pearson Education Inc.

Page 30: Lecture 06 Chap 3&4

Copyright © 2012 Pearson Education Inc.

Figure 4.7

In genearl,

Page 31: Lecture 06 Chap 3&4

Newton’s Laws of Motion

First law : 0 F

Second law:

AB BAF F

Third law:

The tendency of an object to resist any attempt to change its velocity is called inertia.

constant v

amF