11
1 N09- 085/ A Lecture 1 Axial Fans: Aerodynamic Design Th. Carolus UNIVERSITÄT SIEGEN Institut für Fluid- und Thermodynamik 2 N09- 085/ A UNIVERSITÄT SIEGEN Institut für Fluid- und Thermodynamik 1.1 Axial Cascade Blade Element (BE) 1.2 Actual vs. Ideal Flow 1.3 Frames of References 1.4 Co-ordinate System and Components of Velocity 1.5 Velocity triangles on BE (turbine) 1.6 EULER‘s Equation of Turbomachinery (Angular Momentum Analysis) 1.7 Blade Element Design 1.9 Prototyping and Scaling Up 1.8 Performance Analysis via Computational Fluid Dynamics (CFD)

Lecture 1 Axial Fans: Aerodynamic DesignN09...Lecture 1 Axial Fans: Aerodynamic Design ... 1.6 EULER‘s Equation of Turbomachinery (Angular Momentum Analysis) 1.7 Blade Element Design

Embed Size (px)

Citation preview

Page 1: Lecture 1 Axial Fans: Aerodynamic DesignN09...Lecture 1 Axial Fans: Aerodynamic Design ... 1.6 EULER‘s Equation of Turbomachinery (Angular Momentum Analysis) 1.7 Blade Element Design

1

1N09- 085/ A

Lecture 1

Axial Fans: Aerodynamic Design

Th. Carolus

UNIVERSITÄT SIEGEN Institut für Fluid- und Thermodynamik

2N09- 085/ A

UNIVERSITÄT SIEGEN Institut für Fluid- und Thermodynamik

1.1 Axial Cascade Blade Element (BE)

1.2 Actual vs. Ideal Flow

1.3 Frames of References

1.4 Co-ordinate System and Components of Velocity

1.5 Velocity triangles on BE (turbine)

1.6 EULER‘s Equation of Turbomachinery (Angular Momentum Analysis)

1.7 Blade Element Design

1.9 Prototyping and Scaling Up

1.8 Performance Analysis via Computational Fluid Dynamics (CFD)

Page 2: Lecture 1 Axial Fans: Aerodynamic DesignN09...Lecture 1 Axial Fans: Aerodynamic Design ... 1.6 EULER‘s Equation of Turbomachinery (Angular Momentum Analysis) 1.7 Blade Element Design

2

3N09- 085/ A1.1 Axial Cascade Blade Element (BE)

Rotor diameter: Da = 2raHub diameter: Di = 2riRadial extension of BE: δrNumber of blades: z

Chord length: lCircumferential spacing tBlade angle at leading edge (LE) βs1Blade angle at leading edge (LE) βs2

4N09- 085/ A1.2 Actual vs. Ideal Flow

Actual:• 3D• unsteady

Ideal:• 1D• steady

Page 3: Lecture 1 Axial Fans: Aerodynamic DesignN09...Lecture 1 Axial Fans: Aerodynamic Design ... 1.6 EULER‘s Equation of Turbomachinery (Angular Momentum Analysis) 1.7 Blade Element Design

3

5N09- 085/ A1.3 Frames of References

uc w= +

w

u = velocity of rotating system (relative system)

= velocity of a particle in relative system

⇒ Oberserver in the absolute frame of reference sees absoluteparticle velocity

stationary (absolute) frame of referencerotating frame

of reference

Velocity triangle

u

w

(1-1)

6N09- 085/ A1.4 Co-ordinate System and Components of Velocity

Velocity and relevant components:

• in z- direction ⇒ axial component• in ϕ- dircetion ⇒ circumferential (= tangential) component• in r- direction ⇒ radial component

c

zcuc

rc

= + +z u rc c c c

In addition useful: Meridional component: m z rc c c= +

(1-2)

(1-3)

Page 4: Lecture 1 Axial Fans: Aerodynamic DesignN09...Lecture 1 Axial Fans: Aerodynamic Design ... 1.6 EULER‘s Equation of Turbomachinery (Angular Momentum Analysis) 1.7 Blade Element Design

4

7N09- 085/ A1.5 Velocity triangles on BE (turbine)

u

1 2

8N09- 085/ A1.6 EULER‘s Equation of Turbomachinery (Angular Momentum Analysis)

controlvolume

Mshaft

δ Fu

δ Fu

r

δ r

Page 5: Lecture 1 Axial Fans: Aerodynamic DesignN09...Lecture 1 Axial Fans: Aerodynamic Design ... 1.6 EULER‘s Equation of Turbomachinery (Angular Momentum Analysis) 1.7 Blade Element Design

5

9N09- 085/ A

Apply to angular momentum conservation to CV „blade element“ (BE)

With incremental mass flow through BE

one gets the incremental torque at shaft

( ) ( )( )× ∂⋅+

∂× =∫∫ ∑

anguunsteady termexternaltorqu

lar momentumes

AV shaftr c c Mc

n dAr

ρ

( ) =2 2

change of angular momentum from entrance to exit

of blade channel

u shaftm r c Mδ δ

= = 2m mm c A c rδ ρ δ ρ πδ

(1-4)

(1-5)

= −change of momentum from entrance to exit

of blade channel

u uF c mδ δ2

Note:Incremental tangential force is

(1-6) δ Fu

10N09- 085/ A

With the incremental power

and

one eventually obtains the specific work

or, if

=u rΩ

≡ = 2 2BE

uPY u cm

δδ

=BE shaftP Mδ δ Ω

EULER equation of turbomachinery (1754) LEONHARD EULER

1707 - 1783

(1-7)

(1-8)

(1-9b)

≠1 0uc

= −2 2 1 1u uY u c u c

(1-9a)

SEGNER‘swaterwheelanalyzed byL. EULER

Page 6: Lecture 1 Axial Fans: Aerodynamic DesignN09...Lecture 1 Axial Fans: Aerodynamic Design ... 1.6 EULER‘s Equation of Turbomachinery (Angular Momentum Analysis) 1.7 Blade Element Design

6

11N09- 085/ A

Now, CV enclosing only one blade and thus

yields

1.7 Blade Element Design

= −u uF c mδ δ2

Recall circumferential force on BE from angular momentum analysis

(1-6)

2= −u u mF c c t rδ ρ δ (1-10)CV

= =m mm c A c t rδ ρ δ ρ δ

1st way to get circumferential force on BE

12N09- 085/ A

Flow induced forces on one blade

• lift

• drag

≈ F Lδ δ

∞= LwL c l rδ ρ δ

2

2

( )2

2∞

∞= −sinu LwF c l rδ β ε ρ δ⇒

and

∞= DwD c l rδ ρ δ

2

2

( )∞= −sinuF Fδ β ε δ

For design conditions usually D << L,i. e. the drag-lift ratio is

≡ ≈sinD Lδ δ ε ε (1-11)

(1-12)

2nd way to get circumferential force on BE

Page 7: Lecture 1 Axial Fans: Aerodynamic DesignN09...Lecture 1 Axial Fans: Aerodynamic Design ... 1.6 EULER‘s Equation of Turbomachinery (Angular Momentum Analysis) 1.7 Blade Element Design

7

13N09- 085/ A

Hence, from velocity triangles we get

and the vector-mean flow angle

∞β

( )w w w∞ ≡ +1 212

∞w

For cascades with small flow deflection,i. e. for blades with small camber, replaceup- and downstream velocities by theirvector-mean:

(1-13)

∞β∞w , ????

14N09- 085/ A

Inserting in this equation

• the blade spacing

• the solidity

Combining Eqs. (1-10) and (1-12, -13) yields

( )22

∞ ∞

−=

−sinu m

Ll c cct w β ε

= velocity trif( , )ang sle ,L Dc cσ⇒

2=

rtzπ

σπ

≡2lzr

(1-16)

(1-14)

(1-15)

aerodynamicdesign point

from selectedairfoil

Page 8: Lecture 1 Axial Fans: Aerodynamic DesignN09...Lecture 1 Axial Fans: Aerodynamic Design ... 1.6 EULER‘s Equation of Turbomachinery (Angular Momentum Analysis) 1.7 Blade Element Design

8

15N09- 085/ A1.8 Performance Analysis via Computational Fluid Dynamics (CFD)

• Computational domain and numerical grid

16N09- 085/ A

Pressure distributionStreamlines

• Typical CFD results (I)

Page 9: Lecture 1 Axial Fans: Aerodynamic DesignN09...Lecture 1 Axial Fans: Aerodynamic Design ... 1.6 EULER‘s Equation of Turbomachinery (Angular Momentum Analysis) 1.7 Blade Element Design

9

17N09- 085/ A

Spanwise blade loading (pressure distribution)

• Typical CFD results (II)

18N09- 085/ A

0 0.05 0.1 0.15 0.2 0.25 0.30

0.1

0.2

0.3

0.4

0.5

0.6

φ [-]

ψfa

, ηfa

[-]

Experiment ψfa

Experiment ηfac

CFD

CFD

Design

Design

• Typical CFD results (III)

Performance Curves

Page 10: Lecture 1 Axial Fans: Aerodynamic DesignN09...Lecture 1 Axial Fans: Aerodynamic Design ... 1.6 EULER‘s Equation of Turbomachinery (Angular Momentum Analysis) 1.7 Blade Element Design

10

19N09- 085/ A

CNC-Milling Machine

Prototyping

1.9 Prototyping and Scaling Up

20N09- 085/ A

Experimental model test

Full scale

Page 11: Lecture 1 Axial Fans: Aerodynamic DesignN09...Lecture 1 Axial Fans: Aerodynamic Design ... 1.6 EULER‘s Equation of Turbomachinery (Angular Momentum Analysis) 1.7 Blade Element Design

11

21N09- 085/ AShort presentation of the University of Siegen Fan Design Code ....