48
Christian David Ott TAPIR, California Institute of Technology [email protected] IRAP PhD and Erasmus Mundus School/Workshop Les Houches, April 2011 Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the Formation of Black Holes. Lecture 2: Gravitational-Wave Astronomy & and an Update on LIGO/VIRGO

Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Christian David OttTAPIR, California Institute of Technology

[email protected]

IRAP PhD and Erasmus Mundus School/WorkshopLes Houches, April 2011

Lecture 1: Stellar Collapse, Core-Collapse Supernovae,

and the Formation of Black Holes.

Lecture 2: Gravitational-Wave Astronomy &

and an Update on LIGO/VIRGO

Page 2: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Stellar Collapse, Core-Collapse Supernovae andThe Formation of Black Holes:

The Big Picture

Christian David OttTAPIR, California Institute of Technology

[email protected]

IRAP PhD and Erasmus Mundus School/WorkshopLes Houches, April 2011

Page 3: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

The Core-Collapse Scenario

C. D. Ott @ Les Houches, 2011/04/05 3

M > 7-10 MSUN

Page 4: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

The Core-Collapse Scenario

C. D. Ott @ Les Houches, 2011/04/05 4

“Core Bounce” atnuclear density.

M > 1.3 – 2.2 MSUN

Page 5: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

The Core-Collapse Scenario

C. D. Ott @ Les Houches, 2011/04/05 5

“Core Bounce” atnuclear density.

M > 1.3 – 2.2 MSUN

This causescore bounce.

Page 6: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

The Core-Collapse Scenario

C. D. Ott @ Les Houches, 2011/04/05 6

Page 7: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

The Core-Collapse Supernova Problem

• Shock always stalls:Dissociation of Fe-group nuclei @ 8.8 MeV/baryon (17 B/MSun).Neutrino losses @ 10 B/s (1 [B]ethe = 1051 ergs).

C. D. Ott @ Les Houches, 2011/04/05 7

Radius (km)Animationby Evan O’Connor

Page 8: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

The Core-Collapse Scenario

C. D. Ott @ Les Houches, 2011/04/05 8

Page 9: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

The Core-Collapse Scenario

C. D. Ott @ Les Houches, 2011/04/05 9

Page 10: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

The Core-Collapse Scenario

C. D. Ott @ Les Houches, 2011/04/05 10

This talk

Page 11: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

The Core-Collapse Scenario

C. D. Ott @ Les Houches, 2011/04/05 11

Digression:What is the “Supernova Mechanism”?

Page 12: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

C. D. Ott @ Les Houches, 2011/04/05 12

[Ott 2009]

Neutrinos: Carry away 99% of the gravitational energy of the newborn neutron star (300 B).

Page 13: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

C. D. Ott @ Les Houches, 2011/04/05 13[Ott 2009]

The Neutrino MechanismImshenik & Nadyozhin 1964Arnett 1966Colgate & White 1966Bethe & Wilson 1985

The Problem:Doesn’t quite work...Fails in 1D, marginal in 2D.Key may be 3D.(->Nordhaus et al. 2010)

Page 14: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Core-Collapse Supernova Mechanisms

C. D. Ott @ Les Houches, 2011/04/05 14

[Buras et al. 2006ab, Scheck et al. 2007, Burrows et al. 2006,

Neutrino Mechanism

MagnetorotationalMechanism

Acoustic Mechanism

[Imshenik & Nadyozhin ‘64 Colgate & White ‘66, Arnett ‘66, Wilson ‘85,

Bethe & Wilson ‘85]

[proposed by Burrows et al. ‘06, ‘07; not yet confirmed by other groups/codes]

Introduced by:

Phase-Transition-Induced Mechanism

[Takahara & Sato ‘88, Gentile et al. ‘93, Sagert et al. ’09, Fischer et al. ’10]

[Bisnovaty-Kogan ’70, LeBlanc & Wilson ‘70, Meier et al. ‘76,

Symbalisty ’84, Burrows et al. ‘07]

Alternatives:

Page 15: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Magnetorotational Explosions

15

[Burrows et al. 2007, Dessart et al. 2008]

C. D. Ott @ Les Houches, 2011/04/05

VULCAN 2D R-MHD code, Livne et al. 2007, Burrows et al. 2007.

• Rapid rotation: P0<4-6 s -> millisecond PNS

• PNS rotational energy:10 B = 1052 erg

• Amplification of B fields up to equipartition:

• compression

• dynamos

• magneto-rotational instability (MRI)

• Jet-driven outflows.

• MHD-driven explosionmay be GRB precursor.

Page 16: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

C. D. Ott @ Les Houches, 2011/04/05 16

Magnetic field lines inM15B11UP2A1H of Burrows, Dessart, Livne, Ott, Murphy ‘07.

NewtonianRadiation-MHDSimulations withVULCAN/2D

C. D. Ott @ Les Houches, 2011/04/05

Page 17: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

The Making of:Stellar-Mass Black Holes

C. D. Ott @ Les Houches, 2011/04/05 17

Page 18: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

The Making of Stellar-Mass Black Holes

C. D. Ott @ Les Houches, 2011/04/05 18

Route 1 to BH formation:Collapse to protoneutron star (PNS), explosion fails -> “Collapsar Type I”

Route 2 to BH formation: Collapse to PNS, explosion succeeds, but does not unbind entire stellar envelope. Fallback accretion -> BH formation O(many) seconds. “Collapsar Type II”

Route 3 to BH formation: BH formation triggered by Hadron-Quark Phase transition in the PNS cooling phase.

Important aside: There is no such thing as direct collapse to a black hole forordinary massive stars (10—130 MSun).

Page 19: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

C. D. Ott @ Les Houches, 2011/04/05 19

• Strong observational evidence for connection between type-Ibc core-collapse supernovae and long GRBs.

• 2 competing central scenarios:(1) Millisecond Magnetar (= 1015 gauss Neutron Star) Model

(Bucciantini, Quatert, Metzger et al. ’07-’10, supported by: Dessart, Burrows, Ott et al. ‘08)

(2) Collapsar Model (Woosley 1993)

BH + accretion disk formed in a failing core-collapse supernova or after a core-collapse supernova explosion via fallback accretion.

CCSN – Long-GRB Connection

Page 20: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Studying Black Hole Formation

20C. D. Ott @ Les Houches, 2011/04/05

Key ingredient: General Relativity

Curvatureof spacetime

Stress-EnergysourcingCurvature

Einstein Equations:

Page 21: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Effects of General Relativity

21C. D. Ott @ Les Houches, 2011/04/05

In Newtonian Gravity,

black holes cannot form.

Page 22: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Effects of General Relativity

22C. D. Ott @ Les Houches, 2011/04/05

Page 23: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Einstein -> Computer: Numerical Relativity

23C. D. Ott @ Les Houches, 2011/04/05

• 12 first-order hyperbolic evolution equations.

• 4 elliptic constraint equations

• 4 coordinate gauge degrees of freedom: α, βi.

Figure: C. Reisswig

ArnowittDeserMisner(ADM)

ADM3+1 split of spacetime

Foliation of spacetime

3-hyper-surface

Page 24: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

The GR1D Code

24C. D. Ott @ Les Houches, 2011/04/05

• GR1D: Open-Source 1.5D GR (1D + rotation) GR hydrodynamics code.

• Available from http://www.stellarcollapse.org .

• Eulerian Radial-gauge, polar-slicing (-> Schwarzschild-like coordinates).

• GR Hydro equations in GR1DImplemented as semi-discrete finite-volume scheme with PPM reconstruction, HLLE Riemann solver andRunge-Kutta time integration.

• Rotation: Assume constantangular velocity on spherical shells -> effective centrifugal force.

• Choice of coordinates greatly simplifies GR hydro equations (zero shift).

• Disadvantage: Cannot evolve past horizon formation (like May & White, Misner & Sharp, van Riper formulations).

*O’Connor & Ott 2010 CQG+

[Gourgoulhon ‘91, Romero et al. ‘96+

Page 25: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

GR1D: EOS & Microphysics

25C. D. Ott @ Les Houches, 2011/04/05

• Multiple finite-temperature microphysical nuclear EOS:H. Shen et al. 1998, Lattimer & Swesty 1991 with K={180,220,375} MeV.EOS tables available in HDF5 format on http://www.stellarcollapse.org .

• Low-density EOS: Timmes EOS (tabulated & matched).

• Neutrinos during collapse: effective Ye(ρ) approx. [Liebendörfer ’05].

• Postbounce: 3-flavor, energy-averaged (gray) neutrino leakage scheme(tuned to reproduce luminosities from full radiation-hydro simulations to 20%).

• Approximate neutrino heating:

Page 26: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Selected Results from1.5D Black Hole Formation Simulations

O’Connor & Ott 2011, ApJ 730, 70

26C. D. Ott @ Les Houches, 2011/04/05

Page 27: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Parameter Study: > 700 Model Calculations

27C. D. Ott @ Les Houches, 2011/04/05

*O’Connor & Ott 2010, ApJ]

Page 28: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Protoneutron Star Collapse

C. D. Ott @ Les Houches, 2011/04/05 28

O’Connor & Ott 2010, open-source GR1D code @ http://www.stellarcollapse.org

Page 29: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Influence of Rotation

29C. D. Ott @ Les Houches, 2011/04/05

*O’Connor & Ott 2011+

Page 30: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Postbounce Spin Evolution

30C. D. Ott @ Les Houches, 2011/04/05

• (T/|W|)dynamical > ≈0.27, (T/|W|)secular > ≈0.14.

• At lower T/|W|:Dynamical shear instability.

*O’Connor & Ott 2011+

Page 31: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

31

Rotational Nonaxisymmetric Instability

(T/|W|)dynamical > ≈0.27.

[Ott ‘08, unpublished]

Page 32: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

32

Rotational Nonaxisymmetric Instability[Ott ‘08, unpublished]

-> Limit on PNS spin by redistribution / radiation of angular momentum.

Page 33: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Kerr Solution and Black Hole Spin

33C. D. Ott @ Les Houches, 2011/04/05

[Wikipedia]

Page 34: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Black Hole Birth Spin

34C. D. Ott @ Les Houches, 2011/04/05

[O’Connor & Ott 2011]

Spin of the nascent BH is limited to a* < 1 by nonaxisymmetric

instabilities in the protoneutron star.

Page 35: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

35C. D. Ott @ Les Houches, 2011/04/05

3+1 GR Simulations of BH Formation

Page 36: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

3+1 GR Computational Framework

C. D. Ott @ Les Houches, 2011/04/05 36

[Buras et al. 2006ab, Scheck et al. 2007, Burrows et al. 2006,

• Cactus: Open-source software framework for HPC, developed at the Center for Computation & Technology at LSU.

• Einstein Toolkit (http://einsteintoolkit.org)

Set of open-source codes for numerical relativity and computational relativistic astrophysics.(LSU, Caltech, RIT, GATech)

– Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation of numerical GR (code: McLachlan).

– General-Relativistic Hydrodynamics (code: GRHydro).

– Adaptive Mesh Refinement (code: Carpet driver).

– Analysis: Horizon finder, GW extraction etc.

• Nuclear equation of state and neutrino leakage from open-source GR1D code: http://stellarcollapse.org

Page 37: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Computational Framework: AMR

C. D. Ott @ Les Houches, 2011/04/05 37

[Buras et al. 2006ab, Scheck et al. 2007, Burrows et al. 2006,

11 levelsof AMR

Finest level:dx 100 m

Page 38: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

38C. D. Ott @ Les Houches, 2011/04/05

Ott et al. ’11Physical Review Letters (in press)

Page 39: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

The End

C. D. Ott @ Les Houches, 2011/04/05 39

Page 40: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Supplemental Slides

C. D. Ott @ Les Houches, 2011/04/05 40

Page 41: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

GR Hydrodynamics

41

Local conservation laws:mass

stress-energycovariant derivative; here: divergencetakes into account that space is curved.

C. D. Ott @ Les Houches, 2011/04/05

Page 42: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Some more Details:

42C. D. Ott @ Les Houches, 2011/04/05

ADM Line Element:

“Extrinsic Curvature”

ADM Evolution Equations:

ADM Constraint Equations:

Projection of stress-energy tensor.

ADM energy density

Page 43: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Some more Details:

43C. D. Ott @ Les Houches, 2011/04/05

ADM Line Element:

“Extrinsic Curvature”

ADM Evolution Equations:

ADM Constraint Equations:

Projection of stress-energy tensor.

ADM energy density

Problem:ADM equations unstable in multi-D simulations in the presence of strong curvature (e.g. a black hole).

Solution (late 1990s):Use stable re-formulation of ADM equations, e.g., theBaumgarte-Shapiro-Shibata-Nakamura (BSSN) formulation.

Page 44: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Special Case: Spherical Symmetry

44C. D. Ott @ Les Houches, 2011/04/05

Equations simplify significantly; may use particularly convenientchoice of gauge conditions: “Radial Gauge, Polar Slicing”

-> Schwarzschild-like line element

-> Solving for the spacetimemetric becomes an ODE thatcan just be integrated.

(see, e.g., O’Connor & Ott 2010)

Hydrodynamics:

U, F, S similar to general case, but total energy conserved by construction.Additional source terms due to neutrinos.

Page 45: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

C. D. Ott @ Les Houches, 2011/04/05 45

Another Twist: Rotation & Convection

Page 46: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

Precollapse Stellar Structure

46C. D. Ott @ Les Houches, 2011/04/05

[O’Connor & Ott 2010 in prep.]

Page 47: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

The VULCAN/2D Code

C. D. Ott @ Les Houches, 2011/04/05 47

[Burrows et al. 2007b]

• Axisymmetric Newtonian Magnetohydrodynamics with rotation (2.5D).

• Unsplit 2nd order arbitrary Eulerian/Lagrangian (ALE) scheme.

• Newtonian gravity, logically cylindrical coordinates, arbitrary mesh.

• Radiation Transport:– multi-group flux-lim. diff. &

angle-dependent transport.

– Multiple energy groups,νe, νe, “νμ” species.

– Slow-motion approximation.

• Multiple finite-temperaturenuclear EOS options.

VULCAN/2D Grid

[Livne 1993, Livne et al. 2004, Livne et al. 2007, Burrows et al. 2007, Ott et al. 2008]

• Efficient parallelization inneutrino species/energy groups. Typical run size: 48–96 cores.

• Typical problem sizes: 50k zones x O(50) vars (MGFLD)x O(50) for angle-dep. transport.

Page 48: Lecture 1: Stellar Collapse, Core-Collapse Supernovae, and the …lapth.cnrs.fr/pg-nomin/chardon/IRAP_PhD/Ott.pdf · 2011. 4. 4. · Christian David Ott TAPIR, California Institute

• So far no independent confirmation of the acoustic mechanism.

• Overstable physical g-modes PNS shown to exist.

• Questions:– Do modes reach amplitudes as high as seen in our calculations? – Effects of GR and 3D?

• Fundamental prerequisite for non-linear numerical tests of mode excitation:Grid must be singularity free & allow change of the core’s geometric center.

• Marek & Janka ‘09: Modes shown to exist, but don’t reach highamplitudes. But: (1) Amplitudes become highonly at t > 0.6 - 0.8 s(not simulated),(2) MJ09 grid notsingularity free.-> Acoustic Mech.not yet numericallyruled out.

Testing the Acoustic Mechanism

48

[Ferrari et al. 2003, 2007; Yoshida et al. 2007]

VULCAN/2D grid

C. D. Ott @ Les Houches, 2011/04/05