43
Lecture 12: Shock Tube Applications with Lasers 1. Laser Absorption Theory 2. Survey of Capabilities 3. Kinetics Applications: Rate Constant Measurements Multi-Species Time-Histories 4. New Species Diagnostics

Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

Lecture 12: Shock Tube Applications with Lasers

1. Laser Absorption Theory

2. Survey of Capabilities

3. Kinetics Applications:Rate Constant MeasurementsMulti-Species Time-Histories

4. New Species Diagnostics

Page 2: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

1. Laser Absorption Theory• Governing Equation: Beer‐Lambert Law

/0 = exp(‐Slu () Xspecies Ptotal L)

• Quantitative absorption requires database for S, • What species have been measured?

Line             LineStrength     shape

I0

ILASER

L

2

Page 3: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

2. Survey of Capabilities:Species and Wavelengths

UltravioletCH3 216 nmNO 225 nmO2 227 nmHO2 230 nmOH 306 nmNH 336 nm

Spectra‐Physics 380

VisibleCN 388 nmCH 431 nmNCO 440 nmNO2 472 nmNH2 597 nm HCO 614 nm 

First use of tunable dye lasers in shock tubes (1982) 

InfraredCO  2.3 mH2O  2.5 mCO2 2.7 mCH4, Fuel 3.4 mNO  5.2 mC2H4 10.5 m

3

Page 4: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

Coherent MIRATi‐Sapphire Ring Laser

Ultra‐fast lasers used to extend UV tuning range  (2009) 

UltravioletCH3 216 nmNO 225 nmO2 227 nmHO2 230 nmOH 306 nmNH 336 nm

VisibleCN 388 nmCH 431 nmNCO 440 nmNO2 472 nmNH2 597 nm HCO 614 nm 

InfraredCO  2.3 mH2O  2.5 mCO2 2.7 mCH4, Fuel 3.4 mNO  5.2 mC2H4 10.5 m

4

2. Survey of Capabilities:Species and Wavelengths

Page 5: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

NovaWave Mid‐IR Laser

InfraredCO  2.3 m, 4.6 mH2O  2.5 mCO2 2.7 m, 4.3 mCH4, Fuel 3.4 mNO  5.2 mC2H4 10.5 m

New lasers allow simple access to mid‐IR (2007‐10)

UltravioletCH3 216 nmNO 225 nmO2 227 nmHO2 230 nmOH 306 nmNH 336 nm

VisibleCN 388 nmCH 431 nmNCO 440 nmNO2 472 nmNH2 597 nm HCO 614 nm 

5

2. Survey of Capabilities:Species and Wavelengths

Page 6: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

InfraredCO  2.3 m, 4.6 mH2O  2.5 mCO2 2.7 m, 4.3 mCH4, Fuel 3.4 mNO  5.2 mC2H4 10.5 m

How sensitive are laser absorption diagnostics in shock tubes?

UltravioletCH3 216 nmNO 225 nmO2 227 nmHO2 230 nmOH 306 nmNH 336 nm

VisibleCN 388 nmCH 431 nmNCO 440 nmNO2 472 nmNH2 597 nm HCO 614 nm 

6

2. Survey of Capabilities:Species and Wavelengths

Page 7: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

2. Laser Absorption Yields High SensitivityRepresentative Detection Limits: Large Molecules

• Large molecules: 10‐100’s ppm

1000 1500 2000 2500 3000

0.01

0.1

1

10

100

1000CO2

CH3

C2H4M

inim

um D

etec

itivi

ty [p

pm]

Temperature [K]

1atm,15cm,1MHz

H2ONH2

7

Page 8: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

sub‐ppmsensitivity for OH, CH, CN

2. Laser Absorption Yields High SensitivityRepresentative Detection Limits: Diatomic Molecules

• Diatomic molecules @ 1500K:‐ sub‐ppm detectivity for UV absorbers‐ ppm detectivity for IR absorbers

1000 1500 2000 2500 3000

0.01

0.1

1

10

100

1000

CO

OH

Det

ectio

n Li

mit

[ppm

]

Temperature [K]

1atm,15cm,1MHz

CH

CN

8

Page 9: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3. Kinetics Applications

1. Foundation Fuel KineticsOH+H2=H2O+H

2. Methyl Ester KineticsME+OH=ProductsMethyl Formate pyrolysis

3. Butanol Isomer Kineticsn‐Butanol pyrolysist‐butanol+OH using isotopic labeling

9

Page 10: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.1 Foundation Fuel Kinetics:

• H + O2 = OH + O• H2O2 + M = OH + OH + M• OH + H2O2 = H2O + HO2

• OH + HO2 = H2O + O2

• HO2 + HO2 = H2O2 + O2

• CH3 + HO2 = Products • C2H4 + M = C2H2 + H2 + M• OH + H2 = H2O + H

10

• Recent Elementary Rate Constant Measurementsusing Shock Tube/Laser Absorption Methods

Page 11: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.1 Foundation Fuel Kinetics

1.     Design: use sensitivity analysis to kinetically isolate reactions

2.     Execute: use shock tubes for step heating and laser absorption for species detection

Example:     H + O2 OH + O

• Accurate k values critical to combustion modeling

k

How Do We Measure Individual Reaction Rates?- Two-Step Process

11

Page 12: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.1 Foundation Fuel Kinetics

• H2O time‐history provides precise determination of k1

Shock Conditions: 1472 K, 1.8 atm, 0.1%O2/0.9%H2/Ar

H2O Sensitivity H2O Time‐History

12

• Example: H + O2 OH + ORate Measurement using H2O Laser at 2.55 mm

Page 13: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.1 Foundation Fuel Kinetics

13

Arrhenius Plot: H + O2 OH + O

Page 14: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

Arrhenius Plot: H + O2 OH + O

Modern laser methods significantly reduce measurement uncertainty!

k1=1.04x1014 exp(‐7705/T) {1=5%}

14

3.1 Foundation Fuel Kinetics

Next example: OH + H2 H2O + H

Page 15: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.1 Foundation Fuel Kinetics

fast upon shock heating

TBHP: tert‐butylhydroperoxide

Motivation: Large uncertainty in kOH+H2 gives large uncertaintyin modeled H2/air flame speeds

Experimental Strategy: Direct determination of rate constant• Pseudo‐first order experiment• Fuel in excess• TBHP used as a prompt OH precursor

‐ Useful T range (850 to 1350 K) ‐ Pioneered by Bott and Cohen (1984), also used at Argonne

Acetone

+ +

15

• Elementary Reaction Rate Determination:OH + H2 H2O + H

Page 16: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.1 Foundation Fuel Kinetics

• High SNR data, ppm sensitivity• kbest‐fit determined within 3‐5%

16

• Representative OH Absorption Data

Page 17: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.1 Foundation Fuel Kinetics

• Very low overall uncertainty in k:  ±17% (2) 

kBest‐Fit

17

• Arrhenius Plot: OH + H2 H2O + H

Page 18: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.1 Foundation Fuel Kinetics

• Excellent agreement with previous work,but uncertainty in k substantially reduced

0.4 0.6 0.8 1.0 1.21E11

1E12

1E13

2500K

kBest-Fit

833K1000K1250K

k 1 [cm

3 mol

-1 s

-1]

1000/T [1/K]

Current Study Krasnoperov and Michael (2004) Michael and Sutherland (1988) (revised Kc) Davidson et al. (1988) (revised Kc) Frank and Just (1985) Oldenborg et al. (1992)

1667K

18

• Comparison with Past Work: OH + H2 H2O + H

Page 19: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.2 Methyl Ester Kinetics

1. Rate Constant Measurements– OH + Methyl Formate– OH + Methyl Acetate– OH + Methyl Propanoate– OH + Methyl Butanoate

2. Methyl Formate Pyrolysis– Multi‐species Data

Conducted as first‐order experiments, with TBHP as source of OH

MF, CH3OHCO, CH4, CH2O

19

Page 20: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.2 Methyl Ester Kinetics

• Low scatter data with ± 25% overall uncertainty• Good agreement with modified SAR

(Structure Activity Relationship)

0.7 0.8 0.9 1.0 1.1 1.2

1E12

1E13

833K909K1000K1111K1250K

MButanoate MPropanoate MFormate MAcetate

Lines: Modified SAR (SAR x 0.75)

k [c

c/m

ol/s

]

1000/T [1/K]

Methyl Ester + OH = Products

1429K

+/-25%

MB

MP

MA

MF

20

• Summary: OH+Methyl Esters Products

Page 21: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.2 Methyl Ester Kinetics

• Shock tube/laser absorption rate 2‐4x faster than calculation

• Confirms continuing value of high–accuracy experimental data

0.7 0.8 0.9 1.0 1.1 1.21E11

1E12

1E13

+/-25%

Tan et al. (2012)

833K909K1000K1111K1250K

k

[cc

/mol

/s]

1000/T [1/K]

Methyl Formate + OH = Products

1429K

Current Study

21

• Comparison with Recent Quantum Calculations:Methyl Formate +OH Products

Page 22: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.2 Methyl Ester Kinetics

• Laser data successfully tracks all major contributors to O‐atom balance• Atom balance provides important new validation tool for chemical models

@ t = 300s

% Oxygen balance:5.5% in CH3OCHO34.8% in CH3OH44.9% in CO5.8% in CO2

7.2% in CH2OTotal: >98%

22

22

• Methyl Formate Pyrolysis Kinetics:Multi-Species Laser Absorption Data Can ProvideNear-Complete Oxygen Balance

Page 23: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.3 Butanol Isomer Kinetics

1. n‐Butanol Pyrolysis:Challenge: Complex PathwaysSolution:    Multi‐Species Time‐Histories

OH, CO, CH4, H2O, C2H4

2. tert‐Butanol + OH  ProductsChallenge: Multiple Reaction Sites,

OH ReformationSolution:  Isotopic Labeling

23

• Two Studies of Butanol Kinetics

Page 24: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.3 Butanol Isomer Kinetics

• Challenges: Multiple Reaction Sites, OH Reformation 

• Solution: Isotopic labeling provides strategy to identify OH attack sites

24

• OH+ tert-Butanol ProductsUse of Isotopic Labeling

Page 25: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.3 Butanol Isomer Kinetics

16

16

16

16

16 16 16

16

16

16

• Measurement of OH removal by t‐C4H9

16OH affected by OH reformation pathway

• Measurement gives 

k1b+ k1a (1‐BR2)

= (k1b+k1a )(1‐BR1BR2)

t‐C4H916OH + 16OH

OH reformation! 25

• OH+ tert-Butanol ProductsConventional Experiment using t-C4H9

16OH

Page 26: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.3 Butanol Isomer Kinetics

16

16

16

18

18

18

18

18 18

16

18

16

• Measurement of OH removal by t‐C4H9

16OH affected by OH reformation pathway

• Measurement gives 

k1b+ k1a (1‐BR2)

= (k1b+k1a )(1‐BR1BR2)

• Measurement of 16OH in t‐C4H9

18OH gives (k1a+k1b) with no 16OH reformation

t‐C4H9O18H + 16OH

No 16OH reformation! 26

• OH+ tert-Butanol ProductsConventional Experiment using t-C4H9

16OH

Page 27: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

3.3 Butanol Isomer Kinetics

0 20 40 60 80

10

20

30

500 ppm t-butan18ol29 ppm tbhp

Measurement 18k' = 1.08x10-11

1.218k' 0.818k'

OH

Mol

e Fr

actio

n [p

pm]

Time [s]

• Slow removal of OH during 16O butanol pyrolysis• Faster removal of OH during 18O butanol pyrolysis

• How do the rates compare?

0 20 40 60 80

5

10

15202530

OH

Mol

e Fr

actio

n [p

pm]

500 ppm t-butan16ol17 ppm tbhp

Measurement 16k' = 2.18x10-12 1.216k' 0.816k'

time [s]

16O‐Butanol 18O‐Butanol

1020 K1.22 atm

1020 K1.22 atm

27

• OH Absorption Data for tert-Butanol (O16 & O18)

Page 28: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

ktotal = (k1a+k1b)Derived from t‐C4H9

18OH

0.8 0.9 1.0 1.1

10-12

10-11

1000K

k1a+k1b

Sarathy et al. (2012)

Net

OH

dec

ay ra

te

(cm

3 /mol

ecul

e/s)

1000/T

1250K

28

• OH + tert‐Butanol (O16 & O18)Net OH Decay Rate due to Reaction with t‐Butanol

3.3 Butanol Isomer Kinetics

Page 29: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

(k1a+k1b) (1‐BR1BR2)Derived from t‐C4H9

16OH

• First direct determination of overall rate (k1a+k1b)• Ratio (18O/16O expts.) gives (1‐BR1BR2) = 0.2• Since BR1 = 0.95, then BR2 = 0.8 (±0.05)

0.8 0.9 1.0 1.1

10-12

10-11

1000K

k1a+k1b

Sarathy et al. (2012) (k1a+k1b) (1-BR1BR2)

Sarathy et al. (2012)

Net

OH

dec

ay ra

te

(cm

3 /mol

ecul

e/s)

1000/T

1250K

ktotal = (k1a+k1b)Derived from t‐C4H9

18OH

29

• OH + tert-Butanol (O16 & O18)Net OH Decay Rate due to Reaction with t-Butanol

3.3 Butanol Isomer Kinetics

Page 30: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

4. New Species Diagnostics

Recent Work:1. Aldehydes, e.g.: CH2O, CH3CHO2. Alkenes, e.g.: iso‐C4H8

3. Alkynes, e.g.: C2H2

4. Cavity Enhanced Absorption Spectroscopy (CEAS)

30

Page 31: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

4. New Species Diagnostics - 1

31

Motivation:  Aldehydes provide critical information about first stages of hydrocarbon oxidation, especially oxygenated fuels

H

HC=O C=O

H

CH3

Challenge:  Overlapping absorption spectraStrategy: Three colors (1 and 2 in IR, and 3 in UV)

1,2

IR absorption

3

Formaldehyde Acetaldehyde Reflectedshock wave

Detectors

Three Lasers

UV absorption

31

• Aldehyde Diagnostics

Page 32: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

4. New Species Diagnostics - 1

Measured Absorbance Time‐Histories Aldehyde Concentration Time‐Histories

• Recovered dCH2O/dt & plateau mole fractions:  Success!

• Shock heat trioxane/acetaldehyde mixture• Observe formaldehyde formation• Recover correct CH2O/CH3CHO concentrations

32

• Validation Experiment: Simultaneous Measurement ofKnown CH2O & CH3CHO Concentrations

Page 33: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

33

• This spectral region holds high promise for multiple species:ethylene, propene, isobutene, …

850 900 950 10000

20

40

60

80

100

C

ross

Sec

tion

[m2 /m

ol]

Wavenumber [cm-1]

C3H6

aC3H4 iC4H8

C2H4

298 K, 1 atm (PNNL)

AbsorptionSpectra

298K, 1atm

Example: isobutene, an important decomposition product of branched alkanes

New Alkene Sensors: Far-IR Detection using QC Laser

4. New Species Diagnostics - 2

Page 34: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

34

0 500 1000 1500 2000

0

2000

4000

60001% Iso-octane/Ar

iC4H

8 [pp

m]

Time [s]

1142K, 6.1 atm

1073K, 6.3 atm

• Data provide important test for iso-octane decomposition pathways

Iso-Octane Pyrolysis: First Detection of iso-Butene in Shock Tube

4. New Species Diagnostics - 2

Page 35: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

35

• Data provide important test for iso-octane decomposition pathways• Reasonable agreement with LLNL model!

Next alkyne detection: acetylene

0 500 1000 1500 2000

0

2000

4000

6000

LLNL Model

1% Iso-octane/ArMehl et al. (2011)

iC4H

8 [pp

m]

Time [s]

LLNL Model

1142K, 6.1 atm

1073K, 6.3 atm

Iso-Octane Pyrolysis: Comparison with Modeling

4. New Species Diagnostics - 2

Page 36: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

New Alkyne Sensor: Acetylene Detection at 3 m

• 3 m acetylene detection provides sensitive mid-IR detection

Next: first application in propene

2.9978 2.9980 2.9982 2.9984 2.99860.0

0.2

0.4

0.6

0.8

1.01400 K, 1 atmSource: HITRAN

Abs

orpt

ion

Coe

ffici

ent [

cm-1at

m-1]

Wavelength [m]

C2H2

36

4. New Species Diagnostics - 3

Page 37: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

First Acetylene Measurements: Propene Pyrolysis

• Data provide high-sensitivity acetylene time-histories for modeling

37

0 500 1000 15000.000

0.001

0.002

0.003

0.004

Ace

tyle

ne M

ole

Frac

tion

time [s]

0.5% PropeneT = 1542 K, P = 1.03 atm

Measurement

4. New Species Diagnostics - 3

Page 38: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

• Data provide high-sensitivity acetylene time-histories for modeling

38

0 500 1000 15000.000

0.001

0.002

0.003

0.0040.5% PropeneT = 1542 K, P = 1.03 atm

Measurement JetSurF 2.0

Ace

tyle

ne M

ole

Frac

tion

Time [s]

First Acetylene Measurements: Propene Pyrolysis

4. New Species Diagnostics - 3

Page 39: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

• Data provide high-sensitivity acetylene formation rates• Reveals significant difference between JetSurF, ARAMCO and data• Wide applicability of diagnostic: soot formation, alkene pyrolysis. ...

39Next: Cavity Enhanced Absorption Spectroscopy (CEAS)

0 500 1000 15000.000

0.001

0.002

0.003

0.0040.5% PropeneT = 1542 K, P = 1.03 atm

Measurement JetSurF 2.0 ARAMCO 1.3

Ace

tyle

ne M

ole

Frac

tion

Time [s]

First Acetylene Measurements: Propene Pyrolysis

4. New Species Diagnostics - 3

Page 40: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

40

• Cavity increases effective absorption path length, Leff

• Variable gain via Leff where G=Leff/D=R/(1-R) (10<G<1000 at low finesse)• Off-axis insertion enables easy, robust alignment

Off-axis CEAS superior to traditional multipass

Example: Detection limits for CO using MIR source

Ultra-sensitive Species Detection:Cavity-Enhanced Absorption Spectroscopy (CEAS) with TDL Source

4. New Species Diagnostics - 4

Page 41: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

41

CEAS Detection Limits: Mid-IR detection of CO

• = 4.6 m, v=1 band• R = mirror reflectivity

• Gain = =

• Sub-ppm detectivity at 1000-2000 K with R=0.99

• 15-45 ppb detectivity at 1000-2000K with R=0.999!

10-3 10-2 10-10.01

0.1

1

100.90.99

= 4.566 m P = 1 atm; D = 15cmAssume minimum detectable absorbance = 0.5% @ 1MHz

CO

det

ectio

n lim

it [p

pm]

1-R

1000K 1500K 2000K

0.999R

Sun et al. (2014)

Next: first application to shock tube kinetics

4. New Species Diagnostics - 4

Page 42: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

42

Off-Axis CEAS of CO formation using Mid-IR

• Further improvements: 10 – 100x in progress

First highly-diluted CO formation experiment

Detection limit ~ 0.3ppm at 100kHz time resolution

-500 0 500 1000 15000

5

10

10ppm acetone in ArT = 1380K, P = 1.5atm

CO

con

cent

ratio

n [p

pm]

Time [s]

TDL CO concentration Exponential fit

CO formation by acetone (10ppm) pyrolysis

Sun et al. (2014)

4. New Species Diagnostics - 4

Page 43: Lecture 12: Shock Tube Applications with Lasers · 2017. 8. 3. · 3.2 Methyl Ester Kinetics 1. Rate Constant Measurements – OH + Methyl Formate – OH + Methyl Acetate – OH +

Next: Three Lectures onLaser-Induced Fluorescence (LIF)

Two level model More complex models Applications

43

Summary:Laser absorption & shock tubes are a frontier for combustion kinetics