52
Parametrized curve Locus Lecture 14 Section 9.6 Curves Given Parametrically Jiwen He Department of Mathematics, University of Houston [email protected] http://math.uh.edu/jiwenhe/Math1432 Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 1 / 15

Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus

Lecture 14Section 9.6 Curves Given Parametrically

Jiwen He

Department of Mathematics, University of Houston

[email protected]://math.uh.edu/∼jiwenhe/Math1432

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 1 / 15

Page 2: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Parametrized curve

Parametrized curve

A parametrized Curve is a path inthe xy -plane traced out by the point(x(t), y(t)) as the parameter tranges over an interval I .

C ={(x(t), y(t)) : t ∈ I

}Examples

The graph of a function y = f (x), x ∈ I , is a curve C that isparametrized by

x(t) = t, y(t) = f (t), t ∈ I .

The graph of a polar equation r = ρ(θ), θ ∈ I , is a curve Cthat is parametrized by the functions

x(t) = r cos t = ρ(t) cos t, y(t) = r sin t = ρ(t) sin t, t ∈ I .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 2 / 15

Page 3: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Parametrized curve

Parametrized curve

A parametrized Curve is a path inthe xy -plane traced out by the point(x(t), y(t)) as the parameter tranges over an interval I .

C ={(x(t), y(t)) : t ∈ I

}Examples

The graph of a function y = f (x), x ∈ I , is a curve C that isparametrized by

x(t) = t, y(t) = f (t), t ∈ I .

The graph of a polar equation r = ρ(θ), θ ∈ I , is a curve Cthat is parametrized by the functions

x(t) = r cos t = ρ(t) cos t, y(t) = r sin t = ρ(t) sin t, t ∈ I .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 2 / 15

Page 4: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Parametrized curve

Parametrized curve

A parametrized Curve is a path inthe xy -plane traced out by the point(x(t), y(t)) as the parameter tranges over an interval I .

C ={(x(t), y(t)) : t ∈ I

}Examples

The graph of a function y = f (x), x ∈ I , is a curve C that isparametrized by

x(t) = t, y(t) = f (t), t ∈ I .

The graph of a polar equation r = ρ(θ), θ ∈ I , is a curve Cthat is parametrized by the functions

x(t) = r cos t = ρ(t) cos t, y(t) = r sin t = ρ(t) sin t, t ∈ I .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 2 / 15

Page 5: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Parametrized curve

Parametrized curve

A parametrized Curve is a path inthe xy -plane traced out by the point(x(t), y(t)) as the parameter tranges over an interval I .

C ={(x(t), y(t)) : t ∈ I

}Examples

The graph of a function y = f (x), x ∈ I , is a curve C that isparametrized by

x(t) = t, y(t) = f (t), t ∈ I .

The graph of a polar equation r = ρ(θ), θ ∈ I , is a curve Cthat is parametrized by the functions

x(t) = r cos t = ρ(t) cos t, y(t) = r sin t = ρ(t) sin t, t ∈ I .

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 2 / 15

Page 6: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = t + 1, then y(t) = 2t + 2,t ∈ [0, 2]

Set x(t) = 3− t, then y(t) = 6− 2t,t ∈ [0, 2]

Set x(t) = 3− 4t, then y(t) = 6− 8t,t ∈ [0, 1/2]

Set x(t) = 2− cos t, theny(t) = 4− 2 cos t, t ∈ [0, 4π]

We parametrize the line segment in different ways and interpreteach parametrization as the motion of a particle with theparameter t being time.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 3 / 15

Page 7: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = t + 1, then y(t) = 2t + 2,t ∈ [0, 2]

Set x(t) = 3− t, then y(t) = 6− 2t,t ∈ [0, 2]

Set x(t) = 3− 4t, then y(t) = 6− 8t,t ∈ [0, 1/2]

Set x(t) = 2− cos t, theny(t) = 4− 2 cos t, t ∈ [0, 4π]

We parametrize the line segment in different ways and interpreteach parametrization as the motion of a particle with theparameter t being time.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 3 / 15

Page 8: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = t + 1, then y(t) = 2t + 2,t ∈ [0, 2]

Set x(t) = 3− t, then y(t) = 6− 2t,t ∈ [0, 2]

Set x(t) = 3− 4t, then y(t) = 6− 8t,t ∈ [0, 1/2]

Set x(t) = 2− cos t, theny(t) = 4− 2 cos t, t ∈ [0, 4π]

We parametrize the line segment in different ways and interpreteach parametrization as the motion of a particle with theparameter t being time.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 3 / 15

Page 9: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = t + 1, then y(t) = 2t + 2,t ∈ [0, 2]

Set x(t) = 3− t, then y(t) = 6− 2t,t ∈ [0, 2]

Set x(t) = 3− 4t, then y(t) = 6− 8t,t ∈ [0, 1/2]

Set x(t) = 2− cos t, theny(t) = 4− 2 cos t, t ∈ [0, 4π]

We parametrize the line segment in different ways and interpreteach parametrization as the motion of a particle with theparameter t being time.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 3 / 15

Page 10: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = t + 1, then y(t) = 2t + 2,t ∈ [0, 2]

Set x(t) = 3− t, then y(t) = 6− 2t,t ∈ [0, 2]

Set x(t) = 3− 4t, then y(t) = 6− 8t,t ∈ [0, 1/2]

Set x(t) = 2− cos t, theny(t) = 4− 2 cos t, t ∈ [0, 4π]

We parametrize the line segment in different ways and interpreteach parametrization as the motion of a particle with theparameter t being time.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 3 / 15

Page 11: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = t + 1, then y(t) = 2t + 2,t ∈ [0, 2]

Set x(t) = 3− t, then y(t) = 6− 2t,t ∈ [0, 2]

Set x(t) = 3− 4t, then y(t) = 6− 8t,t ∈ [0, 1/2]

Set x(t) = 2− cos t, theny(t) = 4− 2 cos t, t ∈ [0, 4π]

We parametrize the line segment in different ways and interpreteach parametrization as the motion of a particle with theparameter t being time.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 3 / 15

Page 12: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Example: Line Segment

Line Segment: y = 2x , x ∈ [1, 3]

Set x(t) = t, then y(t) = 2t, t ∈ [1, 3]

Set x(t) = t + 1, then y(t) = 2t + 2,t ∈ [0, 2]

Set x(t) = 3− t, then y(t) = 6− 2t,t ∈ [0, 2]

Set x(t) = 3− 4t, then y(t) = 6− 8t,t ∈ [0, 1/2]

Set x(t) = 2− cos t, theny(t) = 4− 2 cos t, t ∈ [0, 4π]

We parametrize the line segment in different ways and interpreteach parametrization as the motion of a particle with theparameter t being time.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 3 / 15

Page 13: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Example: Parabola

Parabola Arc: x = 1− y2, −1 ≤ y ≤ 1

Set y(t) = t, then x(t) = 1− t2, t ∈ [−1, 1] ⇒ changing thedomain to all real t gives us the whole parabola.

Set y(t) = cos t, then x(t) = 1− cos2 t, t ∈ [0, π] ⇒changing the domain to all real t does not give us any more ofthe parabola.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 4 / 15

Page 14: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Example: Parabola

Parabola Arc: x = 1− y2, −1 ≤ y ≤ 1

Set y(t) = t, then x(t) = 1− t2, t ∈ [−1, 1] ⇒ changing thedomain to all real t gives us the whole parabola.

Set y(t) = cos t, then x(t) = 1− cos2 t, t ∈ [0, π] ⇒changing the domain to all real t does not give us any more ofthe parabola.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 4 / 15

Page 15: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Example: Parabola

Parabola Arc: x = 1− y2, −1 ≤ y ≤ 1

Set y(t) = t, then x(t) = 1− t2, t ∈ [−1, 1] ⇒ changing thedomain to all real t gives us the whole parabola.

Set y(t) = cos t, then x(t) = 1− cos2 t, t ∈ [0, π] ⇒changing the domain to all real t does not give us any more ofthe parabola.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 4 / 15

Page 16: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Example: Spiral of Archimedes

Spiral of Archimedes: r = θ, θ ≥ 0

The curve is a nonending spiral. Here it is shown in detailfrom θ = 0 to θ = 2π.

The parametric representation is

x(t) = t cos t, y(t) = t sin t, t ≥ 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 5 / 15

Page 17: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Example: Spiral of Archimedes

Spiral of Archimedes: r = θ, θ ≥ 0

The curve is a nonending spiral. Here it is shown in detailfrom θ = 0 to θ = 2π.

The parametric representation is

x(t) = t cos t, y(t) = t sin t, t ≥ 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 5 / 15

Page 18: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Example: Spiral of Archimedes

Spiral of Archimedes: r = θ, θ ≥ 0

The curve is a nonending spiral. Here it is shown in detailfrom θ = 0 to θ = 2π.

The parametric representation is

x(t) = t cos t, y(t) = t sin t, t ≥ 0.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 5 / 15

Page 19: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Example: Limacons

Limacons (Snails): r = a + b cos θ

The parametric representation is

x(t) =(a + b cos t

)cos t, y(t) =

(a + b cos t

)sin t, t ∈ [0, 2π].

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 6 / 15

Page 20: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Parametrized curve Examples

Example: Petal Curves

Petal Curves (Flowers): r = a cos nθ, r = a sin nθ

The parametric representations are

x(t) =(a cos(nt)

)cos t, y(t) =

(a cos(nt)

)sin t, t ∈ [0, 2π].

x(t) =(a sin(nt)

)cos t, y(t) =

(a sin(nt)

)sin t, t ∈ [0, 2π].

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 7 / 15

Page 21: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Circles: C = {P : d(P , O) = |a|}

Center O at (0, 0) ⇒ x2 + y2 = a2 ⇒ r = a

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t

Center O at (0, a) ⇒ x2 + (y − a)2 = a2 ⇒ r = 2a sin θ

⇒ t ∈ [0, π],

{x(t) = 2a sin t cos t = a sin 2t,

y(t) = 2a sin t sin t = a(1− cos 2t).

Another parametric representation is by translation

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t + a

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 8 / 15

Page 22: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Circles: C = {P : d(P , O) = |a|}

Center O at (0, 0) ⇒ x2 + y2 = a2 ⇒ r = a

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t

Center O at (0, a) ⇒ x2 + (y − a)2 = a2 ⇒ r = 2a sin θ

⇒ t ∈ [0, π],

{x(t) = 2a sin t cos t = a sin 2t,

y(t) = 2a sin t sin t = a(1− cos 2t).

Another parametric representation is by translation

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t + a

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 8 / 15

Page 23: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Circles: C = {P : d(P , O) = |a|}

Center O at (0, 0) ⇒ x2 + y2 = a2 ⇒ r = a

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t

Center O at (0, a) ⇒ x2 + (y − a)2 = a2 ⇒ r = 2a sin θ

⇒ t ∈ [0, π],

{x(t) = 2a sin t cos t = a sin 2t,

y(t) = 2a sin t sin t = a(1− cos 2t).

Another parametric representation is by translation

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t + a

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 8 / 15

Page 24: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Circles: C = {P : d(P , O) = |a|}

Center O at (0, 0) ⇒ x2 + y2 = a2 ⇒ r = a

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t

Center O at (0, a) ⇒ x2 + (y − a)2 = a2 ⇒ r = 2a sin θ

⇒ t ∈ [0, π],

{x(t) = 2a sin t cos t = a sin 2t,

y(t) = 2a sin t sin t = a(1− cos 2t).

Another parametric representation is by translation

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t + a

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 8 / 15

Page 25: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Circles: C = {P : d(P , O) = |a|}

Center O at (0, 0) ⇒ x2 + y2 = a2 ⇒ r = a

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t

Center O at (0, a) ⇒ x2 + (y − a)2 = a2 ⇒ r = 2a sin θ

⇒ t ∈ [0, π],

{x(t) = 2a sin t cos t = a sin 2t,

y(t) = 2a sin t sin t = a(1− cos 2t).

Another parametric representation is by translation

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t + a

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 8 / 15

Page 26: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Circles: C = {P : d(P , O) = |a|}

Center O at (0, 0) ⇒ x2 + y2 = a2 ⇒ r = a

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t

Center O at (0, a) ⇒ x2 + (y − a)2 = a2 ⇒ r = 2a sin θ

⇒ t ∈ [0, π],

{x(t) = 2a sin t cos t = a sin 2t,

y(t) = 2a sin t sin t = a(1− cos 2t).

Another parametric representation is by translation

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t + a

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 8 / 15

Page 27: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Circles: C = {P : d(P , O) = |a|}

Center O at (0, 0) ⇒ x2 + y2 = a2 ⇒ r = a

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t

Center O at (0, a) ⇒ x2 + (y − a)2 = a2 ⇒ r = 2a sin θ

⇒ t ∈ [0, π],

{x(t) = 2a sin t cos t = a sin 2t,

y(t) = 2a sin t sin t = a(1− cos 2t).

Another parametric representation is by translation

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t + a

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 8 / 15

Page 28: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Circles: C = {P : d(P , O) = |a|}

Center O at (0, 0) ⇒ x2 + y2 = a2 ⇒ r = a

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t

Center O at (0, a) ⇒ x2 + (y − a)2 = a2 ⇒ r = 2a sin θ

⇒ t ∈ [0, π],

{x(t) = 2a sin t cos t = a sin 2t,

y(t) = 2a sin t sin t = a(1− cos 2t).

Another parametric representation is by translation

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t + a

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 8 / 15

Page 29: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Circles: C = {P : d(P , O) = |a|}

Center O at (0, 0) ⇒ x2 + y2 = a2 ⇒ r = a

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t

Center O at (a, 0) ⇒ (x − a)2 + y2 = a2 ⇒ r = 2a cos θ

⇒ t ∈ [π

2,3π

2],

{x(t) = 2a cos t cos t = a(1 + cos 2t),

y(t) = 2a cos t sin t = a sin 2t.

Another parametric representation is by translation

⇒ t ∈ [0, 2π], x(t) = a cos t + a, y(t) = a sin t.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 8 / 15

Page 30: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Circles: C = {P : d(P , O) = |a|}

Center O at (0, 0) ⇒ x2 + y2 = a2 ⇒ r = a

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t

Center O at (a, 0) ⇒ (x − a)2 + y2 = a2 ⇒ r = 2a cos θ

⇒ t ∈ [π

2,3π

2],

{x(t) = 2a cos t cos t = a(1 + cos 2t),

y(t) = 2a cos t sin t = a sin 2t.

Another parametric representation is by translation

⇒ t ∈ [0, 2π], x(t) = a cos t + a, y(t) = a sin t.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 8 / 15

Page 31: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Circles: C = {P : d(P , O) = |a|}

Center O at (0, 0) ⇒ x2 + y2 = a2 ⇒ r = a

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t

Center O at (a, 0) ⇒ (x − a)2 + y2 = a2 ⇒ r = 2a cos θ

⇒ t ∈ [π

2,3π

2],

{x(t) = 2a cos t cos t = a(1 + cos 2t),

y(t) = 2a cos t sin t = a sin 2t.

Another parametric representation is by translation

⇒ t ∈ [0, 2π], x(t) = a cos t + a, y(t) = a sin t.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 8 / 15

Page 32: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Circles: C = {P : d(P , O) = |a|}

Center O at (0, 0) ⇒ x2 + y2 = a2 ⇒ r = a

⇒ t ∈ [0, 2π], x(t) = a cos t, y(t) = a sin t

Center O at (a, 0) ⇒ (x − a)2 + y2 = a2 ⇒ r = 2a cos θ

⇒ t ∈ [π

2,3π

2],

{x(t) = 2a cos t cos t = a(1 + cos 2t),

y(t) = 2a cos t sin t = a sin 2t.

Another parametric representation is by translation

⇒ t ∈ [0, 2π], x(t) = a cos t + a, y(t) = a sin t.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 8 / 15

Page 33: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Ellipses

A ellipse is the set of points P in a plane that the sum of whosedistances from two fixed points (the foci F1 and F2) separated by adistance 2c is a given positive constant 2a.

E ={P : |d(P,F1) + d(P,F2)| = 2a

}With F1 at (−c , 0) and F2 at (c , 0) and setting b =

√a2 − c2,

E =

{(x , y) :

x2

a2+

y2

b2= 1

}Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 9 / 15

Page 34: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Ellipses

A ellipse is the set of points P in a plane that the sum of whosedistances from two fixed points (the foci F1 and F2) separated by adistance 2c is a given positive constant 2a.

E ={P : |d(P,F1) + d(P,F2)| = 2a

}With F1 at (−c , 0) and F2 at (c , 0) and setting b =

√a2 − c2,

E =

{(x , y) :

x2

a2+

y2

b2= 1

}Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 9 / 15

Page 35: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Ellipses

A ellipse is the set of points P in a plane that the sum of whosedistances from two fixed points (the foci F1 and F2) separated by adistance 2c is a given positive constant 2a.

E ={P : |d(P,F1) + d(P,F2)| = 2a

}With F1 at (−c , 0) and F2 at (c , 0) and setting b =

√a2 − c2,

E =

{(x , y) :

x2

a2+

y2

b2= 1

}Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 9 / 15

Page 36: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Ellipses: Cosine and Sine

The ellipse can also be given by a simple parametric formanalogous to that of a circle, but with the x and y coordinateshaving different scalings,

x = a cos t, y = b sin t, t ∈ (0, 2π).

Note that cos2 t + sin2 t = 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 10 / 15

Page 37: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Hyperbolas

A hyperbola is the set of points P in a plane that the difference ofwhose distances from two fixed points (the foci F1 and F2)separated by a distance 2c is a given positive constant 2a.

H ={P : |d(P,F1)− d(P,F2)| = 2a

}With F1 at (−c , 0) and F2 at (c , 0) and setting b =

√c2 − a2, we

have

H =

{(x , y) :

x2

a2− y2

b2= 1

}Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 11 / 15

Page 38: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Hyperbolas

A hyperbola is the set of points P in a plane that the difference ofwhose distances from two fixed points (the foci F1 and F2)separated by a distance 2c is a given positive constant 2a.

H ={P : |d(P,F1)− d(P,F2)| = 2a

}With F1 at (−c , 0) and F2 at (c , 0) and setting b =

√c2 − a2, we

have

H =

{(x , y) :

x2

a2− y2

b2= 1

}Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 11 / 15

Page 39: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Hyperbolas

A hyperbola is the set of points P in a plane that the difference ofwhose distances from two fixed points (the foci F1 and F2)separated by a distance 2c is a given positive constant 2a.

H ={P : |d(P,F1)− d(P,F2)| = 2a

}With F1 at (−c , 0) and F2 at (c , 0) and setting b =

√c2 − a2, we

have

H =

{(x , y) :

x2

a2− y2

b2= 1

}Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 11 / 15

Page 40: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Hyperbolas: Hyperbolic Cosine and Hyperbolic Sine

The right branch of a hyperbola can be parametrized by

x = a cosh t, y = b sinh t, t ∈ (−∞,∞).

The left branch can be parametrized by

x = −a cosh t, y = b sinh t, t ∈ (−∞,∞).

Note that cosh t = 12

(et + e−t

), sinh t = 1

2

(et − e−t

)and

cosh2 t − sinh2 t = 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 12 / 15

Page 41: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Hyperbolas: Hyperbolic Cosine and Hyperbolic Sine

The right branch of a hyperbola can be parametrized by

x = a cosh t, y = b sinh t, t ∈ (−∞,∞).

The left branch can be parametrized by

x = −a cosh t, y = b sinh t, t ∈ (−∞,∞).

Note that cosh t = 12

(et + e−t

), sinh t = 1

2

(et − e−t

)and

cosh2 t − sinh2 t = 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 12 / 15

Page 42: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Hyperbolas: Hyperbolic Cosine and Hyperbolic Sine

The right branch of a hyperbola can be parametrized by

x = a cosh t, y = b sinh t, t ∈ (−∞,∞).

The left branch can be parametrized by

x = −a cosh t, y = b sinh t, t ∈ (−∞,∞).

Note that cosh t = 12

(et + e−t

), sinh t = 1

2

(et − e−t

)and

cosh2 t − sinh2 t = 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 12 / 15

Page 43: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Hyperbolas: Hyperbolic Cosine and Hyperbolic Sine

The right branch of a hyperbola can be parametrized by

x = a cosh t, y = b sinh t, t ∈ (−∞,∞).

The left branch can be parametrized by

x = −a cosh t, y = b sinh t, t ∈ (−∞,∞).

Note that cosh t = 12

(et + e−t

), sinh t = 1

2

(et − e−t

)and

cosh2 t − sinh2 t = 1.

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 12 / 15

Page 44: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Hyperbolas: Other Parametric Representation

Another parametric representation for the right branch of thehyperbola is

x = a sec t, y = b tan t, t ∈(−π/2, π/2

).

Parametric equations for the left branch is

x = −a sec t, y = b tan t, t ∈(−π/2, π/2

).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 13 / 15

Page 45: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Hyperbolas: Other Parametric Representation

Another parametric representation for the right branch of thehyperbola is

x = a sec t, y = b tan t, t ∈(−π/2, π/2

).

Parametric equations for the left branch is

x = −a sec t, y = b tan t, t ∈(−π/2, π/2

).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 13 / 15

Page 46: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Hyperbolas: Other Parametric Representation

Another parametric representation for the right branch of thehyperbola is

x = a sec t, y = b tan t, t ∈(−π/2, π/2

).

Parametric equations for the left branch is

x = −a sec t, y = b tan t, t ∈(−π/2, π/2

).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 13 / 15

Page 47: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Lemniscates (Ribbons): r 2 = a2 cos 2θ

A lemniscate is the set of points P in aplane that the product of whose distancesfrom two fixed points (the foci F1 and F2)a distance 2c away is the constant c2.

R ={P : d(P,F1) · d(P,F2)| = c2

}With F1 at (−c , 0) and F2 at (c , 0),(

x2 + y2)2

= 2c2(x2 − y2

)Switching to polar coordinates gives

r2 = 2c2 cos 2θ, θ ∈(−π

4,π

4

)∪

(3π

4,5π

4

)The parametric equations for the lemniscate with a2 = 2c2 is

x =a cos t

1 + sin2 t, y =

a sin t cos t

1 + sin2 t, t ∈ (0, 2π).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 14 / 15

Page 48: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Lemniscates (Ribbons): r 2 = a2 cos 2θ

A lemniscate is the set of points P in aplane that the product of whose distancesfrom two fixed points (the foci F1 and F2)a distance 2c away is the constant c2.

R ={P : d(P,F1) · d(P,F2)| = c2

}With F1 at (−c , 0) and F2 at (c , 0),(

x2 + y2)2

= 2c2(x2 − y2

)Switching to polar coordinates gives

r2 = 2c2 cos 2θ, θ ∈(−π

4,π

4

)∪

(3π

4,5π

4

)The parametric equations for the lemniscate with a2 = 2c2 is

x =a cos t

1 + sin2 t, y =

a sin t cos t

1 + sin2 t, t ∈ (0, 2π).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 14 / 15

Page 49: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Lemniscates (Ribbons): r 2 = a2 cos 2θ

A lemniscate is the set of points P in aplane that the product of whose distancesfrom two fixed points (the foci F1 and F2)a distance 2c away is the constant c2.

R ={P : d(P,F1) · d(P,F2)| = c2

}With F1 at (−c , 0) and F2 at (c , 0),(

x2 + y2)2

= 2c2(x2 − y2

)Switching to polar coordinates gives

r2 = 2c2 cos 2θ, θ ∈(−π

4,π

4

)∪

(3π

4,5π

4

)The parametric equations for the lemniscate with a2 = 2c2 is

x =a cos t

1 + sin2 t, y =

a sin t cos t

1 + sin2 t, t ∈ (0, 2π).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 14 / 15

Page 50: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Lemniscates (Ribbons): r 2 = a2 cos 2θ

A lemniscate is the set of points P in aplane that the product of whose distancesfrom two fixed points (the foci F1 and F2)a distance 2c away is the constant c2.

R ={P : d(P,F1) · d(P,F2)| = c2

}With F1 at (−c , 0) and F2 at (c , 0),(

x2 + y2)2

= 2c2(x2 − y2

)Switching to polar coordinates gives

r2 = 2c2 cos 2θ, θ ∈(−π

4,π

4

)∪

(3π

4,5π

4

)The parametric equations for the lemniscate with a2 = 2c2 is

x =a cos t

1 + sin2 t, y =

a sin t cos t

1 + sin2 t, t ∈ (0, 2π).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 14 / 15

Page 51: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Lemniscates (Ribbons): r 2 = a2 cos 2θ

A lemniscate is the set of points P in aplane that the product of whose distancesfrom two fixed points (the foci F1 and F2)a distance 2c away is the constant c2.

R ={P : d(P,F1) · d(P,F2)| = c2

}With F1 at (−c , 0) and F2 at (c , 0),(

x2 + y2)2

= 2c2(x2 − y2

)Switching to polar coordinates gives

r2 = 2c2 cos 2θ, θ ∈(−π

4,π

4

)∪

(3π

4,5π

4

)The parametric equations for the lemniscate with a2 = 2c2 is

x =a cos t

1 + sin2 t, y =

a sin t cos t

1 + sin2 t, t ∈ (0, 2π).

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 14 / 15

Page 52: Lecture 14 - Section 9.6 Curves Given Parametricallyjiwenhe/Math1432/lectures/lecture14.pdf · Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28,

Parametrized curve Locus Circles Ellipses Hyperbolas Lemniscates

Outline

Parametrized curveParametrized curveExamples

LocusCirclesEllipsesHyperbolasLemniscates

Jiwen He, University of Houston Math 1432 – Section 26626, Lecture 14 February 28, 2008 15 / 15