42
Lecture 21 Network Function and s-domain Analysis Hung-yi Lee

Lecture 21 Network Function and s-domain Analysis Hung-yi Lee

Embed Size (px)

Citation preview

Lecture 21Network Function

and s-domain AnalysisHung-yi Lee

Outline

• Chapter 10 (Out of the scope)• Frequency (chapter 6) → Complex Frequency (s-

domain)• Impedance (chapter 6) → Generalized

Impedance• Network function

What are we considering?Complete Response

Natural Response

Forced Response

Zero State Response

Zero Input Response

Transient Response

Steady State Response

Final target What really observed

Chapter 5 and 9

Chapter 6 and 7

ttx cosA)(

What are we considering?Complete Response

Natural Response

Forced Response

Zero State Response

Zero Input Response

Transient Response

Steady State Response

Final target What really observed

Chapter 5 and 9

This lecture

ttx cosAe)( t

Complex Frequency

Complex FrequencyIn Chapter 6

Current or Voltage Sources Currents or Voltages in the circuit ttx cosA)( ttx cosA)(

In Chapter 10Current or Voltage Sources Currents or Voltages in the circuit

ttx cosAe)( t ttx coseA)( t

You can observe the results from differential equation.

The same frequencyDifferent magnitude and phase

Different magnitude and phase

The same frequency and exponential term

ttx cosAe)( t

Phasor:AX

Complex Frequency:

js

s plane

Complex Frequency

Generalized Impedance

Complex Frequency - Inductor

)(L tv)(L ti

dt

tdiLtv L

L

)()(

imL tti cosI)(

imL tLtv sinI)(

90cosI im tL

imLI I

90LIVL im

Impedance of inductor

L90LI

90LI

I

VZ

L

L

L

j

im

im

For AC Analysis(Chapter 6)

Complex Frequency - Inductor

itmL teti cosI)(

itmi

tmL teLteLtv sinIcosI)(

iit

m tteL sincosI

122 tancosI i

tm teL

i

it

m

t

teL

sin

cosI

22

22

22)(L tv)(L ti

dt

tdiLtv L

L

)()(

t

tx

cosAe

)(t

Complex Frequency - Inductor

itmL teti cosI)(

1

22

tancos

I

i

tmL

t

eLtv

imLI I

122

L tanLIV im

Generalized Impedance of inductor

im

im

I

tanLI

I

VZ

122

L

L

L

122 tanL

2222

22L

j L j Ls

js

Generalized Impedance

• Generalized Impedance (Table 10.1)

Element

Resistor

Inductor Capacitor

Impedance GeneralizedImpedance

R RLj sL

Cj/1 C/1 s

Special case: js

The circuit analysis for DC circuits can be used.

Example 10.2

V)904cos(20)(

F10

1 ,5 H,1

2

tetv

CRL

t

V9020 V

42 js

1

1//)(

sCR

RsL

sCRsLsZ

1435.2

5381435.2

9020

)(

VI

sZ

A)534cos(8)( 2 teti t

s domain diagram

Network Function

Network Function / Transfer Function• Given the phasors of two branch variables, the ratio of the

two phasors is the network function/transfer function

X

Ys H

The ratio depends on complex frequencyComplex number

XsY H outputY :inputX :

phasors of current or voltage

Network Function / Transfer Function

X

Ys H Impedance and admittance are

special cases for network function

I

VZ sImpedance:

Admittance: V

I1Y

sZs

I

V

• Network Function/Transfer Function is not new idea

Network Function / Transfer Function

1

2VH

Vs

I

VH s

1

2IH

Is

V

IH s

X

Ys H

Current or voltage

Current or voltage

In general, network function can have four meaning

Voltage Gain

Current Gain

“Impedance”

“Admittance”

Example 10.5

s

L

V

IsH )(1

sV

LV RV

CV

CILI

sCRsLIV Ls

1

sC

1

RsL

11

1H

21

sRCLCs

sC

sCRsLV

Is

s

L

Polynomial of s

Polynomial of s

Example 10.5

sV

VsH

L

2 )(

sV

LV RV

CV

CILI

sCRsL

sL1

sC

1

RsL

Polynomial of s

Polynomial of s12

2

sRCLCs

LCs

Network Function / Transfer Function

XsY H |||H||| XsY XH sY

|H(s)| is complex frequency dependent

js

Output will be very large when

74 j

ttx 7cosAe)( t4

gain dc theis )0(H dc represents 0s

Example 10.5 – Check your results by DC Gain

sV

LV RV

CV

CILI

sC

1

RsL

12

sRCLCs

sC

12

2

sRCLCs

LCs

00H1

00H2

s

L

V

IsH )(1

sV

VsH

L

2 )(

For DCCapacitor = open circuit

Inductor = short circuit

Example 10.5 – Check your results by Units

sV

LV RV

CV

CILI

sC

1

RsL

12

sRCLCs

sC

12

2

sRCLCs

LCss

L

V

IsH )(1

sV

VsH

L

2 )(

V

AtF:C

A

VH:L t

A

V:R ?:s

t

1

A

V

V

At

t

1

V

At

A

Vt

2

t

1V

AtA

V

t

1

V

V

V

At

A

Vt

2

t

1

V

At

A

Vt

2

t

1V

AtA

V

t

1

Zeros/Poles

Poles/Zeros

• General form of network function

011

1

011

1)(asasasa

bsbsbsbsH

nn

nn

mm

mm

If z is a zero, H(z) is zero.

If p is a pole, H(s) is infinite.

The “zeros” is the root of N(s).

The “poles” is the root of D(s).

sDsN

Poles/Zeros

• General form of network function

1

0111

0111

aa

saa

saa

s

bb

sbb

sbb

s

a

b

n

n

n

nn

mm

m

m

mm

n

m

n

m

pspsps

zszszs

21

21K

n

m

a

bK

011

1

011

1)(asasasa

bsbsbsbsH

nn

nn

mm

mm

m zeros: z1, z2, … ,zm

n poles: p1, p2, … ,pn

Example 10.8

400403632

164165)(

22

234

ssss

ssssH Find its zeros and poles

234 16416 sss 164162 ssss

4300 zszsss

Zeros: z1=0, z2=0, z3=-8+j10, z4=-8-j10

3232 1 ps

6,36 322 jpps

2040040 542 ppss

Poles: p1=-32, p2=j6, p3=-6j, p4=-20, p5=-20

Numerator: Denominator:

z3 and z4 are the two roots of s2+16s+164

Example 10.8

400403632

164165)(

22

234

ssss

ssssH

We can read the characteristics of the network function from this diagram

Pole and Zero Diagram

Find its zeros and poles

Zero (O), pole (X)

Zeros: z1=0, z2=0, z3=-8+j10, z4=-8-j10

Poles: p1=-32, p2=j6, p3=-6j, p4=-20, p5=-20

For example, stability of network

Stability

• A network is stable when all of its poles fall within the left half of the s plane

XsHY

If p = σp + jωp is a pole H(p)=∞

The waveforms corresponding to the complex frequencies of the poles can appear without input.

ppAety cos

Complex frequency is p

No input …… 0Y

H

YX

p

If the output is

Stability

• A network is stable when all of its poles fall within the left half of the s plane

The poles are at the right plane.

Appear automatically

Unstable

The poles are at the left plane.

Stable

Appear automatically

Stability

• A network is stable when all of its poles fall within the left half of the s plane

The poles are on the jω axis.

σp = 0

Appear automatically

Marginally stable

oscillator

Thank you!

Acknowledgement

• 感謝 趙祐毅 (b02)• 在上課時指出投影片中的錯誤

Appendix

What is Network/Transfer Function considered?

Input

Output

Natural Response

Forced Response

NetworkFunction H(s)

Natural Response

• It is also possible to observe natural response from network function.

XsHY

Differential Equation

α=0Undamped

Fix ω0, decrease αThe position of the two roots λ1 and λ2.

20

221,

Time-Domain Response of a System Versus Position of Poles

(unstable) (constant magnitudeOscillation)

(exponential decay)

The location of the poles of a closedLoop system is shown.

Cancellation

Example 10.3 - Miller Effect

sC

in

1

VV

V

I

VZ

outin

in

1

in

outin

in

VV

V

sC

inin

in

VV

V

AsC

AsC

1

1

Capacitor with capacitance C(1+A)

Example 10.3 - Miller Effect

sC

out

1

VV

V

I

VZ

inout

out

2

out

inout

out

VV

V

sC

inin

in

VV

V

AsC

A

AsC

A

1

AsC

11

1

Capacitor with capacitance

AC

11

Example 10.3 - Miller Effect