28
Jasper A. Vrugt University of California Irvine, CEE & EES University of Amsterdam, CGE Email: [email protected] LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION

LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

  • Upload
    others

  • View
    17

  • Download
    2

Embed Size (px)

Citation preview

Page 2: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

Pareto optimization

Multi-objective optimization

f1

f 2

Methods for Parameter Estimation

FIND THE PARETO SOLUTION SET IN A MULTI-DIMENSIONAL PARAMETER SPACE

Page 3: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

MODELING TO IMPROVE UNDERSTANDING

true input

true response

observed input

simulated response

measurement

outp

ut

time f

parameters prior info

observed response

optimize parameters

TUNING THE PARAMETERS SO THAT CLOSEST FIT TO THE OBSERVED SYSTEM RESPONSE IS OBTAINED

HOWEVER, WHAT IS THE APPROPRIATE OBJECTIVE FUNCTION?

Page 4: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

MULTI-OBJECTIVE OPTIMIZATION

Birds are trying to optimize

multiple objectives simultaneously

Flight time

Ene

rgy-

use

Trade-off between flight

time and energy-use

Need an optimization method that can identify ensemble of solutions that span the Pareto surface

Vrugt et al. [J. Avian Biol., 2006]

Page 5: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

PARETO OPTIMIZATION: EXAMPLE

Consider a two-dimensional optimization problem with two objectives; f1(x) = x1 + (x2-1)

2 ; f2(x) = x2 + (x1-1)2 with x1,x2 [0,1]

x2

Parameter space – initial sample

0.25

0.25

0.50

0.75

1.00

0.00 0.50 0.75 1.00 x1

0.00

2.00

Objective space – initial sample

0.00

f 2

f1

0.00

1.00

1.00

2.00

We cannot find a single combination of (x1,x2) for which f1(x) and f2(x) are both at their minimum

Optimization problem with multiple optimal solutions

Page 6: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

MULTIPLE SOLUTIONS: THE PARETO FRONT

Consider a two-dimensional optimization problem with two objectives; f1(x) = x1 + (x2-1)

2 ; f2(x) = x2 + (x1-1)2 with x1,x2 [0,1]

2.00

Objective space – initial sample

0.00

f 2

f1

0.00

1.00

1.00

2.00 1. Minimum value of f1(x) ? And for what value of x? 2. Minimum value of f2(x) ? And for what value of x? 3. Compromise: 0.5f1(x) + 0.5f2(x) ? And for what value of x?

Red line defines the Pareto solution set

Page 7: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

HOW TO OBTAIN MULTIPLE SOLUTIONS?

2.00

Objective space – initial sample

0.00

f 2

f1

0.00

1.00

1.00

2.00

Aggregate the different objective functions to obtain a single scalar: ft(x) = w1f1(x) + w2f2(x) ; w2 = 1 – w1

By running multiple different optimization runs for different values of w1, multiple different Pareto solutions are obtained

w1 = 1.00

w1 = 0.75

w1 = 0.50

w1 = 0.25

w1 = 0.00

INEFFICIENT SEARCH

Page 8: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

BETTER APPROACH: PARETO OPTIMIZATION

2.00

Objective space – initial sample

0.00

f 2

f1

0.00

1.00

1.00

2.00

Simultaneously identify multiple solutions that span the Pareto front / surface (more than 2 objectives)

Pareto

Ranking

Objective space – initial sample

2.00 0.00

f1 1.00

Pareto ranking is a non-linear, multi-objective scoring technique. Procedure: Find non-dominated solutions with different ranks.

Don’t compare objective function values, but Pareto rank

Rank 1

Rank 2

Rank 3

Rank 4

Page 9: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

HOW TO DO PARETO RANKING? f 2

Objective Space

f1

What are the best solutions

(nondominated by others)

Pareto Rank 1

What are the next best solutions?

Pareto Rank 2

etc.

Page 10: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

POTENTIAL PROBLEM – CLUSTERING

f1

f 2

Objective Space

Page 11: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

HOW TO MAINTAIN DIVERSITY?

Solutions could cluster closely to each other – how to make sure to sample the entire front / surface?

Uniqueness of solution in multi-dimensional objective space is somehow taken into account. Extreme solutions are more unique!

Rank 1

Rank 2

Rank 3

Rank 4

Objective space – initial sample

2.00 0.00 1.00

f1

1/10

2/10

4/10 2/10

1/10

Strength

Pareto

2.00

Objective space – initial sample

0.00

f1 1.00

f 2

0.00

1.00

2.00

Page 12: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

STENGTH PARETO APPROACH f 2

Objective Space

f1

Start with Pareto Rank 1 solutions

How many solutions do they dominate?

1/10

4/10

2/10

2/10

1/10

Extreme solutions are more unique and will always be maintained

Page 13: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

EVENLY SAMPLES THE PARETO FRONT

f 2

Objective Space

f1

1/10

4/10

2/10

2/10

1/10

Page 14: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

Vrugt and Robinson. PNAS, (2007)

THE AMALGAM MULTI-OBJECTIVE ALGORITHM

Page 15: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

(1) Generate sample: Sample N points, from the feasible parameter space, and compute the n objective function values of each of point. Store in matrix OF[1:N,1:n].

(2) Create offspring: Use K different search operators (GA, PSO, DE, AMS) to produce the offspring population, . Each algorithm contributes points.

(3) Calculate objective functions children: Store information in OF*[1:N,1:n]

(4) Rank Parents and Children: Rank OF[1:N,1:n] and OF*[1:N,1:n] jointly and store rank and crowding distance in matrix R[1:2N,1:2].

(5) Select new Population: Select N points from children and parents according to R[1:2N,1:2].

(6) Update Contribution Algorithms: Update based on the number of points they contributed to the new population.

(7) Check convergence: If convergence criteria are satisfied, stop; otherwise return to step 2.

AMALGAM OPTIMIZATION

Page 16: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

Vrugt and Robinson. PNAS, (2007)

MUCH FASTER CONVERGENCE WITH MULTIPLE SEARCH OPERATORS

ZDT4 SYNTHETIC PROBLEM

Page 17: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

Vrugt and Robinson. PNAS, (2007)

DYNAMIC CHANGES IN CONTRIBUTION OF INDIVIDUAL ALGORITHMS

IMPORTANCE OF INDIVIDUAL SEARCH METHODS

Page 18: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

BIRD MIGRATION EXAMPLE

Vrugt et al. J., Avian Biol., (2006)

Page 19: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

Parameter Unit Minimum Maximum

Initial fat amount [gram] 0 20

Endogenous direction [degrees] 150 230

Number of FlyDays [d] 1 15

Number of RestDays [d] 1 15

Minimum fat amount [gram] 0 10

BarrierCrossFat [gram] 0 20

Additional parameters when wind influence is “On”

Wind Compensation [%] 0 100

Min. NetSpeed to take off [m/s] 0 10

PARAMETERS AND RANGES

Vrugt et al. J., Avian Biol., (2006)

Page 20: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

PARETO SOLUTION SET

Vrugt et al. J., Avian Biol., (2006)

Page 21: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

MODEL PREDICTED FLIGHT ROUTES

Vrugt et al., J. Avian Biol., (2006)

Page 22: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

REAL WORLD PROBLEM: MRI DATASET

0.25 PV 0.4 PV

Concentration of MnCl2 versus time at 53,248 voxels and 112 time snaphots.

This results in 5,963,776 data points!!

Page 23: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

1. Steady State Flow Simulation – Regular numerical grid at the scale of the

concentration data – FEHM finite element simulation of steady state

flow field through the heterogeneous system

2. Particle Tracking Transport Simulation

– FEHM random walk particle tracking algorithm used to minimize numerical dispersion

– 250,000 particles (~1 cpu-hr on 3.4GHz processor)

– Particle tracking results converted to normalized concentration using a numerical convolution method

MRI: THE FLOW AND TRANSPORT MODEL

Many thanks to Bruce Robinson for setting up the forward model

Page 24: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

1. Permeabilities of individual 5 zones

– Ranges assigned so that rank order of the permeabilities of the five sands is honored

2. Molecular diffusion

3. Longitudinal and transverse dispersivity – Parameter ranges assigned based on literature

estimates and scientific judgment

MRI: PARAMETERS TO BE OPTIMIZED

Page 25: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

SOLUTION USING HYBRID PARALLELIZATION SCHEME

x1

x 2

I. Use population size N = 25

(AMALGAM) algorithm Each chain evolves on a different node

(FEHM) Flow and transport code Each chain uses 10 other nodes for particle tracking

COMPUTATIONAL TIME REDUCED WITH A FACTOR OF 250

Page 26: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

0 20 40 60 80 100 1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [hours]

First inverse Run - 250,000 particles

0 20 40 60 80 100 1200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [hours]

No

rma

lize

d C

on

ce

ntr

atio

n

Original results with median parameter values

OPTIMIZATION RESULTS WITH DREAM

Breakthrough curves in high-flow zones are well matched, but dispersion, diffusion, or advection into lower permeability zones under-represented

12,000 model FEHM runs using hybrid parallelization with 250 processors

Page 27: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

RESULTS MULTIOBJECTIVE OPTIMIZATION

f1 Permeability zones 1 – 3 f2 Permeability zones 4 & 5

RED: Original formulation with 5 parameters BLACK: SCE-UA solution BLUE: Modified formulation with 15 parameters (each zone has its own dispersivity values)

TRADE-OFFS in MODEL BETWEEN HIGH AND LOW FLOW ZONES

Page 28: LECTURE 3 MULTI-OBJECTIVE OPTIMIZATIONfaculty.sites.uci.edu/jasper/files/2012/08/Multi-Objective_Lecture_3.pdf · LECTURE 3 MULTI-OBJECTIVE OPTIMIZATION . Pareto optimization Multi-objective

SEE PRESENTATION JAN VANDERBORGHT (NEXT)