94
8/11/2019 Lecture 4- Equilibrium Chemistry (4h) http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 1/94 USTH  Analytical chemistry Lecture’s notes (For 2 nd  year BIO and EVN Students) Sept. to Dec., 2013  Assoc. Prof. Dr. Ta Thi Thao Dept. of Anal. Chem.; VNU Universit of Science

Lecture 4- Equilibrium Chemistry (4h)

Embed Size (px)

Citation preview

Page 1: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 1/94

USTH

 Analytical chemistryLecture’s notes 

(For 2 nd  year BIO and EVNStudents)

Sept. to Dec., 2013

 Assoc. Prof. Dr. Ta Thi Thao

Dept. of Anal. Chem.;VNU Universit of Science

Page 2: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 2/94

Lecture 4: Equilibria in solutions

and titration 

- Equilibrium

and Le Satelie principle- Equilibrium Constants for chemical

reactions and titration 

+ Acids and bases+ Complexon reaction

+ Precipitation

+ Redox reaction

Lecture outlines:

Page 3: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 3/94

Equilibrium

* Definition:

Page 4: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 4/94

* REVERSE REACTION (backward

reaction) reciprocal K ( K’ or K-1)

4.1. Equilibrium

Page 5: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 5/94

•  ADD REACTIONS

 Multiply Ks

4.1. Equilibrium

Page 6: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 6/94

 

Problem example 1:

Page 7: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 7/94

• LE CHATELIER’S PRINCIPLE 

2.1. Equilibrium

CO2 + H2  H2O(g) + CO a drying agent is added to absorb H2O

H2(g) + I2(g)  2HI(g) Some nitrogen gas is added

Q.: How do the following equilibria shift?

NaCl(g) + H2SO4 (l)  Na2SO4(s) + HCl(g)  the reaction is carried out in

an open container

Problem example 2: What factors affecting to the equilibrium?

Page 8: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 8/94

REACTION QUOTIENT, Q

Page 9: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 9/94

REACTION QUOTIENT, Q

• K is thus the special value that Q has

when the reaction is at equilibrium

Page 10: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 10/94

Eg.: HABER-BOSCH:

N2 + 3 H2  2 NH3 + E

K IS DIMENSIONLESS!

•Concentrations in mol/liter (M) 

•pressures in atmospheres (atm) 

•ignore solids 

•ignore solvents 

Page 11: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 11/94

4.2. Equilibrium Constants for

chemical reactions-Acid- Base Reaction (Ka, Kb)

- Complexon reaction (Kf ) 

- Precipitation reaction (Ksp)- Redox Reaction (E0) 

Page 12: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 12/94

4.1. Acid- Base Reactions

* Brønsted-Lowry Law• Acids donate H+ ions to other ions or

molecules, which act as a base.

• In an operational sense:

•  an acid is any substance that increases the

concentration of the H+ ion when it dissolves in

water.

•  a base is any substance that increases theconcentration of the OH- ion when it dissolves in

water.

Page 13: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 13/94

* Con jugated Acids and Bases

CH3COOH + H2O  CH3COO- + H3O+ 

CH3COO-: ………………………………………….. 

H3O+: ………………………………………………… 

Page 14: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 14/94

Page 15: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 15/94

Page 16: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 16/94

Weak acid and weak base

H l l ti

Page 17: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 17/94

pH calculation

• For a strong acid and strong base:

pH=- log [H+] with [H+]= C A if C A>10-6MpOH= -log [OH-] with [OH-] = CB if CB>10-6M

• For a mono weak acid and mono weak base:

if C A>10-6

M and K A>10-8

 B BC  K OH    ][

 A AC  K  H   

][

if C A>10-6 M and K A>10-8

•For a poly weak acid and poly weak base that K1>>K2>>K3:consider as mono weak acid or weak base has first H+ 

For a ampholytic salt: 21][   K  K  H   

Page 18: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 18/94

Buffers solution

• When H+ is added, it reacts essentially to

completion with the weak base present

H+ + A-  HA or H+ + B  BH+

• When OH- is added, it reacts essentially to

completion with the weak acid present

OH- + HA  H2O + A- 

OH- + BH+  H2O + B

If a solution containing HA and A- or mixture of B and BH+ 

Page 19: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 19/94

Buffers

• pH = pKa

 + log [base]/[acid]

• The maximum buffer capicity: pH=pKa 

• Useful range: pH  pKa  1

• pH determined byKa of acid and ratio of acid/conjugate base

or

Kb of base and ratio base/conjugate acid

Page 20: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 20/94

Buffer Table

Formic Acid Ka 

1.8 X 10-4 

pKa 

3.74

Barbituric Acid 9.8 X 10-5  4.01

Butanoic Acid 1.52 X 10-5  4.82

• Choose a pKa near the desired pH

• pH = pKa + log (base/acid)• 4.0 = 3.74 + log (base/acid)

• 0.26 = log (base/acid)

• 10.26 = 1.8 = (Na formate / formic acid)

How to make a solution with pH 4?

Page 21: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 21/94

Buffer Capacity

•  As long as ratio remains virtually constant,

the pH will be virtually constant

• This is true as long as concentrations of

buffering materials (HA/A-) or (B/BH+) are

large compared with H+ or OH- added.

Page 22: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 22/94

Problem Examples• 4- methylaniline is considered as a weak

base with pKa= 5.084 . Calculate the pH of10-2 M 4- methylaniline solution (2pts)

•  

•  •  

•  

• How does pH change if 50 mL of 0.05 MHCl is added to 100 mL of 10-2 M 4-

methylaniline solution (2pts)

Page 23: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 23/94

Ladder diagram

Page 24: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 24/94

Ladder diagram of complex

systems• E.g. H3PO4

and it’s salts 

Page 25: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 25/94

4.2.2. Complex-Ion Equilibria

• Many metal ions, especially transition

metals, form coordinate covalent bonds 

with molecules or anions having a lone

pair of electrons.

For example, the silver ion, Ag+, can react with

ammonia to form the Ag(NH3)2+ ion.

)NH:Ag:NH()NH(:2Ag 333

Page 26: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 26/94

Complex-Ion Equilibria

•  A complex ion is an ion formed from a metal

ion with a Lewis base attached to it by acoordinate covalent bond.

A complex is defined as a compound containing

complex ions. 

A ligand is a Lewis base (an electron pair donor) that

 bonds to a metal ion to form a complex ion.

•The number of covalent bonds that a cation tends to

form with electron donors is its coordination number.Typical values for coordination numbers are two, four,

and six.

•The species formed as a result of coordination can be

electricall ositive, neutral, or ne ative.

Page 27: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 27/94

Complex-Ion FormationThe aqueous silver ion forms a complex ion with

ammonia in steps.

)aq()NH(Ag (aq)NH)aq(Ag 33 

)aq()NH(Ag (aq)NH)aq()NH(Ag 2333

 

When you add these equations, you get the overall

equation for the formation of Ag(NH3)2+.

)aq()NH(Ag (aq)NH2)aq(Ag 233

 

Page 28: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 28/94

Complex-Ion Formation

The formation constant, Kf  , is the equilibrium

constant for the formation of a complex ion from

the aqueous metal ion and the ligands.

The formation constant for Ag(NH3)2+ is:

23

23

f  ]NH][Ag[

])NH(Ag[K 

 

The value of K f  for Ag(NH3)2+ is 1.7 x 107.

Page 29: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 29/94

Complex-Ion FormationThe formation constant, K

, is the equilibrium

constant for the formation of a complex ion from

the aqueous metal ion and the ligands.

The large value means that the complex ion is

quite stable.

When a large amount of NH3 is added to asolution of Ag+, you expect most of the Ag+ ion to

react to form the complex ion.

The higher the Kf of complex, the better the selectivity of the ligand

The dissociation constant, Kd , is the reciprocal,

or inverse, value of Kf.

Page 30: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 30/94

Equilibrium Calculations with Kf

What is the concentration of Ag+(aq) ion in

0.010 M AgNO3 that is also 1.00 M NH3?

The Kf  for Ag(NH3)2+ is 1.7 x 107.

In 1.0 L of solution, you initially have 0.010

mol Ag+(aq) from AgNO3.

This reacts to give 0.010 mol Ag(NH3)2+,

leaving (1.00- (2 x 0.010)) = 0.98 mol NH3.You now look at the dissociation of Ag(NH3)2

+. 

Page 31: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 31/94

Equilibrium Calculations with

Kf

What is the concentration of Ag+(aq) ion in

0.010 M AgNO3 that is also 1.00 M NH3?

The Kf  for Ag(NH3)2+ is 1.7 x 107.

The following table summarizes.

Starting 0.010 0 0.98Change -x +x  +2x 

Equilibrium 0.010-x x 0.98+2x 

(aq)NH2)aq(Ag )aq()NH(Ag 323  

Page 32: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 32/94

Equilibrium Calculations with

Kf

What is the concentration of Ag+(aq) ion in

0.010 M AgNO3 that is also 1.00 M NH3?

The Kf  for Ag(NH3)2+ is 1.7 x 107.

The dissociation constant equation is:

f d

23

23

1

K ])NH(Ag[

]NH][Ag[

 

Page 33: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 33/94

Equilibrium Calculations with

Kf

What is the concentration of Ag+(aq) ion in

0.010 M AgNO3 that is also 1.00 M NH3?

The Kf  for Ag(NH3)2+ is 1.7 x 107.

Substituting into this equation gives:

7

2

107.1

1

)x010.0(

)x298.0)(x( 

 

Page 34: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 34/94

Equilibrium Calculations with

Kf

What is the concentration of Ag+(aq) ion in

0.010 M AgNO3 that is also 1.00 M NH3?

The Kf  for Ag(NH3)2+ is 1.7 x 107.

If we assume x is small compared with 0.010

and 0.98, then

8

2

109.5)010.0(

)98.0)(x( 

Page 35: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 35/94

Equilibrium Calculations with

Kf

What is the concentration of Ag+(aq) ion in

0.010 M AgNO3 that is also 1.00 M NH3?

The Kf  for Ag(NH3)2+ is 1.7 x 107.

and

10

)98.0()010.0(8

101.6109.5x 2

 

The silver ion concentration is 6.1 x 10-10 M.

Producing Soluble Complexes

Page 36: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 36/94

  Producing Soluble Complexes Complexation reactions involve a metal ion Mreacting with a ligand L to form a complex ML.

M + L MLComplexation reactions occur in a stepwise fashion,and the reaction above is often followed by additionalreactions:

ML + L ML2

ML2 + L ML3

MLn-1 + L MLn

Unidentate ligands invariably add in a series ofsteps. With multidentate ligands, the maximumcoordination number of the cation may be satisfied

with only one or a few added ligands. 

continued

Page 37: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 37/94

…continued… 

The equilibrium constants for complex formation

reactions are generally written as formation

constants.

M + 2L ML2 

M + 3L ML3

M + nL MLn

The overall formation constants are products of

the stepwise formation constants for the

individual steps leading to the product.

  2

2

1 2

 ML

 M L K K 

 

  33

1 2 3

 ML

 M L  K K K 

 

  n

n

n

 ML

 M L K K K 

 1 2....

2

3

n

Page 38: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 38/94

  Forming Insoluble Species

The addition of ligands to a metal ion mayresult in insoluble species, such as the familiarnickel-dimethylglyoxime precipitate. In many

cases, the intermediate uncharged complexesin the stepwise formation scheme may besparingly soluble, whereas the addition ofmore ligand molecules may result in soluble

species. AgCl is insoluble, but addition oflarge excess of Cl-  produces soluble AgCl2

-, AgCl3

2-, and AgCl43-.

continued

Page 39: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 39/94

…continued… 

In contrast to complexation equilibria, which aremost often treated as formation reactions, solubility

equilibria are usually treated as dissociationreactions

Mx Ay(s) xMy+(aq) + yAx-(aq)

Ksp = [My+]x[Ax-]y

where, Ksp = solubility product. Hence, for BiI3, thesolubility product is written Ksp = [Bi3+][I-]3.

The formation of soluble complexes can be used tocontrol the concentration of free metal ions in

solution and thus control their reactivity. 

Page 40: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 40/94

  ORGANIC COMPLEXING AGENTS

Many different organic complexing agents

have become important in analytical

chemistry because of their inherent

sensitivity and potential selectivity in reacting

with metal ions. Such reagents are

particularly useful in precipitating metal and

in extracting metal from one solvent toanother. The most useful organic reagents

form chelate complexes with metal ions. 

Page 41: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 41/94

  Reagents for Precipitating Metals 

One important type of reaction involving an organic

complexing agent is that in which an insoluble, uncharged

complex is formed. Usually, it is necessary to considerstepwise formation of soluble species in addition to the

formation of the insoluble species. Thus, a metal ion Mn+ 

reacts with a complexing agent X-  to form MX(n-1)+, MX2(n-

2)+, MXn-1+, and MXn(soln).

Mn+ + nX-  MXn(soln)

MXn(solid) MXn(soln) Keq = [MXn]

Solubility product expression is:

Ksp = [Mn+][X-]n = Keq / n

  n

n

n

 MX 

 M X   K K K 

 1 2....n+ - n

Page 42: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 42/94

  Forming Soluble Complexes for

Extractions

Many organic reagents are useful inconverting metal ions into form that can be

readily extracted from water into an immiscible

organic phase. Extraction are widely used to

separate metals of interest from potential

interfering ions and for achieving a

concentrating effect by extracting into a phase

of smaller volume. Extractions are applicableto much smaller amounts of metals than

precipitations, and they avoid problems

associated with coprecipitation.

Page 43: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 43/94

Ethylenediamenetetraacetic

Page 44: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 44/94

Ethylenediamenetetraacetic

acid (EDTA)

EDTA forms 1:1 complexes with metal ions by with 6 ligands: 4 O &

2N. EDTA is the most used chelating agent in analytical chemistry,

e.g. water hardness.

Page 45: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 45/94

Acid/Base Properties of EDTA

Page 46: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 46/94

 Acid/Base Properties of EDTA• EDTA is a hexaprotic system (H6Y

2+) with 4

carboxylic acids and 2 ammoniums:

• We usually express the equilibrium for the formationof complex ion in terms of the Y4- form (all six

protons dissociated). You should not take this to

mean that only the Y4- form reacts

24.10 p

16.6 p

66.2 p

0.2 p

5.1 p

0.0 p

6

5

4

3

2

1

 K 

 K 

 K 

 K 

 K 

 K 

NH+

NH

+

O OH

O

OH

O

OH

O OH

Page 47: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 47/94

EDTA Complexes

Page 48: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 48/94

EDTA Complexes• The equilibrium constant for a reaction of metal

with EDTA is called the formation constant,K f , or the stability constant:

•  Again, K f  could have been defined for any form

of EDTA, it should not be understood that only

the Y4-

 reacts to form complex ion.

4

4

44

YM

MY MYYM

n

nnn

 K 

H D d f

Page 49: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 49/94

pH Dependence of αY4- 

Formation Constants for M-

Page 50: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 50/94

Formation Constants for MEDTA Complexes

Conditional Formation Constant

Page 51: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 51/94

Conditional Formation Constant• We saw from the fraction plot that most of the EDTA

is not in the form of Y4- below a pH ~10.

• We can derive a more useful equilibrium equationby rearranging the fraction relationship:

• If we fix the pH of the titration with a buffer,

then αY4- is a constant that can be combinedwith K f  

    EDTAY

EDTA

Y44 Y

-4-4

Y         

    EDTAM

MY

YM

MY

-4Y

4

4

4

f  

n

n

n

n

 K 

EDTAM

MY4

f Yf  -4

n

n' 

 K  K      f Yf 

44 MYEDTAM   K  K ' nn

   

Example

Page 52: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 52/94

Example• Calculate the concentration of free Ca2+ in

a solution of 0.10 M CaY2- at pH 10 and pH

6. K f  for CaY2- is 4.9x1010 

•  At low pH, the metal-complex is less stable

22

2

1.0

EDTACa

CaY

 x

 x K 

'   

6105

f Yf 

1010

f Yf 

101.1)109.4)(103.2(6.00, pHat

108.1)109.4)(36.0(10.00, pHat

4

4

 K  K 

 K  K 

 

 

f Yf 

224 CaYEDTACa   K  K ' 

   

 x x x -0.1 Conc

0.1 0 0 Conc

CaYEDTACa 

i

22  

[email protected]

[email protected]

4-

62

   x

Page 53: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 53/94

Problem sets

1)Chapter 6 (Harvey): 18; 22

2) Calculate the conditional formation constants for

 AlY- at pH 2 and pH 5 to explain that at pH 2, AlY- 

is not favorable but Al3+ could form complexonate

at pH5.• 3) Calculate the free pAl in 100 ml of solution of

0.100 M Al3+ at pH 5 after adding 100 ml of

0.100 M EDTA;

•  log Kf of AlY = 16.3; pCa = - log [Ca2+]. EDTA has

K1 = 1.02·10-2, K2 = 2.14x10-3, K3 = 6.92x10-

7 and K4 = 5.50x10-11.

4.2.3. Precipitation reaction

Page 54: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 54/94

Solubility Product (K sp) = [products]x/[reactants]y but.....

reactants are in solid form, so K sp=[products]x 

i.e. A2B3(s)   2A3+  + 3B2 –   K sp=[A3+]2 [B2 – ]3

Given: AgBr(s)  Ag+  + Br –  

In a saturated solution @25oC, the [Ag+] = [Br –  ]= 5.7 x 10 – 7 M.

Determine the K sp value.

-132-7

sp 10x3.310x7.5BrAgK   

 

4.2.3. Precipitation reaction

Page 55: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 55/94

Problem: A saturated solution of silver chromate was to found

contain 0.022 g/L of Ag2CrO4. Find K sp 

Eq. Expression: Ag2CrO4 (s)  2Ag+

  + CrO42 – 

 

K sp = [Ag+]2[CrO42 – ]

Problems working from K values

Page 56: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 56/94

Problems working from K sp values.

Given: K sp for MgF2 is 6.4 x 10 – 9 @ 25 oC

Find: solubility in mol/L and in g/L

MgF2(s)   Mg2+  + 2F –   K sp = [Mg2+][F – ]2 

I.

C.

E.

N/A 0 0

N/A +x +2x

N/A +x +2xK sp= [x][2x]2 = 4x3 

6.4 x 10 – 9 = 4x3 

2

23-3

-9

MgFMg10x1.24

10x4.6 x  

 

now for g/L:L

MgFmol10x2.1 2

-3

L

MgFg  2

mol

g62.37.3 x 10 – 2 

The common ion effect “Le Chatelier”overhead fig 17.16

Page 57: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 57/94

The common ion effect Le Chatelier  

What is the effect of

adding NaF?

CaF2(s) Ca2+ + 2F- 

Solubility and pH

Page 58: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 58/94

Solubility and pH

CaF2(s)   Ca2+  + 2F –  

Add H+ (i.e. HCl)

2F –   + H+    HF

Th i ff t “L Ch t li ”

Page 59: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 59/94

The common ion effect “Le Chatelier” 

Why is AgCl less soluble in sea water than in fresh water?

AgCl(s)   Ag+  + Cl –  

Seawater contains

NaCl

Problem: The solubility of AgCl in pure water is 1.3 x 10 – 5 M.

Page 60: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 60/94

Problem:  The solubility of AgCl in pure water is 1.3 x 10 5 M.

What is its solubility in seawater where the [Cl – ] = 0.55 M?

(K sp of AgCl = 1.8 x 10 – 10)

AgCl(s)

  Ag+  + Cl –  

I.

C.

E.

N/A 0 0.55N/A +x +x

N/A +x 0.55 + x

K sp= [Ag+][Cl – ]

K sp= [x][0.55 + x]try dropping this x

K sp = 0.55x

1.8 x 10

 – 10

 = 0.55xx = 3.3 x 10 – 10 = [Ag+]=[AgCl]

“AgCl is much less soluble in seawater” 

more Common ion effect:

Page 61: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 61/94

more Common ion effect:

a. What is the solubility of CaF2 in 0.010 M Ca(NO3)2?

K sp(CaF2) = 3.9 x 10 – 11 

CaF2(s)

  Ca2+  + 2F –  

[Ca2+] [F – ]

I.

C.E.

0.010 0

+x +2x0.010 + x 2x

K sp= [0.010 + x][2x]2  [0.010][2x]2 = 0.010(4x2)

3.9 x 10 – 11

 = 0.010(4x2

)

x = 3.1 x 10 – 5 M Ca2+ from CaF2 so = M of CaF2 

Now YOU determine the solubility of CaF2 in 0.010 M NaF.

K sp=[Ca2+][F-]2 

7 2+

Page 62: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 62/94

Answer: 3.9 x 10 – 7 M Ca2+ 

CaF2(s)   Ca2+  + 2F –  

0 0.010+x 2x

x 0.010 + 2x

K sp = [x][0.010 + 2x]2

 

3.9 x 10-11 =x(0.010)2 

x(0.010)2

 

x = 3.9 x 10-7 

What does x tell us

Reaction Quotient (Q): will a ppt. occur?

Page 63: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 63/94

pp

Use Q (also called ion product) and compare to K sp 

Q < K sp  reaction goes

Q = K sp  Equilibrium

Q > K sp  reaction goes

No ppt.

Ppt. is dissolved

Problem: A solution is 1 5 x 10–6 M in Ni2+ Na CO is added to

Page 64: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 64/94

Problem: A solution is 1.5 x 10   6  M in Ni2+. Na2CO3 is added to

make the solution 6.0 x 10 – 4  M in CO32 – .

K sp(NiCO3) = 6.6 x 10 – 9.

Will NiCO3 ppt?

NiCO3    Ni2+  + CO32 –  

K sp = [Ni2+][CO32 – ]

Q = [Ni2+][CO32 – ]

Q = [1.5 x 10 – 6][6.0 x 10 – 4] = 9.0 x 10 – 10 

Q < K sp  no ppt.

We must compare Q to K sp. 

Page 65: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 65/94

Effect of pH on Solubility

• Sometimes it is necessary to account forother reactions aqueous ions might

undergo.

For example, if the anion is the conjugate baseof a weak acid, it will react with H3O+.

if the cation is the conjugate acid

of a weak base, it will react with OH- 

You should expect the solubility to be affected

 by pH.

Page 66: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 66/94

Effect of pH on Solubility

• Sometimes it is necessary to account forother reactions aqueous ions might

undergo.

Consider the following equilibrium.

(aq)OC(aq)Ca )s(OCaC2

422

42

 

H2O

Because the oxalate ion is conjugate to a weak

acid (HC2O4-), it will react with H3O+.

O(l)H(aq)OHC (aq)OH)aq(OC 2423

2

42  

H2O

Effect of pH on Solubility

Page 67: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 67/94

ect o p o So ub ty

• Sometimes it is necessary to account for

other reactions aqueous ions might

undergo.

According to Le Chatelier’s principle, as C2O4

2-

 ion is removed by the reaction with H3O+, more

calcium oxalate dissolves.

Therefore, you expect calcium oxalate to be

more soluble in acidic solution (low pH) thanin pure water.

Problem: 0.50 L of 1.0 x 10 – 5 M Pb(OAc)2 is combined with 0.50 L

Page 68: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 68/94

of 1.0 x 10 – 3 M K 2CrO4.

a. Will a ppt occur? K sp(PbCrO4) = 1.8 x 10 – 14 

Pb(OAc)2(aq) + K 2CrO4(aq)   PbCrO4(s)  + 2KOAc(aq)

then: PbCrO4(s)   Pb2+  + CrO42 –   K sp= [Pb2+][CrO4

2 – ]

[Pb2+]:

L

Pbmol 

0.50 L

L

Pb(OAc)mol10x0.12

-5

2

2

Pb(OAc)1

Pb1  

1 L5.0 x 10 – 6 

[CrO42-]:

L

CrOmol 

-2

4

0.50 L

L

CrOK mol10x1.0 42

-3

42

-2

4

CrOK 1

CrO15.0 x 10-4 

Q = [5.0 x 10-6][5.0 x 10-4] = 2.5 x 10-9 

compare to K sp: Q > K sp  so a ppt. will occur

1 L

b find the Eq conc of Pb2+ remaining in solution after the

Page 69: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 69/94

b. find the Eq. conc. of Pb2+ remaining in solution after the

PbCrO4 precipitates.

Since [Pb2+] = 5.0 x 10-6 and [CrO42-] = 5.0 x 10-4 and there is a

1:1 stoichiometry, Pb2+ is the limiting reactant.

PbCrO4(s)   Pb2+  + CrO42 –  

I. (after ppt.)

C.

E.

0 5.0 x 10-4  - 5.0 x 10-6 = 5.0 x 10-4 

+x +x

x 5.0 x 10 – 4 + x

K sp = [x][5.0 x 10 – 4 + x] Try dropping the “+ x” term. 

K sp(PbCrO4) = 1.8 x 10 – 14 

1.8 x 10 – 14 = x(5.0 x 10-4) x = [Pb2+] = 3.6 x 10 – 11 

This is the concentration of Pb2+ remaining in solution.

Complex ion formation affects to ppt. formation

Page 70: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 70/94

Ag+(aq) + NH3(aq)   Ag(NH3)+(aq)

AgCl(s)

  Ag+  + Cl –  

Ag(NH3)+(aq) + NH3(aq)  Ag(NH3)2+(aq)

Ag+(aq) + 2NH3(aq)  {Ag(NH3)2}+(aq)

formation or stability constant: 7

2

3

23f  10x1.7

NHAg)NH(AgK   

 

K sp= 1.8 x 10 – 10 

For Cu2+: Cu2+  + 4NH3   [Cu(NH

3)4]2+(aq)

K 1  x K 2  x K 3  x K 4  = K f   = 6.8 x 1012 

Solubility and complex ions:

Page 71: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 71/94

Problem: How many moles of NH3 must be added to dissolve 0.050 mol of

AgCl in 1.0 L of H2O? (K spAgCl = 1.8 x 10 – 10 ; K f [Ag(NH3)2]+ = 1.6 x 107)

AgCl(s)  Ag+  + Cl –  

Ag+

(aq) + 2NH3(aq)  Ag(NH3)2+

(aq)

sum of RXNS: AgCl(s) + 2NH3   Ag(NH3)2+(aq) + Cl –  

 

f sp2

3

23overall K  xK  

NH

Cl)NH(AgK 

 

 

= 2.9 x 10 – 3 

Now use K overall to solve the problem:

K overall= 2.9 x 10 – 3 = 

NH

Cl)NH(Ag2

3

23

 

2

3NH

0.0500.050 

[NH3]eq = 0.93 but ..... How much NH3 must we add?

[NH3]total= 0.93 + (2 x 0.050) = 1.03 M

2 ammonia’s for each Ag+ 

Fractional Precipitation: “ppting” one ion at a time. Compounds must have

Page 72: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 72/94

different K sp values (i.e. different solubilities)

Example: K sp CdS = 3.9 x 10 – 29  and K spNiS = 3.0 x 10 – 21 

? Which will ppt. first? least soluble

Problem: A solution is 0.020 M in both Cd2+ and Ni2+. Just before NiS begins

to ppt., what conc. of Cd2+ will be left in solution?

Approach: Find conc. of S2 – 

 ion when Ni2+

 just begins to ppt. since Cd2+

 will already be ppting. Then use this S2 –  conc. to find Cd2+.

NiS(s)

  Ni2+  + S2 –   K sp= 3.0 x 10 – 21 = [0.020][S2 – ]

[S2 – ] = 1.5 x 10 – 19 M when Ni2+ just begins to ppt.

So: CdS(s)  Cd2+  + S2 –  K sp= 3.9 x 10 – 29 = [Cd2+][1.5 x 10 – 19]

[Cd2+] = 2.6 x 10 – 10 M when NiS starts to ppt.

Activity effect

Page 73: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 73/94

 Activity effect

• Ionic strength:

• where ci and zi are the concentration and

charge of the ith ion.•  Activity: True thermodynamic constants

use a species activity in place of its molar

concentration (a).

•   : activity coefficient

Page 74: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 74/94

Debye- Huckel theory

Page 75: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 75/94

Page 76: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 76/94

Page 77: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 77/94

 

Page 78: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 78/94

4.2.4.OXIDATION-REDUCTION

Redox reation

DEFINITIONS

Page 79: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 79/94

• Oxidation: Loss of electrons.

• Reduction: Gain of electrons.• Reductant: Species that loses electrons.

• Oxidant: Species that gains electrons.

• Oxidation number: the oxidation number  of acentral atom in a coordination compound is the

charge that it would have if all the ligands were

removed along with the electron pairs that

were shared with the central atom.

Eg,: Cu + HNO3  Cu(NO3)2 + NO + H2O

STRENGTH OF REDUCING AND

Page 80: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 80/94

STRENGTH OF REDUCING AND

OXIDIZING AGENTS

Zn + Fe2+  Zn2+ + Fe

Which way will the reaction go?

Gr  = -16.3 kcal/mole

Zn is a stronger reducing agent than Fe.

Fe + Cu2+  Fe2+ + Cu

Gr  = -34.51 kcal/moleFe is a stronger reductant than Cu.

ELECTROMOTIVE SERIES

Page 81: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 81/94

ELECTROMOTIVE SERIES

Weakest oxidant Strongest

reductant

Zn  Zn2+ + 2e- Fe  Fe2+ + 2e-

Cu  Cu2+ + 2e-

 Ag  Ag+ + e-

Strongest oxidant Weakest

reductant

 Schematic diagram of a Zn-Cu electro-chemical cell. The two

metal electrodes are immersed in solutions of ZnSO and CuSO

Page 82: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 82/94

metal electrodes are immersed in solutions of ZnSO4 and CuSO4,

which are prevented from mixing by a porous partition.

ELECTROMOTIVE FORCE

Page 83: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 83/94

ELECTROMOTIVE FORCE

Electromotive force (EMF): Theelectrical potential generated by the

half reactions of an electrochemical

cell.Consider: Zn + Cu2+  Zn2+ + Cu

 At equilibrium the electrochemical

cell has to obey24.37

2

2

10][

][

Cu

 Zn K 

Page 84: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 84/94

kcal  K  RT Go

r  8.50log3025.2  

oor    nFE G  

F: (Faraday Constant) = 96,489 C mol-1 

= 23.06 kcal/V-1

 mol-1

 

Eo = Gr o/(2F)

= -50.8 kcal/(2 mol·23.06 kcal V-1 mol-1)

= -1.1 V

STANDARD HYDROGEN

Page 85: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 85/94

STANDARD HYDROGEN

ELECTRODE (SHE)

• In order to assign a ranking of half-cell reactions,we arbitrarily set E = 0.00 V for the reaction:

H2(g)  2H+ + 2e-

when pH2 = 1 bar and pH = 0. In other words, Eo =0.00 V. This is equivalent to the convention: Gf 

(H+) = Gf o (e-) = 0.00 kcal/mole.

• We then connect this SHE to any other electrode

representing a half-cell reaction and we can

obtain Eo for all half-cell reactions. This is called

the standard electrode potential.

Page 86: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 86/94

If we always write half-cell

reactions with the electrons on

the right hand side, E0 tells us

the position of the reaction in the

electromotive series relative to

SHE.

THE NERNST EQUATION

Page 87: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 87/94

THE NERNST EQUATION

• The value E0 refers to the EMF of a half-cellreaction when all reactants are in the

standard state, e.g., for

Zn  Zn2+ + 2e- 

Eo is the EMF when aZn2+ = 1.0. What if this is

not the case?

)][Re

][log(3025.2d 

OxnF 

 RT  E  E    o

EMF = ElectroMotive Force - a source of energy that can cause

a current to flow in an electrical circuit.

Page 88: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 88/94

]log[

2

3025.2 2   Zn

 F 

 RT  E  E    o

At 25°C we have in this particular case:

]log[0296.0

]log[2

0592.0

20

2

 Zn E 

 Zn E  E    o

Or in the most general case at 25°C:

)][Re

][log(

0592.0

Ox

n E  E    o

DEFINITION OF Eh

Page 89: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 89/94

O OWe define Eh to be the EMF between a half-cell

reaction in any state, and the SHE. Forexample, Eh for the zinc reaction above is

given defined by the overall reaction: Zn +

2H+  Zn2+ + H2(g) for which:

2

2

][][log

20592.0 2

 H 

 p Zn E  Eh   H o

However, for the SHE by definition, pH2 = 1 bar

and [H+] = 1 mol L-1, so:

]log[0296.0 2   Zn E  Eh

  o

STABILITY LIMITS OF WATER INEh H SPACE

Page 90: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 90/94

Eh-pH SPACEUpper limit:

H2O(l)  2H+ + 1/2O2(g) + 2e- 

Eh = E0 + 0.0295 log (pO2

1/2[H+]2)

E0 = Gr o/(nF) = -56.687/(2·23.06) = 1.23 V

Eh = 1.23 + 0.0148 log pO2

 - 0.0592 pH

 At the Earth’s surface, pO2 can be no greater than 1 bar so

Eh = 1.23 - 0.0592 pH

Lower limit:

1/2H2(g)  H+ + e-

Eh = 0 + 0.059 log ([H+]/pH2

1/2)

 Again, let pH2 = 1 bar.

Eh = -0.059 pH 

o

Page 91: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 91/94

pH

0 2 4 6 8 10 12 14

Eh(

volts)

-1

0

1

T = 25oC

pH

2

 = 1 bar 

pO2

 = 1 bar O 2 

H  2 O 

H 2 

H  2 O 

Eh-pH diagram

depicting thelimits of stability

of liquid water.

Page 92: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 92/94

Eh-pH diagram

showing theredox conditions

of various

natural

environments.

Factors affecting to the standard electrode potential-

Page 93: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 93/94

Conditional standard electrode potential

1.Effect of pH

2.Effect of complex reagents

3.Effect of precipitation reactions

Electrode potential of a solution.

Page 94: Lecture 4- Equilibrium Chemistry (4h)

8/11/2019 Lecture 4- Equilibrium Chemistry (4h)

http://slidepdf.com/reader/full/lecture-4-equilibrium-chemistry-4h 94/94

Electrode potential of a solution.

The potential buffer solution.