42
Lecture 4, Non-linear Time Series Magnus Wiktorsson

Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Lecture 4, Non-linear Time SeriesMagnus Wiktorsson

Page 2: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

“It’s not a bug, it’s a feature!”

▶ Why are we using linear models?▶ Properties▶ Limitations

▶ Properties of non-linear systems.▶ Limit cycles▶ Jumps▶ Non-symmetric distributions▶ Bifurcations▶ Chaos▶ Non-linear dependence

Page 3: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

“It’s not a bug, it’s a feature!”

▶ Why are we using linear models?▶ Properties▶ Limitations

▶ Properties of non-linear systems.▶ Limit cycles▶ Jumps▶ Non-symmetric distributions▶ Bifurcations▶ Chaos▶ Non-linear dependence

Page 4: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

General properties

▶ Assume causal system

f(Yn,Yn−1, . . . ,Y1) = εn

▶ Invertable system

Yn = f⋆(εn, . . . , ε1)

▶ Volterra series.

Suppose that f∗ is sufficientlywell-behaved, then there exists a sequence of boundedfunctions∞∑

k=0|ψk| <∞,

∞∑k=0

∞∑l=0

|ψkl| <∞,∞∑

k=0

∞∑l=0

∞∑m=0

|ψklm| <∞, ...

Page 5: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

General properties

▶ Assume causal system

f(Yn,Yn−1, . . . ,Y1) = εn

▶ Invertable system

Yn = f⋆(εn, . . . , ε1)

▶ Volterra series. Suppose that f∗ is sufficientlywell-behaved, then there exists a sequence of boundedfunctions∞∑

k=0|ψk| <∞,

∞∑k=0

∞∑l=0

|ψkl| <∞,

∞∑k=0

∞∑l=0

∞∑m=0

|ψklm| <∞, ...

Page 6: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Volterra serieswhere

µ = f∗(0), ψk = (∂f∗∂ϵt−k

), ψkl = (∂2f∗

∂ϵt−k∂ϵt−l), ... (1)

Approximate the general model by

Yt = µ+∞∑

k=0ψkϵt−k +

∞∑k=0

∞∑l=0

ψklϵt−kϵt−l

+∞∑

k=0

∞∑l=0

∞∑m=0

ψklmϵt−kϵt−lϵt−m + . . . (2)

This results in generalized transfer functions. NOTE thatsuperposition is lost!

These transfer functions do not care if {ϵ} is deterministicof stochastic!

Page 7: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Volterra serieswhere

µ = f∗(0), ψk = (∂f∗∂ϵt−k

), ψkl = (∂2f∗

∂ϵt−k∂ϵt−l), ... (1)

Approximate the general model by

Yt = µ+∞∑

k=0ψkϵt−k +

∞∑k=0

∞∑l=0

ψklϵt−kϵt−l

+∞∑

k=0

∞∑l=0

∞∑m=0

ψklmϵt−kϵt−lϵt−m + . . . (2)

This results in generalized transfer functions.

NOTE thatsuperposition is lost!

These transfer functions do not care if {ϵ} is deterministicof stochastic!

Page 8: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Volterra serieswhere

µ = f∗(0), ψk = (∂f∗∂ϵt−k

), ψkl = (∂2f∗

∂ϵt−k∂ϵt−l), ... (1)

Approximate the general model by

Yt = µ+∞∑

k=0ψkϵt−k +

∞∑k=0

∞∑l=0

ψklϵt−kϵt−l

+∞∑

k=0

∞∑l=0

∞∑m=0

ψklmϵt−kϵt−lϵt−m + . . . (2)

This results in generalized transfer functions. NOTE thatsuperposition is lost!

These transfer functions do not care if {ϵ} is deterministicof stochastic!

Page 9: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Frequency doubling

Now assume that we introduce a spectral representation ofthe noise.▶ Let’s start with a single frequency, ϵk = A exp(iω ∗ k)

▶ This results in frequency doubling▶ Proof by inserting the signal in Eq (2).▶ Question: What happens with a non-linear system if

the noise ϵk is white noise?▶ Conclusion: Black box non-linear system identification

is far more complicated that linear systemidentification.

Page 10: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Frequency doubling

Now assume that we introduce a spectral representation ofthe noise.▶ Let’s start with a single frequency, ϵk = A exp(iω ∗ k)▶ This results in frequency doubling▶ Proof by inserting the signal in Eq (2).

▶ Question: What happens with a non-linear system ifthe noise ϵk is white noise?

▶ Conclusion: Black box non-linear system identificationis far more complicated that linear systemidentification.

Page 11: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Frequency doubling

Now assume that we introduce a spectral representation ofthe noise.▶ Let’s start with a single frequency, ϵk = A exp(iω ∗ k)▶ This results in frequency doubling▶ Proof by inserting the signal in Eq (2).▶ Question: What happens with a non-linear system if

the noise ϵk is white noise?

▶ Conclusion: Black box non-linear system identificationis far more complicated that linear systemidentification.

Page 12: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Frequency doubling

Now assume that we introduce a spectral representation ofthe noise.▶ Let’s start with a single frequency, ϵk = A exp(iω ∗ k)▶ This results in frequency doubling▶ Proof by inserting the signal in Eq (2).▶ Question: What happens with a non-linear system if

the noise ϵk is white noise?▶ Conclusion: Black box non-linear system identification

is far more complicated that linear systemidentification.

Page 13: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Regime models

The model is generated from a set of simple models▶ SETAR▶ STAR▶ HMM

Page 14: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

SETAR - Self-Exciting Threshold AR

The SETAR(l; d; k1, k2, . . . , kl) model is given by :

Yt = a(Jt)0 +

kJt∑i=1

a(Jt)i Yt−i + ϵ

(Jt)t (3)

where the index (Jt) is described by

Jt =

1 for Yt−d ∈ R12 for Yt−d ∈ R2... ...l for Yt−d ∈ Rl.

(4)

NOTE that it is difficult to estimate the boundaries for theregimes

Page 15: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

SETAR - Self-Exciting Threshold AR

The SETAR(l; d; k1, k2, . . . , kl) model is given by :

Yt = a(Jt)0 +

kJt∑i=1

a(Jt)i Yt−i + ϵ

(Jt)t (3)

where the index (Jt) is described by

Jt =

1 for Yt−d ∈ R12 for Yt−d ∈ R2... ...l for Yt−d ∈ Rl.

(4)

NOTE that it is difficult to estimate the boundaries for theregimes

Page 16: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

SETARMA

▶ Similar ideas can be included in ARMA models,leading to SETARMA models.

▶ Often easy to add ’asymmetric’ terms in the AR orMA polynomials, e.g.

yn + a1yn−1 = en +(c1 + c′11{en−1≤0}

)en−1

Page 17: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

STAR - Smooth Threshold ARThe STAR(k) model:

Yt = a0+k∑

j=1ajYt−j+

b0 +k∑

j=1bjYt−j

G(Yt−d)+ϵt (5)

where G(Yt−d) now is the transition function lying betweenzero and one, as for instance the standard Gaussiandistribution.In the literature two specifications for G(·) are commonlyconsidered, namely the logistic and exponential functions:

G(y) = (1 + exp(−γL(y − cL)))−1; γL > 0 (6)

G(y) = 1 − exp(−γE(y − cE)2); γE > 0 (7)

where γL and γE are transition parameters, cL and cE arethreshold parameters (location parameters).

Page 18: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

PJM electricity market

Page 19: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Prices at the PJM market

Page 20: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Simple model of the power market

▶ Demand

D(Q) = a + bQ + c cos(2πt/50) + ε (8)

▶ Supply

S(Q) = α0+β0Q+G(Q,Qbreak)(α1+β1(Q−Qbreak)+)(9)

where G is a transition function.▶ Solve numerically for t = 1, . . . to get the quantity Q

and price P.

Page 21: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Supply and Demand

50 60 70 80 90 100 110 1200

100

200

300

400

500

600

700

800

900

1000

Supply

MaxDemand

MinDemand

Figure: Supply and demand curves (varies across the season) forour artificial market

Page 22: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Prices

0 50 100 150 200 250

250

300

350

400

450

500

550

600

650

700

750

Figure: Note the seasonality as well as the non-Gaussiandistribution.

Page 23: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Distribution of prices

300 350 400 450 500 550 600 650 700

Data

0.001

0.003

0.010.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.980.99

0.997

0.999

Pro

ba

bili

ty

Normal Probability Plot

Figure: Same property

Page 24: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

HMM - Hidden Markov Models

Another alternative is to let the regime shift stochastically,as in the Hidden Markov Model. Let

Yt = a(Jt)0 +

kJt∑i=1

a(Jt)i Yt−i + ϵ

(Jt)t (10)

where the state variable Jt follows a latent Markov chain.

NOTE that parameter estimation is slightly morecomplicated than before.

Page 25: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

HMM - Hidden Markov Models

Another alternative is to let the regime shift stochastically,as in the Hidden Markov Model. Let

Yt = a(Jt)0 +

kJt∑i=1

a(Jt)i Yt−i + ϵ

(Jt)t (10)

where the state variable Jt follows a latent Markov chain.

NOTE that parameter estimation is slightly morecomplicated than before.

Page 26: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Case: Electricity spot price, (Regland &Lindström, 2012)

The electricity spot price is very non-Gaussian

Feb05 Feb07 Feb09

0

50

100

150

200

250

EEX spot

Feb05 Feb07 Feb09−4

−3

−2

−1

0

1

EEX log(spot)−log(forward)

Figure: The electricity spot price (left) and spread, defined as thedifference between the logarithm of the spot and the logarithmof the forward (right). Data from the German EEX market.

Page 27: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

▶ The spread accounts for virtually all seasonality, butthere are still bursts of volatility.

▶ The logarithm of the spot, yt, was modeled using aHMM regime switching model with three states, anormal state with mean-reverting dynamics, a spike(upward jumps) state and a drop (downward jumps)state.

Page 28: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

This is mathematically given by :

∆y(B)t+1 = α

(µt − y(B)

t

)+ σϵt

y(S)t+1 = ZS,t + µt, ZS ∼ F (µS, σS)

y(D)t+1 = −ZD,t + µt, ZD ∼ F (µD, σD)

where µt is approximately the logarithm of the monthahead forward price.The regimes are switching according to a Markov chainRt = {B,S,D} governed by the transition matrix

Π =

1 − πBU − πBD πBS πBDπSB 1 − πSB 0πDB 0 1 − πDB

.

Page 29: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Feb05 Feb06 Feb07 Feb08 Feb09 Feb10−4

−3

−2

−1

0

1

Spr

ead

Feb05 Feb06 Feb07 Feb08 Feb09 Feb10−1

0

1

Reg

ime

prob

Figure: Fit of the independent spike model applied to EEX data

Extension used for stability evaluation of the power systemin (Lindström, Norén & Madsen, 2015) by making thetransition matrix time-inhomogeneous.

Page 30: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Case: What happens with large scaleintroduction of electric cars/battery?

Jan02 Jan04 Jan06 Jan08 Jan10 Jan12

0.4

0.5

0.6

0.7

0.8

0.9

1

Mod

ified

Nor

mal

ized

Con

sum

ptio

n

0 %10 %

Battery capacity (%) 0 5 10 15Base prob. 0.8794 0.8827 0.9066 0.9461Spike prob. 0.0304 0.0292 0.0196 0.0081Drop prob. 0.0902 0.0881 0.0738 0.0458

Table: Unconditional regime probabilities when having a perfectbattery with 0, 5, 10, and 15 % system capacity.

Page 31: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

HMMs for portfolio optimizationRecall the stylized facts for stock indices.

We can also useHMMs for portfolio optimization.▶ Model given by

Xt = µSt + εSt (11)

with µ1, µ2, σ1, σ2, π1 stat. prob. for the first stateand λ = γ11 + γ22 − 1 is the second largest eigenvalueto the transition matrix, Γ.

First, consider the autocorrelation (for k > 0):

r(k) = π1(1 − π1)(µ1 − µ2)2

σ21π1 + σ2

2(1 − π1) + π1(1 − π1)(µ1 − µ2)2λk

(12)See Nystrup et al (2016) for details.

Page 32: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

HMMs for portfolio optimizationRecall the stylized facts for stock indices. We can also useHMMs for portfolio optimization.▶ Model given by

Xt = µSt + εSt (11)

with µ1, µ2, σ1, σ2, π1 stat. prob. for the first stateand λ = γ11 + γ22 − 1 is the second largest eigenvalueto the transition matrix, Γ.

First, consider the autocorrelation (for k > 0):

r(k) = π1(1 − π1)(µ1 − µ2)2

σ21π1 + σ2

2(1 − π1) + π1(1 − π1)(µ1 − µ2)2λk

(12)See Nystrup et al (2016) for details.

Page 33: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Simulation example

Here the model is given by

Γ =

[0.98 0.020.1 0.9

].

with µ = [0.01 − 0.02] and σ = [0.04 0.20].Interpretation of parameters: Staying on average1/(1 − 0.98) = 50 days in the good state vs 10 days in thebad state.

Page 34: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Realizations

100 200 300 400 500 600 700 800 900 1000

0

2

4

6

0 100 200 300 400 500 600 700 800 900 1000

1

1.5

2

0 100 200 300 400 500 600 700 800 900 1000

-1

0

1

Figure: Cumulative returns (top), Markov states (middle) andreturns (bottom).

Page 35: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Autocorrelation

0 2 4 6 8 10 12 14 16 18 20

Lag

-0.2

0

0.2

0.4

0.6

0.8

1

Sam

ple

Auto

corr

ela

tion

Sample Autocorrelation Function

0 2 4 6 8 10 12 14 16 18 20

Lag

-0.2

0

0.2

0.4

0.6

0.8

1

Sam

ple

Auto

corr

ela

tion

Sample Autocorrelation Function

Figure: Autocorrelation for returns (left) and abs returns (right)

Page 36: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Trading strategy

Figure: Trading strategy in US stocks and bonds

Page 37: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

General State space models

A Grey box approach is to include as much prior knowledgeas possible.

Consider the General State Space model:

xn+1 = f(n, xn, un) + g(n, xn, un)en+1

yn+1 = h(n + 1, xn+1, un+1) + wn+1

where {xn}n≥0 is a latent process and {yn}n≥0 is thesequence of observations.▶ Interpretations?▶ Practical considerations

Page 38: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

General State space models

A Grey box approach is to include as much prior knowledgeas possible.

Consider the General State Space model:

xn+1 = f(n, xn, un) + g(n, xn, un)en+1

yn+1 = h(n + 1, xn+1, un+1) + wn+1

where {xn}n≥0 is a latent process and {yn}n≥0 is thesequence of observations.▶ Interpretations?▶ Practical considerations

Page 39: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Example: The Black & Scholes model

The Black & Scholes (1973) model is often used for optionvaluation.

x :dS = µStdt + σStdWt,

y :

[SMarket

ncMarket

K (Sn, ·)

]=

[SModel

ncModel

K (Sn, ·)

]+ wn.︸︷︷︸

Ask-Bix spread

This structure allows us to separate actual price variationfrom market micro structure.

Page 40: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Some references

▶ Lindström, E., & Regland, F. (2012). Modelingextreme dependence between European electricitymarkets. Energy economics, 34(4), 899-904. http://dx.doi.org/10.1016/j.eneco.2012.04.006

▶ Lindström, E., Norén, V., & Madsen, H. (2015).Consumption management in the Nord Pool region: Astability analysis. Applied Energy, 146, 239-246.http://dx.doi.org/10.1016/j.apenergy.2015.01.113

▶ Nystrup, P., Hansen, B. W., Madsen, H., &Lindström, E. (2015). Regime-based versus staticasset allocation: Letting the data speak. The Journalof Portfolio Management, 42(1), 103-109.http://dx.doi.org/10.3905/jpm.2015.42.1.103

Page 41: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos

Cont.▶ Nystrup, P., Madsen, H., & Lindström, E. (2016). Long

memory of financial time series and hidden Markov modelswith time-varying parameters. Journal of Forecastinghttp://dx.doi.org/10.1002/for.2447

▶ Lindström, E., Ströjby, J., Brodén, M., Wiktorsson, M., &Holst, J. (2008). Sequential calibration of options.Computational Statistics & Data Analysis, 52(6),2877-2891.

▶ Lindström, E., & Gou, J. (2013). Simultaneous calibrationand quadratic hedging of options. Quantitative andQualitative Analysis in Social Sciences

▶ Lindström, E., & Åkerlindh, C. (2018). Optimal AdaptiveSequential Calibration of Option Models. In Handbook ofRecent Advances in Commodity and Financial Modeling(pp. 165-181). Springer,https://doi.org/10.1007/978-3-319-61320-8_8

Page 42: Lecture 4, Non-linear Time Series - Lunds tekniska högskola · 2018-11-12 · Properties of non-linear systems. Limit cycles Jumps Non-symmetric distributions Bifurcations Chaos