55
Stochastic processes Lecture 5 Some random processes

Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Stochastic processes

Lecture 5

Some random processes

Page 2: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Random process

Page 3: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

1st order Distribution & density function

First-order distribution

First-order density function

Page 4: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

2end order Distribution & density function

2end order distribution

2end order density function

Page 5: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

EXPECTATIONS

• Expected value

• The autocorrelation

Page 6: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Some random processes

• Single pulse

• Multiple pulses

• Periodic Random Processes

• The Gaussian Process

• The Poisson Process

• Bernoulli and Binomial Processes

• The Random Walk Wiener Processes

• The Markov Process

Page 7: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Single pulse

Single pulse with random amplitude and arrival time: Deterministic pulse: S(t): Deterministic function. Random variables: A: gain a random variable Θ: arrival time. A and Θ are statistically independent

X (t) = A S(t −Θ)

0 0.5 1 1.5 2 2.5 3-2

0

2

t (ms)

Am

plit

ude

Nerve spike

0 0.5 1 1.5 2 2.5 3-2

0

2

t (ms)A

mplit

ude

0 0.5 1 1.5 2 2.5 3-2

0

2

Am

plit

ude

t (ms)

Page 8: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Single pulse expected value

X (t) = A S(t −Θ)

Expected value

E[X(t)]= E[A S(t −Θ)]

Since A and Θ are statistically independent, we have

𝐸 𝑋(𝑡) = 𝐸 𝐴 𝐸 S(t −Θ) = 𝐸 𝐴 S(t −θ)∞

−∞𝑓Θ(θ)dθ

E[X (t)] = E[A] s(t) ∗ fΘ (θ)

Convolution sum

𝑥 (𝑡) = 𝐸 𝑋 𝑡 = x

−∞

𝑓𝑥 x,t 𝑑𝑥

Page 9: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Single pulse autocorrelation

𝑅𝑥𝑥 𝑡1, 𝑡2 = 𝐸 𝑋 𝑡1 𝑋 𝑡2

𝑅𝑥𝑥 𝑡1, 𝑡2 = 𝐸 𝐴 𝑆(𝑡1 − 𝛩)𝐴 𝑆(𝑡2− 𝛩)

𝑅𝑥𝑥 𝑡1, 𝑡2 = 𝐸 𝐴2 𝐸 𝑆(𝑡1− 𝛩)𝑆(𝑡2− 𝛩)

𝑅𝑥𝑥 𝑡1, 𝑡2 = 𝐸 𝐴2 S(t1 −θ)S(t2 −θ)𝑓Θ(θ)dθ

−∞

Page 10: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Single pulse uniform arrival time

• The likelihood of a pulse is uniform for all times (from t=0 to t=T)

• Expected value

• Autocorrelation

𝑓Θ =1

𝑇

𝐸 𝑋(𝑡) = 𝐸 𝐴 S(t −θ)∞

−∞𝑓Θ(θ)dθ=

𝐸 𝐴

𝑇 S(t −θ)∞

−∞dθ

𝑅𝑥𝑥 𝑡1, 𝑡2 =𝐸 𝐴2

𝑇 S(t1 −θ)S(t2 −θ) dθ

−∞

Page 11: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Multiple pulses

Single pulse with random amplitude and arrival time: Deterministic pulse: S(t): Deterministic function. Random variables: Ak: gain a random variable Θk: arrival time. n: number of pulses Ak and Θk are statistically independent

x 𝑡 = 𝐴𝑘𝑆(𝑡 − 𝛩𝑘)𝑛𝑘=1

0 0.5 1 1.5 2 2.5 3-2

0

2

Multiple Nerve spikes

0 0.5 1 1.5 2 2.5 3-2

0

2

0 0.5 1 1.5 2 2.5 3-2

0

2

Page 12: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Multiple pulses expected value

Expected value

𝐸 𝑋(𝑡) = 𝑛 𝐸 𝐴 S(t −θ)∞

−∞𝑓Θ(θ)dθ

E[X (t)] = n E[A] s(t) ∗ fΘ (θ)

n times 𝐸 𝐴𝑘 𝐸 S(t −Θ𝑘) like n times a single pulse

𝑥 (𝑡) = 𝐸 𝑋 𝑡 = x

−∞

𝑓𝑥 x,t 𝑑𝑥

x 𝑡 = 𝐴𝑘𝑆(𝑡 − 𝛩𝑘)𝑛𝑘=1

𝐸 𝑋(𝑡) =E 𝐴𝑘𝑆(𝑡 − 𝛩𝑘)𝑛𝑘=1 = 𝐸 𝐴𝑘 𝐸 S(t −Θ𝑘)

𝑛𝑘=1

𝐸 𝑋(𝑡) =n 𝐸 𝐴𝑘 𝐸 S(t −Θ𝑘)

Page 13: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Multiple pulses autocorrelation

𝑅𝑥𝑥 𝑡1, 𝑡2 = 𝐸 𝑋 𝑡1 𝑋 𝑡2

𝑅𝑥𝑥 𝑡1, 𝑡2 = 𝐸 𝐴𝑘𝑆(𝑡1− 𝛩𝑘)

𝑛

𝑘=1

𝐴𝑗𝑆(𝑡2− 𝛩𝑗)

𝑛

𝑗=1

𝑅𝑥𝑥 𝑡1, 𝑡2 = 𝐸 𝐴𝑘𝑆(𝑡1− 𝛩𝑘)𝐴𝑗𝑆(𝑡2− 𝛩𝑗)

𝑛

𝑗=1

𝑛

𝑘=1

𝑅𝑥𝑥 𝑡1, 𝑡2 = 𝐸 𝐴𝑘𝐴𝑗

𝑛

𝑗=1

𝑛

𝑘=1

𝐸 𝑆(𝑡1− 𝛩𝑘)𝑆(𝑡2− 𝛩𝑗)

𝑅𝑥𝑥 𝑡1, 𝑡2

j=k

j≠k

Page 14: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Periodic Random Processes

• A process which is periodic with T

x 𝑡 = 𝑥 𝑡 + 𝑛𝑇 n is an integrer

x 𝑡 = 𝑠𝑖𝑛2𝜋𝑡

50+ Θ + 𝑠𝑖𝑛

2𝜋𝑡

100+ Θ

0 100 200 300 400 500 600 700 800 900 1000-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t

X(t

)

Signal

T=100

Page 15: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Periodity and the autocorrelation

• Theorem. If the random process is stationary in the wide-sense and period with T

• Then

• This is also true the other way around

x 𝑡 = 𝑥(𝑡 + 𝑛𝑇)

Rxx(τ) = Rxx(τ+nT)

Page 16: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Example

-500 -400 -300 -200 -100 0 100 200 300 400 500-1

-0.5

0

0.5

1

1.5

lag

Rxx(lag)

Autocorrelation

T=100

0 100 200 300 400 500 600 700 800 900 1000-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t

X(t

)

Signal

T=100

Page 17: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Proof

• We agree that

• And that

• Therefore

𝑥 𝑡 + 𝜏 + 𝑛𝑇 = 𝑥(𝑡 + 𝜏)

𝑅𝑥𝑥 𝜏 = 𝐸[𝑥 𝑡 + 𝜏 𝑥(𝑡)]

𝑅𝑥𝑥 𝜏 = 𝐸[𝑥 𝑡 + 𝜏 𝑥(𝑡)]=𝐸[𝑥 𝑡 + 𝜏 + 𝑛𝑇 𝑥(𝑡)] = 𝑅𝑥𝑥 𝜏 + 𝑛𝑇

Page 18: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Expected value

• The mean of one period

Page 19: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Real life example

• Aim: Identify heart rate from a heart sound recording

• Assumption: the heart beats are periodic

0 500 1000 1500 2000 2500 3000 3500-0.02

-0.01

0

0.01

0.02Signal

Am

plitu

de

0 1000 2000 3000

0

0.5

1

1.5Envelope

Envelo

pe

Segmentation result

Time (ms)

Sta

te

0 500 1000 1500 2000 2500 3000 3500

siSyssiDia S2S1

S1 S1S2 S2 S2S1

Page 20: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Calculate the signal envelope

• env(t)=filter(abs(x(t)))

0 500 1000 1500 2000 2500 3000 3500-0.02

-0.01

0

0.01

0.02Signal

Am

plitu

de

0 1000 2000 3000

0

0.5

1

1.5Envelope

Envelo

pe

Segmentation result

Time (ms)

Sta

te

0 500 1000 1500 2000 2500 3000 3500

siSyssiDia S2S1

S1 S1S2 S2 S2S1

Page 21: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Autocorrelation of the envelope

Page 22: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

The Gaussian Process

• X(t1),X(t2),X(t3),….X(tn) are jointly Gaussian fro all t and n values

• Example: randn() in Matlab

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000-4

-3

-2

-1

0

1

2

3

4

5Gaussian process

-4 -3 -2 -1 0 1 2 3 4 50

100

200

300

400

500

600

700Histogram of Gaussian process

Page 23: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

The Gaussian Process and a linear time invariant systems

• Out put = convolution between input and impulse response

Gaussian input Gaussian output

Page 24: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Example

• x(t):

• h(t): Low pass filter

• y(t):

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000-4

-3

-2

-1

0

1

2

3

4

5Gaussian process

-4 -3 -2 -1 0 1 2 3 4 50

100

200

300

400

500

600

700Histogram of Gaussian process

-1.5 -1 -0.5 0 0.5 1 1.50

100

200

300

400

500

600Histogram of y(t)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000-1.5

-1

-0.5

0

0.5

1

1.5

Page 25: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

The Poisson Process

• Typically used for modeling of cumulative number of events over time.

– Example: counting the number of phone call from a phone

𝑃 𝑋 𝑡 = 𝑘 =𝜆 𝑡 𝑘

𝑘!𝑒−𝜆(𝑡)

Page 26: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Definition of the Poisson Process

1. X(t) is a nondecreasing step function, with unit jumps at each time tk, and k is a finite and countable number.

2. For any time span from t1 to t2, the number of jumps that occur in the follow a Poisson distribution.

3. The number of events that occur in any interval of time t is independent of the number of events that occur in any other nonoverlapping interval

Page 27: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Condition 1

X(t) is a nondecreasing step function, with unit jumps at each time tk, and k is a finite and countable number.

Page 28: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Condition 2

For any time span from t1 to t2, the number of jumps that occur in the follow a Poisson distribution.

• 𝜆 is the arrival time

𝑃 𝑋 𝑡2 − 𝑋 𝑡1 = 𝑘 =𝜆 𝑡2− 𝑡1

𝑘

𝑘!𝑒−𝜆(𝑡2−𝑡1)

Poisson distribution

Page 29: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Condition 3

The number of events that occur in any interval of time t is independent of the number of events that occur in any other nonoverlapping interval

Thereby:

Page 30: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Alternative definition Poisson points

• The number of events in an interval

N(t1,t2)

𝑃 𝑁 0, 𝑡2 = 𝑘 = 𝑃 𝑋 𝑡 = 𝑘 =𝜆𝑡 𝑘

𝑘!𝑒−𝜆𝑡

𝑃 𝑁 𝑡1, 𝑡2 = 𝑘 = 𝑃 𝑋 𝑡2 − 𝑋 𝑡1 = 𝑘 =𝜆 𝑡2− 𝑡1

𝑘

𝑘!𝑒−𝜆(𝑡2−𝑡1)

Page 31: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

First order distribution (Fx)

• The probability that x1 events has occurred at time t1

𝐹𝑋1 𝑥1; 𝑡1 = 𝑃[𝑋(𝑡1) ≤ 𝑥1] = 𝜆 𝑡1

𝑘

𝑘!𝑒−𝜆(𝑡1)

𝑥1

𝑘=0

Page 32: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Expected value

Page 33: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Bernoulli Processes

• A process of zeros and ones

X=[0 0 1 1 0 1 0 0 1 1 1 0]

Each sample must be independent and identically distributed Bernoulli variables.

– The likelihood of 1 is defined by p

– The likelihood of 0 is defined by q=1-p

Page 34: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

The density function of Bernoulli Processes

1st order

2st order

δ() is the impuls respons δ(0)=1 and δ(≠0)=0

(X[n1] = 0, X[n2] = 1),

(X[n1] = 0, X[n2] = 0)

( X[n1 ] = 1, X[n2] = 0),

(X[n1] = 1, X[n2] = 1).

Page 35: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Binomial process

Summed Bernoulli Processes

Where X[n] is a Bernoulli Processes

Page 36: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Binomial distribution

• S[n]=k mean that out of n cases 1 occurs k time

Bernoulli Processes: X=[1 0 0 1 0 1]

Binomial process S=[1 1 1 2 2 3]

• S[6]=3;

• There by P(S[n]=k) follows a binomial distribution

• first-order density function

Remember

Page 37: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Random walk

• For every T seconds take a step (size Δ) to the left or right after tossing a fair coin

0 5 10 15 20 25 30 35 40 45 50

-8

-6

-4

-2

0

2

4

6

n

x[n

]

Random walks

Page 38: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Random walk

• After n steps (time nT) x(nT) will be

• Where k is the number of time we walk to positive direction k varies from 0 to n X(nT) varies from –nΔ to nΔ The change of getting k out n positive steps is Bernoulli random variable with p=0.5 and q=0.5 The density function is then

𝑋 𝑛𝑇 = 𝑘∆ − 𝑛 − 𝑘 ∆= (2𝑘 − 𝑛)∆

Page 39: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Random walk autocorrelation (1/2)

𝑅𝑥𝑥 𝑛1, 𝑛2 = 𝐸 𝑋 𝑛1 𝑋 𝑛2

𝑅𝑥𝑥 𝑛1, 𝑛2 = 𝐸 𝑋 𝑛1 (𝑋 𝑛2 + 𝑋 𝑛1 − 𝑋 𝑛1 )

𝑅𝑥𝑥 𝑛1, 𝑛2 = 𝐸 𝑋 𝑛12+ 𝑋 𝑛1 𝑋 𝑛2 − 𝑋 𝑛1

𝑅𝑥𝑥 𝑛1, 𝑛2 = 𝐸 𝑋 𝑛12 + 𝐸 𝑋 𝑛1 𝑋 𝑛2 − 𝑋 𝑛1

Independent if n2>n1

𝑅𝑥𝑥 𝑛1, 𝑛2 = 𝐸 𝑋 𝑛12 + 𝐸 𝑋 𝑛1 𝐸 𝑋 𝑛2 − 𝑋 𝑛1

Page 40: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Random walk autocorrelation (2/2)

𝑅𝑥𝑥 𝑛1, 𝑛2 = 𝐸 𝑋 𝑛12 + 𝐸 𝑋 𝑛1 𝐸 𝑋 𝑛2 − 𝑋 𝑛1

𝐸 𝑋 𝑛1 = 1

2∆ +1

2(−∆

𝑛1

𝑘=1

) = 0

𝑅𝑥𝑥 𝑛1, 𝑛2 = 𝐸 𝑋 𝑛12

𝐸 𝑋 𝑛12 =

1

2∆2+1

2(−∆

𝑛1

𝑘=1

2) = 𝑛1∆2

𝑅𝑥𝑥 𝑛1, 𝑛2 = 𝑛1∆2

Page 41: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

The Wiener process

• A random walk where

𝑇 → 0 𝑎𝑛𝑑 𝑛 → ∞

Page 42: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

The Markov Process

• 1st order Markov process

– The current sample is only depended on the previous sample

Density function

Expected value

Page 43: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Transition probability

• The probability of transition from on time to the next time instant

Page 44: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Continuous / Discrete

Continuous time (t) Discrete time (n)

Continuous X(t) Continuous random process

Continuous random sequence

Discrete X(t) Discrete random process

Discrete random sequence (Markov chain)

Page 45: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

State diagram of Markov chain

• Two state system

Transition probabilities

Page 46: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

The Markov Process

• The probability of a given sequence

Page 47: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Homogeneous and stationery process

• Homogeneous process

Is independent on n

But might dependent on n

• Stationary

is also independent on n

Page 48: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Predictions next sample

• Pj(n)=P(x(n)=j) State probability

• Pij(n-1,n)=P(x(n)=j | x(n-1)=i) Transition probability

• Inhomogeneous case

𝑃𝑗 𝑛 = 𝑃𝑖 𝑛 − 1 Pij(n−1,n)

𝑎𝑙𝑙 𝑖

• Homogeneous case

𝑃𝑗 𝑛 = 𝑃𝑖 𝑛 − 1 Pij𝑎𝑙𝑙 𝑖

Page 49: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Example

• Weather forecast (two state homogeneous model)

– The probability for rain at day one is Pr(0)=0.3

– The probability for sun at day one is Ps(0)=0.7

– The transition probabilities are

• Rain to sun Prs=0.4

• Sun to Rain Psr=0.2

Page 50: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Example

• What is the chance of rain tomorrow (n=1)

What is the chance of sum tomorrow (n=1)

𝑃𝑗 𝑛 = 𝑃𝑖 𝑛 − 1 Pij𝑎𝑙𝑙 𝑖

𝑃𝑟 1 = Pr 0 𝑃𝑟𝑟 + P𝑠 0 𝑃𝑠𝑟 𝑃𝑟 1 = 0.3*0.6+0.7*0.2=0.32

𝑃𝑠 1 = 0.3*0.4+0.7*0.8=0.68

Page 51: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

51

Segmentation of heart sounds without reference signal

• Task – Identification of first and

second heart sounds (S1 and S2)

• Problems – Stethoscope recordings are

contaminated with recording noise

– Recordings from clinical settings are contaminated with background noise

500 1000 1500 2000 2500 3000 3500 4000-0.1

0

0.1

Arb

itrar

y am

plitu

de

Time (ms)

Heart sound recording: subject 1

500 1000 1500 2000 2500 3000 3500 4000

-0.01

0

0.01

0.02

Time (ms)

Arb

itrar

y am

plitu

de

Heart sound recording: subject 10

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

S1S2S1S2S1S2S1S2S1

Page 52: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Data and preprocessing

• Heart sound recorded with a 3M/Littmann electronic stethoscope from 100 patients referred for coronary arterial angiography

• Band pass filtered

– 4th order Butterworth 25-400 Hz

• Homomorphic envelogram

• Down sampled to 50 samples pr second

52

0 500 1000 1500 2000 2500 3000 3500-0.02

-0.01

0

0.01

0.02Signal

Am

plitu

de

0 1000 2000 3000

0

0.5

1

1.5Envelope

Envelo

pe

Segmentation result

Time (ms)

Sta

te

0 500 1000 1500 2000 2500 3000 3500

siSyssiDia S2S1

S1 S1S2 S2 S2S1

Page 53: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Hidden Markov models • A double stochastic process

– consisting of an underlying hidden Markov process

– which generates an observable stochastic output

• Weakness

– The transition probabilities are independent of time spent in the current state

53

O

Heart cycle states

S2 siSys S1 siDia Q

The observable output,

the heart sounds

The hidden part

as1 s1 asiSys siSys

asiDia siDia

aS2 S2

aS2 siDia asiSys S2 aS1 siSys

asiDia S1

Page 54: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Estimation of the most likely state sequence (Q)

• Find the state sequence which is the most likely to have generated the observed output given the current model

– Maximize P(Q|O,λ) according to Q

54

S1

siSys

S2

siDia

S1

siSys

S2

siDia

S1

siSys

S2

siDia

S1

siSys

S2

siDia

S1

siSys

S2

siDia

S1

siSys

S2

siDia

S1

siSys

S2

siDia

S1

siSys

S2

siDia

State sequences

Output: Heart sound

Q is the state sequence, O the observations, λ is the model parameters

S1

siSys

S2

siDia

S1

siSys

S2

siDia

S1

siSys

S2

siDia

S1

siSys

S2

siDia

S1

siSys

S2

siDia

S1

siSys

S2

siDia

S1

siSys

S2

siDia

S1

siSys

S2

siDia

Page 55: Lecture 5 Some random processes - Aalborg Universitet · 2011-03-15 · Some random processes • Single pulse • Multiple pulses • Periodic Random Processes • The Gaussian Process

Results

55

Models Sensitivity Positive

predictive value

DHMM 99.3% (CI: 98.4-99.7%)

99.1% (98.1-99.5%)

HMM 59.5% (CI: 56-63%)

55% (CI: 51.6-58.4%)

0 500 1000 1500 2000 2500 3000 3500-0.02

-0.01

0

0.01

0.02Signal

Am

plitu

de

0 1000 2000 3000

0

0.5

1

1.5Envelope

Envelo

pe

Segmentation result

Time (ms)

Sta

te

0 500 1000 1500 2000 2500 3000 3500

siSyssiDia S2S1

S1 S1S2 S2 S2S1

Table 1.

Trained at 40 recordings Test at 60 recordings including 744 S1 and S2 sounds.