24
Kari Pietikäinen Communications Laboratory / HUT S-72.333 Postgraduate Course in Radio Communications Kari Pietikäinen Communications Laboratory / HUT S-72.333 Postgraduate Course in Radio Communications Orthogonal Frequency Division Multiplexing Kari Pietikäinen [email protected] Postgraduate Course in Radio Communications 30.11.

Lecture 5Lecture 5_bis_OFDM Bis OFDM

Embed Size (px)

DESCRIPTION

Lecture 5_bis_OFDM

Citation preview

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

Orthogonal Frequency Division Multiplexing

Kari Pietikä[email protected]

Postgraduate Course in Radio Communications30.11.

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

Outline

• OFDM– Subchannels– Pilots

• System overview– Coding / Interleaving– Mapping– IFFT / FFT– Guard time / Cyclic prefix

• System planning example• References• Homework

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

OFDM

• Multi-carrier modulation/multiplexing technique

• Available bandwidth is divided into several subchannels

• Data is serial-to-parallel converted

• Symbols are transmitted on different subcarriers

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

OFDM

• Signal processing made digitally in the frequency domain– IFFT/FFT –pair

• Guard time is added to reduce effects caused bymultipath propagation

• Tolerant to frequency-selective fading– Information lost in deep fades can be recovered using FEC

• Flexible data rates (IEEE 802.11a/g 6 – 54 Mbit/s)– Different code rates

• Puncturing– Different modulation methods (mapping)

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

OFDM

• Advantages– Spectral efficiency– Simple implementation– Tolerant to ISI

• Disadvantages– BW loss due guard time– Prone to frequency and phase offset errors– Peak to average power - problem

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

Subchannels

• Frequency-selective channel is divided into flat fadingsubchannels

• Fast serial data stream is transformed into slow paralleldata streams– Longer symbol durations

frequency

mag

nitu

de

carrier

channel

subchannel

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

Subchannels

single subchannel ofdm spectrum

• Subchannel spacings are selected so, that they are mathematically orthogonal to each other– FDM OFDM

• Subchannels overlap on each other– Sinc -shaped spectra

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

Pilots

• Pilots are transmitted first in each burst– 802.11a/g uses 4 subchannels as pilots– Some ’timeslots’ can be used as pilots

• Data can be normalized by pilot components• Pilots are designed for easy detection• Pilots are used for channel estimation

– Frequency and phase offsets– Can be used for synchronization

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsIF

FT

S/P

Map

ping

Inte

rleav

ing

Cod

ing

CP

Typical OFDM transmitter

• IEEE 802.11 a/g WLAN• IEEE 802.16 WiMAX• DAB• DVB-T• ADSL (DMT)• PLC (DMT

• DMT uses bit loading –algorithms– High SNR subchannels carry

more bits• DVB-T can use > 6800

subchannels• WiMAX can divide

subchannels to different users

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsIF

FT

S/P

Map

ping

Inte

rleav

ing

Cod

ing

CP

Coding / Interleaving

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

Coding / Interleaving

• Convolutional and/or Reed-Solomon coding– Adds redundancy to the information– Convolutional coding operates on bit streams– Reed-Solomon coding is block coding– Low implementation cost– OFDM COFDM (Coded OFDM)

• DVB-T uses inner/outer coding and interleaving

• Convolutional coding studied in earlier presentations

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

Coding / Interleaving

• Interleaving– Scatters error bursts – Can be done in time or in

frequency domain

• One of the simplest formis block interleaving– Write row-by-row– Read column-by-column

(or another way around)– Additional matrix

permutation is possible

E E E E E E

E E E

errors

w/o interleaving w/ interleaving

code word

1

0

100

1 10

0

1 1

1 11

111

11

0 00 0

0 0

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsIF

FT

S/P

Map

ping

Inte

rleav

ing

Cod

ing

CP

Mapping

101101011001 110000101111

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

Mapping

• Data on OFDM subcarriers is mapped(modulated) using common digital modulation schemes– IEEE 802.11a/g WLANs

uses BPSK, QPSK, 16-QAM, 64-QAM

• Serial binary data is converted into complex numbers representing constellation points– Constellation mappings

usually Gray-coded

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsIF

FT

S/P

Map

ping

Inte

rleav

ing

Cod

ing

CP

IFFT / FFT

1-7j 5+3j101101011001 110000101111

Pilot insertionZero padding

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

IFFT / FFT

• IFFT / FFT pair is the key factor in OFDM– IFFT: From frequency domain to time domain– FFT: Vice versa

• All signal processing is made in frequency domain• IFFT / FFT low implementation cost

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsIF

FT

S/P

Map

ping

Inte

rleav

ing

Cod

ing

CP

Guard time / Cyclic prefix

D/A converterLNA/HPAAntenna

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

Guard time / Cyclic prefix

• Guard time is inserted between consecutive OFDM symbols– Helps to combat against ISI – Guard time is larger than delay spread– Multipath components fade away before information extraction

• Reduces BW effiency

No ISI

guardtime FFT time

delayspread

OFDM symbol time

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

Guard time / Cyclic prefix

0 2 4 6 8 10 12−2

−1.5

−1

−0.5

0

0.5

1

1.5

2LOS1. mp2. mpSumprevious 1. mpprevious 2. mp

0 2 4 6 8 10 12−2

−1.5

−1

−0.5

0

0.5

1

1.5

2LOS1. mp2. mpSum1. mp cp2. mp cp

• Implemented with cyclic extension– Part of the signal is copied

to the front of the signal– Orthogonality is maintained

• Every copy of the signal has an integer number of cycles in the FFT window– Same phase signals sums

up

• Phase correction stillneeded

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsIF

FT

S/P

Map

ping

Inte

rleav

ing

Cod

ing

CP

System planning example

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

System planning example

• Delay spread 200 ns• Doppler spread 250 Hz (120 km/h)• Assigned BW 15 MHz

• FFT time 4 �s• Guard time 1 �s• OFDM symbol 5 �s (Guard time + FFT)

• Subchannel BW 1/T=200kHz• Nrof subchannels75

– FFT limitation >>>> nrof subch. 64 (2N)– 11 subchannels unused

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

• Subchannels are flat fading– Symbol period >> delay spread– Subch. BW << Coherence BW

• Data rates– BPSK (1 bit / symbol) 12,8 Mbit/s– QPSK (2 bits / symbol) 25,6 Mbit/s– Coding reduces data rates

• 20% BW loss because of guard time

System planning example

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

References

• Richard van Nee, Ramjee Prasad, OFDM for Wireless Multimedia Communications. Artech House Publishing, U.S.A., 2000

• Juha Heiskala, John Terry, OFDM Wireless LANs: A Theoretical and Practical Guide, Sams Publishing, U.S.A., 2002

• IEEE 802.11a Std, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications”, ISO/IEC 8802-11, IEEE, 1999

Kari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio CommunicationsKari PietikäinenCommunications Laboratory / HUT

S-72.333 Postgraduate Course in Radio Communications

Homework

• Derive expression for OFDM-signal

• Use 4 subchannels and 4QAM

• Input data sequence: 11 01 00 10

• Subcarrier frequencies are: -2fc -1fc 1fc 2fc

4QAM

ofdm signal

OFDM transmitter