Lecture 6. Components

  • Upload
    mrana56

  • View
    226

  • Download
    0

Embed Size (px)

Citation preview

  • 7/25/2019 Lecture 6. Components

    1/105

    6. Opticalcomponents

    Optical CommunicationSystems

    andNetworks

    Lecture 6: Optical Components 1/

    Optical Communication Systems and Networks

  • 7/25/2019 Lecture 6. Components

    2/105

    Lecture 6: Optical Components 2/

    Optical Communication Systems and Networks

    BIBLIOGRAPHY

    Optical Networks. A practical perspectiveRajiv Ramaswami, Kumar N. Sivarajan, Chapter 3, pp. 107-223, Ed.or!an"kau#mann.$nd Edition, $%%$.

    E&ternal electro"optic modulators'.A.A. Sale( y .C. )eic(. Fundamentals of Photonics, Chapter18, Ed.*iley.+terscience.

    . Capamany, -. . -raile"el/e0, . art1, 2Dispositivos deComunicaciones pticas,3C(apter 6, Ed. S1ntesis

    Optical passive components4 couplers,com5iners,

    isolators, lters, multiple&ers, 7

  • 7/25/2019 Lecture 6. Components

    3/105

    Lecture 6: Optical Components 2/

    Optical Communication Systems and Networks

    . Capamany, -. . -raile"el/e0, . art1, 2Dispositivos deComunicaciones pticas,3C(apter $, Ed. S1ntesis

  • 7/25/2019 Lecture 6. Components

    4/105

    Lecture 6: Optical Components 8/

    Optical Communication Systems and Networks

    Introduction to optical networks

    Unidirectional transmission

    Bidirectional transmission)(e same #i5er used to carry out tra##ic in 5ot( propa!ation directions

    Advantages:+t is ac(ieved an optimi0ation o# optical #i5er 5andwidt( and costsavin!s outside plant

    isadvantages:a9 Special components :circulator9 are needed #or separatin!t(e transmission directions

    59 ost E;-As (ave internal insulators t(at prevent5idirectional transmission c9Crosstalk #rom nonlinear e##ectsd9 Comple& implementation o# restoration and protection sc(emes

    Settin! up li!t(pat(s alon! #i5er optic links and nodes supportin!tra##ic #rom a varietyo# client layer4 A), +, ... +n t(e optical layer, comprises4

    Optical transmission medium O drop multiple&er #or insertin! or removin!

    optical c(annels

    )ema

    64Redes*;

  • 7/25/2019 Lecture 6. Components

    5/105

    Lecture 6: Optical Components ?/

    Optical Communication Systems and Networks

    O@C, optical Crossconnect

  • 7/25/2019 Lecture 6. Components

    6/105

    Optical transmission medium

    Parameters toconsider whenchoosing anoptical fiber

    o Core and claddin! diameters :m9o Attenuation coe##icient :d'>km9o ;ispersion coe##icient ; :ps>kmBnm9o ;i##erential ;ispersion coe##icient:ps>km.nm$9o ; parameter :ps>km>$9o inimum dispersion wavelen!t( :m9

    o Cuto## wavelen!t(:m9o Nonlinear re#ractive inde&o odal #ield diameter > e##ective area :m9

    'and descriptors de#ined 5y +)D to operate in minimum lossspectral re!ion

    Ban escriptor !pectral range

    O Ori!ina $6% 86%

    E E&tended 86% ?6%

    S S(ort ?6% F8%

    C Conventional F8% F6F

    <

  • 7/25/2019 Lecture 6. Components

    7/105

    D Dltra"lon! 6$F " 6GF

  • 7/25/2019 Lecture 6. Components

    8/105

    Optical transmission medium

    !tandard !ingle $ode %i&er' SSMF

    H Represents IFJ o# installed outside plant : %% million km9H Standardi0ed 5y +)D"L.6F$ recommendationH Dsed #or transmission wit(in t(e spectral ran!e $6% " 6GF nm,e&cept E

    and S 5ands

    H resents (i!( dispersion 5etween F8% " 6GF nm spectralre!ion

    +t re=uires dispersion compensation #or lon! distances

    ain applications4 Operation at 8%nm in

    CA)M and ANnetworks

    Operation at FF%nmover lon! distances

    )ypical ;ispersion pro#ile

    CN

    %

  • 7/25/2019 Lecture 6. Components

    9/105

    8% nm FF% nm

    )ema

    64Redes*;

    ispersion"

  • 7/25/2019 Lecture 6. Components

    10/105

    Lecture 6: Optical Components 6/53

    Optical transmission medium

    ispersion !*i+ted %i&er' DSFH 'y a !eometric modi#ication o# t(e re#ractive

    inde& pro#ile t(e minimum dispersion wavelen!t(is s(i#ted #rom $nd to 8rd communicationswindow

    H

  • 7/25/2019 Lecture 6. Components

    11/105

    Optical Communication Systems and Networks

  • 7/25/2019 Lecture 6. Components

    12/105

    Lecture 6: Optical Components 7/53

    Optical transmission medium

    ,on-.ero ispersion %i&er' NZDSFH

  • 7/25/2019 Lecture 6. Components

    13/105

    NQ;S- NQ;S-"

    Optical Communication Systems and Networks

    )ema

    64Redes*;

    O C / 53

  • 7/25/2019 Lecture 6. Components

    14/105

    Lecture 6: Optical Components 8/ 53

    Optical line terminal e/uipment' OL0

    Orepeaters9 andoptical ampli#iers

    S;

    Optical ,ode: OL0 +unction

    1

    router+.

    router+

    Clientprotocols

    standard

    2

    3

    O(4(O

    :transponder9

    mu&

    demu&

    OCS

    12

    3

    O5!

    Si!nals Si!nals

  • 7/25/2019 Lecture 6. Components

    15/105

    Si!nalsmana!ed inelectricaldomain

    Si!nalsmana!ed in

    opticaldomain

    Optical Communication Systems and Networks

    )ema

    64Redes*;

    L t 6 O ti l C t 9/

  • 7/25/2019 Lecture 6. Components

    16/105

    Lecture 6: Optical Components 9/53

    Optical line terminal e/uipment' OL0

    O)< presents adaptation #unctions4 t(e wavelen!t(conversion accordin! to standards set 5y t(e +nternational)elecommunications Dnion :+)D9

    )ransponders may add additional over(ead #or purposes o#network

    mana!ement)(e adaptation #unction is typically done t(rou!( an optical"to"electrical"to" optical :O>E>O9 conversion

    H t(e adaptation can 5e ena5led only in t(e incomin! direction

    )(e si!nal comin! out o# a transponder is multiple&ed wit(ot(er si!nals at di##erent wavelen!t(s usin! a wavelen!t(multiple&er

    +t e&ists tec(nolo!ical options to implement mu&>demu&4 %a&r6-Perot +ilters,arra6ed waveguide gratings, dielectric t*in-+ilm +ilters, or+i&er Bragg gratings

  • 7/25/2019 Lecture 6. Components

    17/105

    O

  • 7/25/2019 Lecture 6. Components

    18/105

    Lecture 6: Optical Components 105/3

    Optical line terminal e/uipment' OL0

    Optical $ultiple7ers

    )(e #unction o# t(e multiple&er is to couple two or morewavelen!t(s in t(e same optical #i5er

    :the demultiple"er is responsible for performing the inerseoperation, to separate the

    arious waelengths comprising the #$% signal from anoptical fiber9

    ultiple&erre/uirements4

    H

  • 7/25/2019 Lecture 6. Components

    19/105

    )ec(nolo!ical options considered #or t(e implementation o#multiple&ers are considerin! in t(e #ollowin! devices.

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 115/ 3

  • 7/25/2019 Lecture 6. Components

    20/105

    Lecture 6: Optical Components 115/ 3

    Optical line terminal e/uipment' OL0

    %a&r6 8 Perot +ilters

    - #ilter is a dielectric resonant cavity :etalon9, #ormed 5y two(i!(ly re#lective

    mirrors placed parallel to eac( ot(er.

    +t (as 5een used #or *; applications alt(ou!( t(ere are 5etter#ilters nowadays

    &in

    $irror1

    :t,r9

    l

    $irror2

    :t$,r$9

    n

    &out

    T T$ T

    HTTTCT$TC

    T$T

    HT8T

    ti:transmission

    coefficient (field)

    ri:transmission

    coefficient (field)

    l: cait! length

    n' refractieinde" of thecait!

    )ema

    64Redes*;

    )(e electric #ield at t(e output is t(e sum o# successive

  • 7/25/2019 Lecture 6. Components

    21/105

    )(e electric #ield at t(e output is t(e sum o# successivetransmitted #ields4

    TTTT P TTT B TCT$THT T T TCT$T

    H$T T T TC$T$

    $T H?T T T U

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 12/ 53

  • 7/25/2019 Lecture 6. Components

    22/105

    Lecture 6: Optical Components 12/ 53

    Optical line terminal e/uipment' OL0

    Considerin! t(e associated periodic)rans#er-unction ):f94

    $

    RP%.$

    RP%.F

    T T P

    TT

    TT

    T

    TT

    H T H

    T $P

    H T $ ?TTTTT$:

    T9TTT

    RP%.I

    *(ere RPVriV$, A takes into accountintracavity losses :de#ined in power9

    and it is de#ined as4 AP C":R)9

    )(e periode is de#ined t(rou!( t(eparameter -SRor free spectral range'

    T

    NormalizedTransferfunctiion

    T(f)

    P

  • 7/25/2019 Lecture 6. Components

    23/105

    P$TT %

    % $ 8 ?

    Normalized frequency f/FSR

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 13/

  • 7/25/2019 Lecture 6. Components

    24/105

    Lecture 6: Optical Components 13/53

    Optical line terminal e/uipment' OL0

    )(ere are several parameters to evaluate t(e per#ormance or =uality o# a -"#ilter:assumin! mirrors re#lectivity is near R94

    1# %9H$4 -ull"widt( at (al#ma&imum

    TTT T P$TTTT

    arcsi

    n

    H

    T

    $T

    -*

    >$

    2#

    %inesse'F

    5*annelselection

    Cnn

    '

    -SR

    TT

    TT P

    T T

    T

    W

    H T

    C(annels5and

  • 7/25/2019 Lecture 6. Components

    25/105

    -SR

    ' 5andwidt( #re=uency

    '5andwidt(

    #re=uency

    +t must 5e satis#ied B %!R, ot(erwise crosstalkX

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 14/

  • 7/25/2019 Lecture 6. Components

    26/105

    Lecture 6: Optical Components 14/53

    Optical line terminal e/uipment' OL0

    %ilters &ased on Bragg gratings

    )(ese devices are 5ased on t(e e##ect 'ra!! e##ect actin! asselective wavelen!t(

    re#lective mirrors )(ey are 5uilt 5y insertin! a di##raction !ratin! in t(e #i5er :'ra!!

    !ratin!9H A pattern is written in t(e core o# t(e accordin! to a presta5lis(edperiodic variation o# t(e re#ractive inde&

    H *(en li!(t propa!ates t(rou!( t(is pattern, t(e wavelen!t( satis#yin!'ra!! condition

    re#lects w(ile t(e remainin! wavelen!t(s continue t(eirpropa!ation alon! t(e 5er

    n(z)

    n+n n0

    'Re#ra

    c pro#il 0ransmitted

  • 7/25/2019 Lecture 6. Components

    27/105

    ctiveinde&

    pro#ile

    '

    andRe+lectedwavelen!t(

    n-n

    %

    Braggcondition

    B ;2n

  • 7/25/2019 Lecture 6. Components

    28/105

    p p

    Optical line terminal e/uipment' OL0

    %ilters &ased on Bragg gratings

    )(ey are usually com5ined wit( optical circulators to operate asoptical add"drop

    multiple&ers

    Alt(ou!( insertion loss is ne!li!i5le, it increases up to 8d' w(en t(eyare con#i!ured as OA; due to t(e inclusion

    o# circulators C(annel spacin! o# %% L0 and F% are ac(ieved, keepin! a lowadjacent

    c(annel crosstalk

    Ot(er advanta!es4

    Easy couplin! to ot(er #i5ers +nsensitivity to polari0ation loss Reduced cost Active control o# temperature not re=uired

    +n t(e desi!n o# an OA;, it is important to consider t(e pass"5and narrowin! a#ter propa!atin! alon! a OA; cascaded

    sta!es :crosstalk and losses9

    OA; device manipulates only t(e e&tracted si!nals wit(out

  • 7/25/2019 Lecture 6. Components

    29/105

    OA; device manipulates only t(e e&tracted si!nals wit(outa##ectin! t(ose

    w(ic( traversin! t(e node, t(ere5y reducin! undesira5le e##ects.

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 16/ 53

  • 7/25/2019 Lecture 6. Components

    30/105

    p p

    Dropping a channel in a WDM system

    wavelen!

    t(

    'ra!!!ratin!tuned at8

    wavelen!t(

    )(e reYection spectrum is o5tained as t(e-ourier trans#orm

    o# t(e inde&distri5ution

    )(e 5andwidt( is inversely proportional tot(e len!t( o# t(e!ratin! :a #ew millimeters lon! provides a5andwidt( nm9

    wavelen!t(

    wavelen!t(

    'ra!!!ratin!tuned at8

    wavelen!t(

    wavelen!t(

  • 7/25/2019 Lecture 6. Components

    31/105

    wavelen!t(

    dd!Drop function "ased on#ragg fi"er gratings

    (lso a$aila"le a coupler-"asedsolution replacing %nd cirtulator)

    wavelen!t(

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 17/ 53

  • 7/25/2019 Lecture 6. Components

    32/105

    Optical line terminal e/uipment' OL0

    0*in %ilm milticavit6 %ilters

    A multilayer dielectric t(in #ilm #ilters :)--9 is 5ased on a -a5ry"erotinter#erometer consistin!o# multiple cavities surrounded 5y multiple re#lective dielectric t(in #ilm layers

    )(is device acts as a 5andpass #ilter w(ere a particular wavelen!t( passest(rou!( and t(erest are re#lected is determined 5y t(e len!t( o# eac( cavity

    )(e lter response is determined 5y t(e num5er o# cavities4 as t(enum5er increases t(e top o# t(e pass5and 5ecomes #latter and t(e skirts5ecome steeper

    Cavity

    input;ielectric layers actin! asselctive wavelen!t( mirrors

    Cavity $ Llass Cavity 8

  • 7/25/2019 Lecture 6. Components

    33/105

    Cavitysu5strate

    Cavity 8

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 18/

  • 7/25/2019 Lecture 6. Components

    34/105

    53

    Optical line terminal e/uipment' OL0

    Implementation as a multiple7er ( demultiple7er:

    resence o# lenses wit( !raded re#ractive inde& #or con#inin!and directin! at a certain an!le t(e si!nal to t(e ne&t #ilter

    Eac( #ilter allows a specic ran!e o# wavelen!t( o# li!(t to pass

    t(rou!( to re#lectt(e rest to t(e ne&t #ilter in t(e cascade arran!ement

    $ain +eatures:

    E##icient con#i!uration4 access only to c(annels to 5e removed andinserted wit(out a##ectin! t(e rest o# t(e wavelen!t(s passin!

    t(rou!( -lat ass5ands and very steep skirts Sta5ility to temperature variations

  • 7/25/2019 Lecture 6. Components

    35/105

    p y :savin!9

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 19/53

  • 7/25/2019 Lecture 6. Components

    36/105

    53

    Optical line terminal e/uipment' OL0

    Arra6ed waveguide gratings' A9Gs

    Arrayed

    wave!uides

    coupler coupler

    A*Loperatin! asademultiple&er

    A*L is a !enerali0ation o# t(eac("Qe(nder inter#erometer

    +t consist o# two couplers interconnected 5y an array o# wave!uides

    )wo copies o# t(e same si!nal 5ut s*i+ted in p*ase 5y di##erent amounts

    are added to!et(er

    A*Ls can 5e used as an n wavelen!t( multiple7ers4 an n"input, "

  • 7/25/2019 Lecture 6. Components

    37/105

    ! poutput device w(ere

    t(e n inputs are si!nals at di##erent wavelen!t(s t(at are com5ined ontot(e sin!le output

    emultiple7ing is per#ormed 5y t(e inverse o# t(is #unction : nwavelen!t(s9

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 20/ 53

  • 7/25/2019 Lecture 6. Components

    38/105

    Optical 5rossconnects' O>5

    B A A BA A A A

    '$ '

    8 ' ?

    1'

    2

    '

    3

    ' ?2

    3

    -i5er A ? -i5er A

    '

    ' '

    ;emultiple&ers

    ultiple&ers

    A B B A

    B B B B1 2 3 ? 2 1 '

    2

    '3

    ' ?

    3

    -i5er ' ? -i5er '

  • 7/25/2019 Lecture 6. Components

    39/105

    -i&ed Optical crossconnect. Static wavelent!( switc( routessi!nals#rom an input port ro an output port on 5asis a predesi!nedassi!nmet

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 21/ 53

  • 7/25/2019 Lecture 6. Components

    40/105

    Introduction to optical components

    assive optical devices act on si!nals propa!atin! t(rou!( t(em.Amon! t(e various #unctions t(ey per#orm are not included t(e!eneration, transmission, ampli#ication and optical detection

    atri& #ormalism is used #or descri5in! polari0ation p(enomena andapplications. )(ere are

    several met(odes4

    -or devices w(ic( are not a##ected 5y t(e polari0ation state o# t(e

    si!nal :not alter t(e state o# polari0ation wit( respect to t(e si!nalinput94

    Scattein! mati"' relates out!oin! #ields wit( incomin!electrical #ields

    #ansfe mati"4 relates incomin! and out!oin! #ields o# an evennum5er o# ports on t(e le#t side o# t(e optical component wit( t(e

    incomin! and out!oin! #ields o# an even num5er o# ports on itsri!(t

    $ones $atri7 descri5es t(e c(an!e or modi#ication o# t(e opticalsi!nal polari0ation state w(en an optical si!nal !oes t(rou!( anoptical device

    +t is used in polari0ers, polari0ation rotators, wave

    retarders, isolators, orpolari0ation splitters and com5iners

    +t is very common t(e use o# parameters e&pressed in d' #rom

  • 7/25/2019 Lecture 6. Components

    41/105

    +t is very common t(e use o# parameters e&pressed in d' #rommanu#acturers datas(eets w(ic( provide in#ormation a5out t(e powerdistri5ution amon! di##erent ports

    Optical Communication Systems and Networks

    Lecture 6: Optical Components $$/

  • 7/25/2019 Lecture 6. Components

    42/105

    Optical pasive5om onents:

    Optical Communication Systems and Networks

    #i5er$

    #i5er

    4vanescent

    +ieldcoupling

    S%stem o+

    coupled lineardiffeentiale&uations

    dE&'jEc E

    dz

    dE%

    & &

    'jE

    &% %

    c E& dz

    $

    % % %& &

    L cij = coupling coefficient

    E&(z)

    cos(cz)

    jsen(cz )E&(0)

    Po'e definition

    P(z) E (z) P(0)(&')

    E% (

    z)

    jsen(cz)

    cos(cz )E%

    (0)

    & P (z)

    &

    E (z)

    &

    %

    %

    Lecture 6: Optical Components $8/

  • 7/25/2019 Lecture 6. Components

    43/105

    Optical pasive5om onents:

    Optical Communication Systems and Networks

    & P(0)E&(z) &'

    j

    E&(0)

    % % &

    Ez

    &

    E

    % ( ) j ' % (0) !"ere sen$(cL) is t"e coupling ratio

  • 7/25/2019 Lecture 6. Components

    44/105

    *ncoming energy from M% input,a$eguides is distri"uted into N%

    output ,a$eguides

    CZC:TT9

    :%9

    Optical coupler response

    P&(0)

    P%(0)

    P&(L)PP%(L)P.

    OPTICAL COUPLER

    M=2N=2Z$

    :TT

    9

    $ :%9

  • 7/25/2019 Lecture 6. Components

    45/105

    % % $ 8 ?

    Normalized distance

  • 7/25/2019 Lecture 6. Components

    46/105

    There are different technological options to implement combiners.The most usual are:

    -Based on optical fibers

    - Fusion

    - Polishing

    -Based on integrated optics

    - Deposition

    - Ionic-exchange

    Operationprinciple4

    evanescent #ield o modal

    inter#erencecouplin!

    Lecture 6: Optical Components 25/ 53

  • 7/25/2019 Lecture 6. Components

    47/105

    Optical pasive5omponents:

    5OUPL4R!(5O$BI

    ,4R!P

    in (1

    Port 1

    Port 2

    Pin (2(negligible ideally)

    Pout (4

    Port

    Port !

    Pout (3

    Sc"ematic

    coupler 2#2

    (nsetion )oss* loss e&perimented 5yt(e si!nal w(en it propa!ates accordin!to a particular con#i!urarion input"outputports

    +"cess )oss* ratio o# total power atall outputports wit( respect to t(e input power.

    P

    P

    L L (d#)&0log&

    LE(d#) &0log()&0

    log/P

    P0

    $ i

    .

    Couplin! paamete* providesin#ormation a5out (ow power is distri5uted amon! outputports

    P

    o

    P

    o

    P

    o

    P

    Diectivit% represents t(e power#raction at t(e input port w(ic( is

  • 7/25/2019 Lecture 6. Components

    48/105

    #raction at t(e input port w(ic( is5ack"propa!ated to ot(er input ports

    P

    P.

    PP.%(d#)&0log

    %

    P&

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 26/53

  • 7/25/2019 Lecture 6. Components

    49/105

    Optical pasive5omponents:

    5OUPL4R!(5O$BI

    ,4R!

    Directional Coupler M x N Coupler N x N

    +nputs :i, i[9Outputs :k, k[9

    Inputs ! outputs

    x! ("( coupler built fromlog2(

    stages of elemental 2"2couplers

    Input po"er is distributed e#uall$ through all output ports %excess loss negligible&

    Output power$ %nput power&N ' e#cess loss

    L (d#)

    '&0log

    P

    )*P)dis)&

    P$ i %ii 1 (d#& ) '&0 logi1

    PPi

    'niformit$ 'L

    ma2'L$ min i

    & ;i t i5 ti

  • 7/25/2019 Lecture 6. Components

    50/105

    L$

    Pij

    & ;istri5utionloss

    LE i(d#)&0

    logi'&0log j&

    Pi

    Ldi

    (d#)'&0log&

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 27/53

  • 7/25/2019 Lecture 6. Components

    51/105

    Optical pasive 5omponents:$UL0IPL4>4R!(4$UL0IPL4>4R!

    *+%P*,-O.

    1

    2

    12

    1

    2

    /,*+%P*,-O.

    1

    2

    ultiple&>demultiple& #unctions can 5e also per#ormed 5y #ilter tec(nolo!y:-"+abr!-Perot +ilters, A*L"rra!ed #aeguide ratings, )--"hin +ilmmultila!er +ilters9

  • 7/25/2019 Lecture 6. Components

    52/105

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 28/ 53

  • 7/25/2019 Lecture 6. Components

    53/105

    Polari=ers:

    Passive components acting on polari=ationstate

    Allows t(e propa!ation o# t(e linear polari0ation component o# t(eelectric #ield ali!ned in t(e direction o# its transmittin! a&is, 5lockin!t(e propa!ation o# t(e ort(o!onal component.

    0ec*nological options:

    . A5sorption or selective loss$. Selective re#lection in isotropic materials

    8. Selective re#raction in 5ire#rin!ent materials

    +n practice, t(e ort(o!onal polari0ation is not completely suppressedand t(e passin!polari0ation component :parallel to t(e optical a&is9 su##ers losses,unlike an idealpolari0er.

    Operatingparameters:

    TTVV

    (nsetion)oss4 +

    "

    tinctati

    TTVV *

  • 7/25/2019 Lecture 6. Components

    54/105

    TT TTP %TTT%

    TTT T TT P %TTTC%

    TTT VV

    TTTVV

    TTT\

    TT

    \

    *TTT

    VV

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 29/53

  • 7/25/2019 Lecture 6. Components

    55/105

    Passive components acting on polari=ationstate

    9averetarder:

    +ntroduces a relative p(ase s(i#t :p(ase retardation9 5etweent(e (ori0ontal and vertical states o# t(e electric #ield

    )(ey are implemented 5y usin! 5ulk optics :anisotropic media94

    5ire#rin!ent #ilms wit( a t(ikness d wit( a particular re#ractive inde&nh #or (ori0ontal polari0ation :slow a&is9, and a di##erent re#ractiveinde& nv #or vertical polari0ation :#ast a&is9. )(en 4

    $ZT22222222222] P

    Z

    ]T^ H TT

    TTTTTTTZTTTTTTT P TZT$

    $

    @uarter wave retarder

    *(en ;(2' t(e initial linearly polari0ed si!nal :at ?F_ wit(respect to & a&es9 is trans#ormed to a le#t"(and circularpolari0ation

    Hal+-wave retarder

  • 7/25/2019 Lecture 6. Components

    56/105

    Lecture 6: Optical Components 30/53

  • 7/25/2019 Lecture 6. Components

    57/105

    Passive components acting on polari=ationstate

    9averetarder:

    +ntroduces a relative p(ase s(i#t :p(ase retardation9 5etweent(e (ori0ontal and vertical states o# t(e electric #ield

    )(ey are implemented 5y usin! 5ulk optics :anisotropic media94

    5ire#rin!ent #ilms wit( a t(ikness d wit( a particular re#ractive inde&nh #or (ori0ontal polari0ation :slow a&is9, and a di##erent re#ractiveinde& nv #or vertical polari0ation :#ast a&is9. )(en 4

    $ZT22222222222] P

    Z

    ]T^ H TT

    TTTTTTTZTTTTTTT P TZT$

    $

    polarizer

    *

    retarder

    polarizer

    % 3 $3 83 ?3

    /etardation,

    .ransmittance

    plication* (ntensit%contol

  • 7/25/2019 Lecture 6. Components

    58/105

    wae retarder 2 polarierscrossed config.

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 31/ 53

  • 7/25/2019 Lecture 6. Components

    59/105

    Passive components acting on polari=ation state

    Polari=ation Rotators:

    A polari0ation rotator produces a rotation o# t(e polari0ationplane o# a linearly polari0ed wave 5y a #i&ed an!le 3 , maintainin!t(e linearly polari0ed property.

    +t is re=uired materials in w(ic( a ma!netic #ield - produces t(erotation o# t(e polari0ation direction o# linearly polari0ed wave. )(isproperty is called Faada% effect

    P

    TTT

    w(ere 4 is t(e Merdet constant and its value depends on t(e material used:n, re#ractiveinde& andma!neto"optical rotation coe#cient9 and wavelen!t(4

    T P

    H

    TTT

    2

    $aterials wit*%arada6 e++ect:

  • 7/25/2019 Lecture 6. Components

    60/105

    )er5ium !allium !arnet :)LL9, ter5iumaluminum !arnet :)5AlL9, and yttrium iron!arnet :`+L9.

    'ismut( !arnets :Ld'iLand )5'i+L9 are used in

    FF% nm

    olari0ation rotation in a madium e&(i5itin! t(e +arada! effect

  • 7/25/2019 Lecture 6. Components

    61/105

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 32/ 53

  • 7/25/2019 Lecture 6. Components

    62/105

    Passive components acting on polari=ationstate

    Optical Isolator:

    )ransmits li!t( in only one direction, preventin! re#lected li!(t#rom returnin! 5ack to t(e source

    Pin

    Pout

    Port 1 Port 2

    Pout

    (ideally 0)P

    in

    /iagram of an Optical isolator

    Insertion Loss, considers t(e powerloss w(enli!(t propa!ation is in t(e direction:Z $9 4

    %solation ratio( pro)ides the ratio bet"een the

    po"er transmitted through port * "hen optical

    po"er is introduced in port +:

    3 P P 3 3

    in(&)

    in(%)

    Li (d#) &0log&0 P

    $(d#)&0log&0P ou t(%) out(&)

  • 7/25/2019 Lecture 6. Components

    63/105

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 33/53

  • 7/25/2019 Lecture 6. Components

    64/105

    Passive components acting on polari=ationstate

    Optical Isolator:

    Transmitted

    !ae

    +,-

    Polarizer #

    Farada Rotator

    * +,-

    Polarizer .

    Reflected

    !ae

    +,- Polarizer #

    B

    Farada Rotator

    *$ncident

    !ae

    * +,-0- Polarizer .

    * #locing

    Btransmitted

    signal

    Optical Communication Systems and Networks

  • 7/25/2019 Lecture 6. Components

    65/105

    Lecture 6: Optical Components 34/53

  • 7/25/2019 Lecture 6. Components

    66/105

    Optical pasive5omponents:

    OP0I5AL

    A004,UA0OR!

    Reduce t(e power level att(eir

    entrance

    Allow to adjust properlypower levels at t(e opticaldevices input ports #or acorrect per#ormance

    Can provide a #i&ed orvaria5le attenuation

    -i&edattenuator

    Maria5leattenuator

    -i&ed>varia5leattenuators 5ytransversal orlon!itudinal

    desplacement

  • 7/25/2019 Lecture 6. Components

    67/105

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 35/53

  • 7/25/2019 Lecture 6. Components

    68/105

    Optical pasive5omponents:

    OP0I5AL

    5IR5ULA0OR!

    Circulators allow addin! and droppin! optical c(annels in a *; si!nal,processin! optical (eaders and selective optical processin! #unctionsw(en t(ey are com5ined wit( ot(er optical devices.

    $

    he signal in5ected into the port 1 goesdirectl! to the port 2. #hen a signal isintroduced in 2, it e"its through the port3. nd a signal comes through 1 when ithas been preiousl! introduced in port 3.

    8

    *avelen!t(s att(e input $8?

    dding or dropping channels in WDM systems

    'r

    ;ropped$

    *avelen!t(s at t(e output $8?wavelen!t(48 8

  • 7/25/2019 Lecture 6. Components

    69/105

    8

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 36/ 53

    4>04R,AL $OULA0OR!

  • 7/25/2019 Lecture 6. Components

    70/105

    4>04R,AL $OULA0OR!

    Optical sources directly modulated at (i!( #re=uencies in systems5ased on intensity modulation :+9 can introduce c(irp w(en

    semiconductor laser diodes are used as transmitter, increasin! t(edispersion e##ects, and t(en, limitin! t(e ma&imum 5it rate.

    C* emission +n#ormation :electrical si!nal9

    ;iode04R,AL $OULA0IO,

    A#ter 5iasin! semiconductor lasers 5y a constant current, t(econtinuous wave emission :C*9 is injected into an e&ternal device:e&ternal modulator9 w(ic( superimposes a copy o# t(e electricalin#ormation si!nal, providin! t(e optical si!nal modulated at t(e

    output .

    )(is will eliminate or reduce t(e c(irp tone!li!i5le values .

  • 7/25/2019 Lecture 6. Components

    71/105

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 37/53

  • 7/25/2019 Lecture 6. Components

    72/105

    4>04R,AL $OULA0OR!

    )(ere are two main tec(ni=ues to implement e&ternalmodulators wit( #eatures suc( as #ast response,simplicity and compacticity re=uired in optical systems4

    1# 4lectro-optic $odulators+ntensity and p(ase modulation are ac(ieved'ased on #erro"electric crystals like lit(iumnio5ate :

  • 7/25/2019 Lecture 6. Components

    73/105

    Lecture 6: Optical Components 38/53

  • 7/25/2019 Lecture 6. Components

    74/105

    4>04R,AL $OULA0OR!: 4lectro-optice++ect

    EO e##ect is responsi5le #or t(e re#ractive inde& c(an!e in electro"optic materials 5y applyin! an e&ternal #ield :ockels e##ect9.

    E&ternal modulators take advanta!e o# t(is e##ect to modulate t(eoptical carrier in

    p(ase or intensity

    Crystals used in modulators are anisotropic, in w(ic( re#ractiveinde& depends on t(e polari0ation direction o# t(e electric #ield:optical si!nal9

    )o produce an intense e##ect, t(e access to r88 coe##icient, t(e

    !reatest element in t(e electro"optic tensor, is re=uired. )(is isac(ieved w(en t(e electric #ield polari0ation is parallel to t(e cristal[soptical a&is4

    n(E) n0& -%

    0 --

    n%P re#ractive inde& in a5sence o# electric #ield

    n r E

    n:E9P re#ractive inde& w(en electric #ieldis applied r88 electro"optic e##ectE Applied electric #ield component accordin! to t(e optical a&is

  • 7/25/2019 Lecture 6. Components

    75/105

    E Applied electric #ield component accordin! to t(e optical a&is

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 39/53

  • 7/25/2019 Lecture 6. Components

    76/105

    4>04R,AL $OULA0OR!: 4lectro-optice++ect

    Optical a!is (c)

    y

    ,i()$,oie#p34n&c5

    6

    ,()$, e#p(34n(,)&c)i oi

    , applied

    7

    # *iNbO! crystal:anisotropic

    cr!stal9

    n E n0 & -

    With typical values of LiNbO3

    % n01 1

    r 30

    pm/4n r E

  • 7/25/2019 Lecture 6. Components

    77/105

    121 30

    Optical Communication Systems and Networks

  • 7/25/2019 Lecture 6. Components

    78/105

    p y

    Lecture 6: Optical Components 40/ 53

    4>04R,AL $OULA0OR!: 4lectro-optic

  • 7/25/2019 Lecture 6. Components

    79/105

    4>04R,AL $OULA0OR!: 4lectro-optice++ect

    ,in()

    6

    ,out()

    odulated

    wa8e

    %

    d

    .esponse

    %ncident wa8e

    in C9% 4 4

    4

    ) 4

    The incident "a)e

    must be polari,ed

    4

    d

    r nL

    4alues in

    the range

    2-6 4 0

    0

  • 7/25/2019 Lecture 6. Components

    80/105

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 41/53

  • 7/25/2019 Lecture 6. Components

    81/105

    4>04R,AL $OULA0OR!: 4lectro-optice++ect

    66

    0RA,!4R!AL5O,%IGURA

    0IO,

    6

    LO,GI0UI

    ,AL

    5O,%IGURA0I

    O,

  • 7/25/2019 Lecture 6. Components

    82/105

    O,

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 42/53

  • 7/25/2019 Lecture 6. Components

    83/105

    Applications: 4lectro-optic modulator +orintensit6 modulation

    "Polari=ation con+iguration#

    Output polari7er

    ptical intensit$ modulator

    based on Pocels cell

    bet"een crossed polari,ers

    %nput polari7erriented at 6 de!rees

    wit(respect to t(eoptical a"is

    M

    C,%

    ptical

    Transmittance

    %,F

    %,%

    t

    .ransmittance243

    M5ias . 4oltage,

    t

  • 7/25/2019 Lecture 6. Components

    84/105

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 43/ 53

    Applications: 4lectro optic modulator +or

  • 7/25/2019 Lecture 6. Components

    85/105

    Applications: 4lectro-optic modulator +orintensit6 modulation

    "Inter+erometer con+iguration#

    Intensit$ modulator based on

    ach-/ehnder Interferometer

    I$ L0

    M

    ;iodes

    'L0M>$

    R. 8 33' EFD

    ;iode

  • 7/25/2019 Lecture 6. Components

    92/105

  • 7/25/2019 Lecture 6. Components

    93/105

    Return to =ero sc*emes

    RQ pulse o# t(ree duty cycles #or a 5it secuence4 %%%

    % % % %

    R. 8 C

  • 7/25/2019 Lecture 6. Components

    94/105

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 48/53

  • 7/25/2019 Lecture 6. Components

    95/105

    $AI, OP0I5AL !9I05HI,G045H,OLOGI4!

    Bulk opto-mec*anical switc*es

    $icro-electro-mec*anical "$4$s#switc*es

    Bu&&le-&ased waveguide switc*es

    4lectro-optical switc*es 0*ermo-optic switc*es

  • 7/25/2019 Lecture 6. Components

    96/105

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 49/53

    OP0I5AL

  • 7/25/2019 Lecture 6. Components

    97/105

    OP0I5AL5O$PO,4,0!:

    $icro-electro-mec*anical

    switc* "$4$#

  • 7/25/2019 Lecture 6. Components

    98/105

    8; ES4 steerin! mirrors allow switc(in! in 8;. +t is o5tained adrastically increase o# t(e num5er o# ports, providin! more compactdevices :#rom $F6 to over %%% ports9

    Advantages: #ast response, (i!( inte!ration and num5er o# ports

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 50/53

    OP0I5AL

  • 7/25/2019 Lecture 6. Components

    99/105

    OP0I5AL5O$PO,4,0!:Bu&&le-&ased

    waveguide switc*

    Planarwavegui

    deswitc*

    wave!uides

    Re#lected5eam

    "switc*ing#

    'u55le

    No 5u55le

    -luid c(annels

  • 7/25/2019 Lecture 6. Components

    100/105

    wave!uide to t(e desired output port

    Optical Communication Systems and Networks

    Lecture 6: Optical Components 51/53

    OP0I5AL

  • 7/25/2019 Lecture 6. Components

    101/105

    OP0I5AL5O$PO,4,0!:

    !witc* &ased on integrated $ac*-.e*nder

    inter+erometers"4lectro-optic

    control#

    Planar

    waveguide

    switc*

    wave!uides

    No5u55le

    Molta!e on"switc*ing#

  • 7/25/2019 Lecture 6. Components

    102/105

    isadvantages: Dsually (ave a relatively (i!( loss and ;