47
Lecture 6 Raman spectra of carbon nanotubes

Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Embed Size (px)

Citation preview

Page 1: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Lecture 6Raman spectra of carbon nanotubes

Page 2: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Infrared (IR) spectroscopy

IR

700 nm 3500 nm400 nmVisible light

IR

IR spectra can be used to identify the types of molecules or functional groups

Page 3: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Energy

Inter-nuclear distance (r)

req

Bond extensionBond compressionCoulomb attractionCoulomb repulsion

2. Hooke’s law: = -k(r – req)..(1) : restoring forcek: force constant

E1

E2

1. E1 E2, vibration frequency remains the same but vibration amplitude increases (r).

3. Energy E = k(r – req)2/2…(2)

Diatomic vibration

4. The minimum energy (stable state) is when r = req, E = 0

Page 4: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

A simple harmonic oscillator

Vibration frequency osc = (1/2)(k/)1/2Hz...(3)

: reduced mass of system

osc = (1/2c)(k/)1/2cm-1….(4)

c: velocity of light

This is Hz in unit, if one converts Hz into wavenumbers, Eq(3) can be expressed as

Vibration energy is quantized

E = ( + ½)ħosc (joules)…(5)

= 0,1,2,3….(vibrational quantum number)

Convert E into wave number unit, we have

= E/ c = (ħ + ½)osc (cm-1)…(6)

Eq(6) is energy allowed to a simple harmonic oscillator

Page 5: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Energy

cm-l

reqInter-nuclear distance (r)

= 0osc1/2

osc3/2

osc5/2

osc7/2

osc9/2

= 1

= 2

= 3

= 4

= ( + ½)osc

Any molecules can never have zero vibration energyor atoms can never be completely at test relate toeach other---(zero point energy E0 = ħosc/2 (joules) or o = osc/2 (cm-1).

Page 6: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Vibrational changes due to interaction with radiation (electromagnetic wave)

Vibrational changes can only be = 1 (selection rules)

+ 1

- 1

+ 2

- 2

wrong!

Emission = ( + 1 + 1/2)osc - ( + 1/2)osc

= osc

Adsorption = osc

Vibrational change always involves the same energy

Page 7: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

1.Electromagnetic wave only interacts (resonates) with molecules that can produce dipole moment.2.Homogeneous molecules cannot produce dipole moment, so they do not have IR adsorption (e.g. N2, H2). Heterogeneous molecules can produce dipole moment so they have IR adsorption (e.g. CO2, OH, cooH..)

3. For adsorption, the vibrating molecule only interacts (resonates) with electromagnetic wave at the same frequency.

Page 8: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

How a molecule produces a dipole ?

Example: water molecule (H2O)

OH H

-+ +

dipole momentdipole moment

Net dipole = 0

O

H H

Linear form

V-form

Net dipole 0

Page 9: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Molecular dipole produced by vibrations

A static linear H2O do not have a dipole

But when molecule vibrates dipole may not be zero

Symmetrical stretching Net dipole = 0

Asymmetrical stretchingNet dipole 0

Page 10: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Time axis

Net dipole

IR radiation

resonance

Page 11: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Types of vibration

Symmetrical stretching

Asymmetrical stretching

Page 12: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Scissoring twisting

wagging rocking

Different vibrations give different frequencies (same molecules)

C

HH

C

HH

Page 13: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

What if molecules have no intrinsic dipole, e.g. graphite

No dipolar

In this case, we induce dipole by laser beam (excitation) Raman

Raman is a name and he was a Indian

Page 14: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Laser beam

Page 15: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Raman spectrum of arbon nanotubes

20-30

Page 16: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

High frequency region:

D band: 1370 cm-1(disorder structure)

G band: 1580 cm-1(graphitic structure)

Low frequency region

Radial breathing mode (RBM): < 300 cm-1

Page 17: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

at higher frequency

Page 18: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

A1g mode at low frequency

Page 19: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

g: Ramanu: IR

Page 20: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the
Page 21: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the
Page 22: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

ID/IG: determination of graphitization

Smaller ID/IG highly graphitizationLarger ID/IG less graphitization

Why D-band means disorder structure and G-band for graphitized structure?

Page 23: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Different bond lengths Different bond lengths

Page 24: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Bond length becomes roughly the same when approach center,but bond length remains great differences at periphery, so we can say That only one type of bond length at the center of the sheet andtwo types of bond lengths at periphery.

Page 25: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Such a C-C stretching motion mainly occurs at the central region of graphene sheets. E2g mode is independent of sheet size and C-C vibration is locally. When size of graphene sheet increases the amount of vibration also increases, which leads to greater intensity of E2g mode (G-band).

Page 26: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Such a C-C vibration is very sensitive to periphery regions, and is dependent of sheet size.

Page 27: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

When sheet size increases, what happens?

The central region increases, so amount of C-C stretching motion increasesE2g intensity increases.

When sheet size decreases, what happens? The ratio between periphery and central regions increases. So amount of C-C stretching motion at central region decreases, and E2g intensity decreases

Page 28: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

When sheet size decreases, intensity of E2g mode decreases and A1g

mode increases, why? and we said before that A1g is sensitive toSize, why?

Periphery region (two types of bond lengths)

Central region (one type of bond length)

because

increases

1580 cm-11370 cm-1

1.42Å1.36Å1.46Å

Small size of sheetLarge size of sheet

decrease

Page 29: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

D-band G-band ID/IGID/IG

Page 30: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the
Page 31: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the
Page 32: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the
Page 33: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

2 nm <

Page 34: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Various diameters of tubes

514 nm laser

613 nm

shift

Page 35: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the
Page 36: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the
Page 37: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the
Page 38: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the
Page 39: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the
Page 40: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the
Page 41: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

RBM also depends on temperature

Page 42: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Band shift to lower wave number is called softening, and shift to higher wave number is called hardening

Why temperature increase causes softening to SWNTs

Page 43: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the
Page 44: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the
Page 45: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

radial vibrationC-C stretching

C-C bending

Thermal expansion of a tube

C-C stretching undergoes the greatest influence by temperature variation

Page 46: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

Why longer bond length gives lower vibration frequency?

Page 47: Lecture 6 Raman spectra of carbon nanotubes. Infrared (IR) spectroscopy IR 700 nm3500 nm400 nm Visible light IR IR spectra can be used to identify the

1. Inter-tube spring is a function of van der waals interaction

1

2

2. intra-tube spring is a function of C-C bond strength and tube diameter.

CC

R

R

2 > 1