30
Lecture 7 Transformations in frequency domain 1. Basic steps in frequency domain transformation 2. Fourier transformation theory in 1-D

Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Embed Size (px)

Citation preview

Page 1: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Lecture 7 Transformations in frequency domain

1. Basic steps in frequency domain transformation

2. Fourier transformation theory in 1-D

Page 2: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

2

Basic steps for filtering in the frequency domain

Takes spatial data and transforms it into frequency dataThe transformation is done by Fourier transformation

The most common image transform takes spatial data and transforms it into frequency data

Page 3: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Complex numbers and expression

2 2 1

0 0 0 0

( ) ( 1) ( 1)cos sin

! ! (2 )! (2 1)!

n n n n n n ni

n n n n

i ie i i

n n n n

2 2

1

(cos sin ) Re

, tan

i

i

a ib R i

aR a b

b

a

bR

θ

Page 4: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Fourier series

• The Fourier transform is a method of expressing a periodic function with period 2T in terms of the sum of its projections onto a set of basis functions

• Fourier series: f(x) is periodic [-T, T]

01 1

0

1( ) cos( ) sin( ),

2

1 1( ) , ( ) ( )

1( )sin( ) , 1, 2,3

n nn n

T T

nT T

T

n T

n x n xf x a a b

T T

n xa f x dx a f x cos dx

T T Tn x

b f x dx nT T

{sin( ),cos( ), 0, 1, 2,...}nx nx

nT T

Page 5: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Example of Fourier decomposition

Page 6: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Example by Maple

=

Page 7: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Maple commands

> f := piecewise(x < -1, x+2, x < 1, x, x < 3, x-2);> plot(f, x = -3..3, discont=true);> an := Int(x*cos(n*Pi*x), x = -1..1);> an := int(x*cos(n*Pi*x), x = -1..1); > bn := int(x*sin(n*Pi*x), x = -1..1);> with(plots):> F1 := plot(f, x = -3..3, discont=true, color=black):> S1 := sum(bn*sin(n*Pi*x), n = 1..1):> S2 := sum(bn*sin(n*Pi*x), n = 1..2):> S5 := sum(bn*sin(n*Pi*x), n = 1..5):> S20 := sum(bn*sin(n*Pi*x), n = 1..20):> F2 := plot({S1,S2,S5,S20}, x = -3..3):> display({F1,F2});

Page 8: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Fourier series in general form

01 1

01 1

Proof 1: ( ) 2 ,

1( ) , 0, 1,...

21

Proof 2: ( ) cos( ) sin( )2

1 1( ) (

2 2 2

m n mT Ti x i x i x

T T Tn mT T

n

nT i x

Tn T

n nn n

n x n x n x ni i i i

T T Tn n

n n

f x e dx c e e dx Tc

c f x e dx nT

n x n xf x a a b

T T

ia a e e b e e

01 1

0 0

)

1

2 2 2

,

1, , 0; , 0

2 2 2

x

T

n x n xi i

n n n nT T

n n

n xi

Tn

n

n n n nn n

a ib a iba e e

c e

a ib a ibc a c n c n

1( ) , ( ) , 0, 1,...

2

n nTi x i x

T Tn n T

n

f x c e c f x e dx nT

Page 9: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Continue

When 0,

1 1( )cos( ) ( )sin( )

2 2 21

( )(cos( ) sin( ))2

1( )

2When 0,

1 1 1( ( )cos( ) ( )sin( ) )

2 2

1

2

T Tn n

n T T

T

T

n xT i

T

T

T Tn n

n T T

n

a ib n x n xc f x dx i f x dx

T T T Tn x n x

f x i dxT T T

f x e dxT

n

a ib n x n xc f x dx i f x dx

T T T T

fT

1

( )(cos( ) sin( )) ( )2

n xT T i

T

T T

n x n xx i dx f x e dx

T T T

Page 10: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Fourier transformation

2

2

Define

( )} ( ) ( )

the Fourier transfomrarion of ( )

Define { ( )} ( )

the inverse Fourier transfomrarion of F( )

iux

iux

f x F u f x e dx

f x

F u F u e du

u

-1

F{

F

Page 11: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Fourier series and Fourier transformation

1

2 22

2

1( ) , ( ) , 0, 1,...

2

1Consider when T , ,

2 2

( ) 2 ( ) ( )

( ) ( )

( ) (2 )

n

n

n nTi x i x

T Tn n T

n

n n n n

nT Ti x iu xT

n n T T

iu xn

ni x

Tn n

n n

f x c e c f x e dx nT

nu u u u

T T

c u Tc f x e dx f x e dx

f x e dx F u

f x c e Tc

2 2

2 2

2

2

(2 )

( ) ( )

Define ( )} ( ) ( ) the Fourier transfomrarion of ( )

Define { ( )} ( ) inverse Fourier tran

n n

n

ik x iu xn n n

n

iu x iuxn n

n

iux

iux

e k Tc e u

c u e u F u e du

f x F u f x e dx f x

F u F u e du

-1

F{

F sfomrarion of F( )u

Page 12: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Fourier Transform – 1D

• Fourier: Every periodic function f(x) can be decomposed into a set of sin() and cos() functions of different frequencies, given by

F(u) is called the Fourier transformation of f(x). F(u) =R(u)+iI(u) repesents magnitudes cos and sin at frequency u. So we say F(u) is in the Frequency domain.

Conversely, given F(u), we can get f(x) back using the inverse Fourier transformation

2( ) ( ) ( ) { ( )}iuxF u f x e dx F u f x

, F

2{ ( )} ( )

{ ( )} { ( )}} ( )

iuxF u F u e du

F u f x f x

-1

-1 -1

F

F F F{

Page 13: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Fourier Spectrum

• Fourier decomposition: • Fourier spectrum:• Fourier phase:• Decomposition:

2 2

1

( ) ( ) ( )

| ( ) | ( ) ( )

( ) tan ( ( ) / ( ))

( ) | ( ) | exp( )

F u R u iI u

F u R u I u

u I u R u

F u F u i

Page 14: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Properties of Fourier transformation

• Linear

2

2 2

2 2

{ ( ) ( )} { ( )} { ( )}

{ ( ) ( )} [ ( ) ( )]

( ) ( )

( ) ( )

{ ( )} { ( )}

iux

iux iux

iux iux

Af x Bg x A f x B g x

Af x Bg x Af x Bg x e dx

Af x e dx Bg x e dx

A f x e dx B g x e dx

A f x B g x

F F F

F

= +

+

= F F

Page 15: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Fourier transformation and Convolution

Convolution Theorem: assumethen

Proof

2

2

2 2

( ) ( ) ( ) ( )

{ ( ) ( )} [ ( ) ( ) ]

( )[ ( ) ]

( )[ ( ) ] ( ) ( ) ( ) ( )

i ut

i ut

i ux i ux

f t h t f x h t x dx

f t h t f x h t x dx e dt

f x h t x e dt dx

f x H u e dx H u f x e dx H u F u

F

{ ( )} ( ), { ( )} ( )

{ ( ) ( )} ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

f t F u h t H u

f t h t F u H u

f t h t H u F u

f t h t H u F u

F F

F

Page 16: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Example 1

/ 22 2

/ 2

/ 22

/ 2

, / 2 / 2( )

0,

( ) ( )

sin( )

2 2

Wiut iut

W

Wiut iuW iuW

W

A W t Wf t

otherwise

F u f t e dt Ae dt

A A uWe e e AW

i u i u uW

Sinc(x)=sin(x)/x

Page 17: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Example 2

0

0 0

2 2

2 0

2 20 0

20

, 0( ) , ( ) 1,

0, 0

( ) ( ) (0), ( ) ( ) ( )

( ) ( ) ( )

1

( ) ( ) ( )

cos(2 ) sin(2

iut iut

iu

iut iut

iut

tt t dt

i

f t t dt f f t t t dt f t

F u t e dt e t dt

e

F u t t e dt e t t dt

e ut i u

0 )

( ) ( )

{ ( )} { ( )} (cos(2 ) sin(2 ))

Tn

Tn n

t

com x x nT

com x x nT unT i unT

F F

Impulse function and its Fourier transformation

Page 18: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Examples

Page 19: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Example: Discrete impulse function

• Unit discrete impulse function

• Impulse train function

0 0

1, 0( ) , ( ) 1

0, 0

( ) ( ) (0), ( ) ( ) ( )

x

x x

tt t

i

f x x f f x x x f x

( ) ( )Tx

S t t n T

Page 20: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Fourier transformation of impulse train

2 2/ 2 0

/ 2

2

2

2

2

( ) ( )

1 1 1( ) , ( )

1( )

{ } ( )

1( ) { ( )} { }

1 1{ } ( )

Tx

n nTj j t

T TT n n TT

n

nj

TT

n

nj t

T

nj

TT

n

nj

T

n n

S t t n T

S t c e c S t e dt eT T T

S t eT

ne u

T

S u S t eT

ne u

T T T

F

F F

F

Page 21: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Sampling and FT of Sampled Function

• Sampled function~

( ) ( ) ( ) ( ) ( )Tx

f t f x S t f t t n T

Page 22: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Sampling and FT of Sampled Function

• The value of each sample (strength of the weighted impulse)

~ ~

( ) ( ) ( )

( ) { ( )} { ( ) ( )}

( )* ( )

( ) ( )

1( ) ( )

1( ) ( )

1( )

k

T

n

n

n

f f t t n T dt f k T

F u f t f x S t

F u S u

F x S u x dx

nF x u dx

T T

nF x u t dx

T T

nF u

T T

F F

Page 23: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

The Sampling Theorem

• Band-limited function f(t), its FT F(u) = 0 when u < -umax or u>umax

• Let be the sampling function of f(t), and be its FT

Question: if f(t) can be recovered from• Sampling Theorem: if then f(t) can be recovered

max

12U

T

~

( )F u~

( )f t

max max

~

~

~

,( )

0

( ) ( ) ( )

( ) { ( )}

{ ( ) ( )}

( )* ( )

( )sin [( ) / ]n

T u u uH u

otherwise

F u H u F u

f t F u

H u F u

h t f t

f n T c t n T n T

-1

-1

F

F

Page 24: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

The Sampling Theorem

• Sampling:– Over-sampling– Critically-sampling– Under-sampling

• Aliasing: f(t) is

corrupted

max

12U

T

Page 25: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D
Page 26: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D
Page 27: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Discrete Fourier Transform(DFT)

• Derive DFT from continuous FT of sampled function

~ ~2

2

2

2

12 /

0

12 /

0

( ) ( )

( ) ( )

( ) ( )

, 0,1,..., 1

, 0,1,..., 1

1, 0,1,...,

iut

iut

n

iut

n n

iun Tn

n

Mimn M

m nn

Mimn M

n mm

F u f t e dt

f t t n t e dt

f t t n t e dt

f e

mu m M

M T

F f e m M

f F e nM

=

1M

Page 28: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

DFT

1

0

( ) ( )

( ) ( )

( )* ( ) ( ) ( )M

m

F u F u kM

f x f x kM

f x h x f m h x m

-1-2 /

0

-12 /

0

( ) ( ) , 0,1,..., -1

1( ) ( ) , 0,1,..., -1

Mxu M

x

Mixu M

u

F u f n e u M

f x F u e x MM

Page 29: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Matrix representation

2

0 0 0 1 0 ( 1)

1 0 1 1 1 ( 1)

( 1) 0 ( 1) 1 ( 1) ( 1)

0 0 0 1

(0) (0)...

(1) (1)...

( 1) ( 1)...

(0) ..

(1)

( 1)

i

MM

MM M M

MM M M

M M M MM M M

M M

e

F f

F f

F M f M

f

f

f M

10 ( 1)

1 0 1 1 1 ( 1)

( 1) 0 ( 1) 1 ( 1) ( 1)

0 0 0 1 0 ( 1)

1 0 1 1 1 ( 1)

( 1) 0 ( 1) 1 ( 1

(0).

(1)...

( 1)...

...

...1

...

MM

MM N M

M M M MM M M

MM M M

MM M M

M M MM M M

F

F

F M

M

) ( 1)

(0)

(1)

( 1)M

F

F

F M

Page 30: Lecture 7 Transformations in frequency domain 1.Basic steps in frequency domain transformation 2.Fourier transformation theory in 1-D

Example

3

0

32 (1) / 4 0 / 2 3 / 2

0

32 (2) / 4 0 2 3

0

32 (3) / 4 0 3 / 2

0

(0) ( ) [ (0) (1) (2) (3)]

1 2 4 4 11

(1) ( ) 1 2 4 4 3 2

(2) ( ) 1 2 4 4 1

(3) ( ) 1 2 4

x

i x i i i

x

i x i i i

x

i x i i

x

F f x f f f f

F f x e e e e e i

F f x e e e e e

F f x e e e e

6 / 2 9 / 2

3 32 (0)

0 0

4 3 2

1 1 1(0) ( ) ( ) [11 3 2 1 3 2 ] 1

4 4 4

i

iu

u u

e i

f F u e F u i i