22
Lecture 8: Linear algebra DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/DSGA1002_fall15 Carlos Fernandez-Granda 11/9/2015

Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Lecture 8: Linear algebra

DS GA 1002 Statistical and Mathematical Modelshttp://www.cims.nyu.edu/~cfgranda/pages/DSGA1002_fall15

Carlos Fernandez-Granda

11/9/2015

Page 2: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Linear models

Many phenomena are (approximately) linear

Linear models are interpretable

Linear models are (often) computationally tractable

Page 3: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Vector spaces

Inner product and norm

Orthogonality

Page 4: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Vector spaces

A vector space consists of a set V and two operations + and ·, such that

I For any x , y ∈ V the vector sum x + y ∈ V

I For any x ∈ V and any scalar α ∈ R the scalar multiple α · x ∈ V

I There exists a zero vector 0 such that x + 0 = x for any x ∈ V

I For any x ∈ V there exists an additive inverse −x such thatx + (−x) = 0

Page 5: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Vector spaces

A vector space consists of a set V and two operations + and ·, such that

I For all x , y ∈ V

x + y = y + x , (x + y) + z = x + (y + z)

I For any α, β ∈ R and x ∈ V

α (β · x) = (αβ) · x

I For all α, β ∈ R and x , y ∈ V

(α+ β) · x = α · x + β · x , α · (x + y) = α · x + α · y

A subspace of V is a subset that is itself a vector space

Page 6: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Examples

Rn

Infinite sequences

Polynomials of a certain degree

Zero-mean random variables

Page 7: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Linear dependence/independence

x1, x2, . . . , xmV are linearly dependent if there exist α1, . . . , αm

not all equal to zero such that

m∑i=1

αi xi = 0.

Otherwise, they are linearly independent

Page 8: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Span

The span of x1, . . . , xm is the set of all possible linear combinations

span (x1, . . . , xm) :=

{y | y =

m∑i=1

αi xi for some α1, α2, . . . , αm ∈ R

}

The span is a vector space

Page 9: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Basis

A basis of V is a set of independent vectors {x1, . . . , xm} such that

V = span (x1, . . . , xm) .

All bases in a vector space have the same cardinality

The dimension of a vector space is the cardinality of its bases

Page 10: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Vector spaces

Inner product and norm

Orthogonality

Page 11: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Inner product

Operation 〈·, ·〉 that maps pairs of vectors to R

I It is symmetric, for any x , y ∈ V

〈x , y〉 = 〈y , x〉

I It is linear, i.e. for any α ∈ R and any x , y , z ∈ V

〈α x , y〉 = α 〈y , x〉 , 〈x + y , z〉 = 〈x , z〉+ 〈y , z〉

I It is positive semidefinite:

For any x ∈ V 〈x , x〉 ≥ 0 and 〈x , x〉 = 0 implies x = 0

Page 12: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Examples

Dot product of vectors x , y ∈ Rn

x · y :=∑

i

x [i ] y [i ]

Covariance E (XY ) of zero-mean random variables X and Y

Page 13: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Norm

Function ||·|| from V to R such that

I It is homogeneous. For all α ∈ R and x ∈ V

||α x || = |α| ||x ||

I It satisfies the triangle inequality

||x + y || ≤ ||x ||+ ||y ||

In particular, it is nonnegative (set y = −x)

I ||x || = 0 implies that x is the zero vector 0

Page 14: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Distance

The distance between vectors in a normed space is

d (x , y) := ||x − y ||

Page 15: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Inner-product norm

The norm induced by an inner product is

||x ||〈·,·〉 :=√〈x , x〉

The Euclidean or `2 norm is induced by the dot product in Rn,

||x ||2 :=√

x · x =

√√√√ n∑i=1

x2i

The standard deviation is the norm induced by the covariance

σX =√

E (X 2)

Page 16: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Cauchy-Schwarz inequality

For any two vectors x and y in an inner-product space

|〈x , y〉| ≤ ||x ||〈·,·〉 ||y ||〈·,·〉

Assume ||x ||〈·,·〉 6= 0,

〈x , y〉 = − ||x ||〈·,·〉 ||y ||〈·,·〉 ⇐⇒ y = −||y ||〈·,·〉||x ||〈·,·〉

x

〈x , y〉 = ||x ||〈·,·〉 ||y ||〈·,·〉 ⇐⇒ y =||y ||〈·,·〉||x ||〈·,·〉

x

Corollary: Inner-product norms satisfy the triangle inequality

Page 17: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Vector spaces

Inner product and norm

Orthogonality

Page 18: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Orthogonality

x and y are orthogonal if 〈x , y〉 = 0

x is orthogonal to a set S, if

〈x , s〉 = 0, for all s ∈ S.

Two sets S1, S2 are orthogonal

〈x , y〉 = 0, for any x ∈ S1, y ∈ S2

The orthogonal complement of a subspace S is

S⊥ := {x | 〈x , y〉 = 0 for all y ∈ S} .

Page 19: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Pythagorean theorem

If x and y are orthogonal

||x + y ||2〈·,·〉 = ||x ||2〈·,·〉 + ||y ||

2〈·,·〉

Page 20: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Orthogonality between vector and subspace

If for any basis b1, b2, . . . , bn of V

〈x , bi 〉 = 0, 1 ≤ i ≤ n,

then x is orthogonal to V

Page 21: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Orthonormal basis

Basis of mutually orthogonal vectors with norm equal to one

If {u1, . . . , un} is an orthonormal basis of V

x =n∑

i=1

〈ui , x〉 ui .

for any vector x ∈ V

Page 22: Lecture 8: Linear algebracfgranda/pages/DSGA1002_fall15/material/lecture_8b.pdfNov 09, 2015  · Vector spaces AvectorspaceconsistsofasetVandtwooperations+ and,suchthat I Foranyx;y

Gram-Schmidt

Every finite-dimensional vector space has an orthonormal basis

Input: A set of linearly independent vectors {x1, . . . , xm} ⊆ Rn

Output: An orthonormal basis {u1, . . . , um} for span (x1, . . . , xm).

Initialization: Set u1 := x1/ ||x1||2.

For i = 1, . . . ,m compute

vi := xi −i−1∑j=1

〈uj , xi 〉 uj

and set ui := vi/ ||vi ||2