20
10/5/2019 1 Electromagnetics: Electromagnetic Field Theory Electrostatic Devices Outline Laplace’s Equation Derivation Meaning Solving Laplace’s equation Resistors Capacitors Slide 2 1 2

Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

1

Electromagnetics:

Electromagnetic Field Theory

Electrostatic Devices

Outline

• Laplace’s Equation• Derivation•Meaning• Solving Laplace’s equation

•Resistors•Capacitors

Slide 2

1

2

Page 2: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

2

Derivation of Laplace’s Equation

Slide 3

Derivation of Poisson’s Equation (1 of 2)

Slide 4

In electrostatics, the field around charges is described by Gauss’ law

vD

In LI media, the constitutive relation is 𝐷 𝜀𝐸 so Gauss’ law can be written in terms of 𝐸.

vE

In electrostatics, the electric field is related to electric potential through 𝐸 ∇𝑉.  This definition can be used to put the above equation solely in terms of the electric potential.

vV

3

4

Page 3: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

3

Derivation of Poisson’s Equation (2 of 2)

Slide 5

The previous slides leads to Poisson’s equation for inhomogeneous media

vV vV

If the medium is homogeneous,  is a constant and can be brought to the righthand side of the equation.

vV

2 vV

Poisson’s equation for inhomogeneous media

Poisson’s equation for homogeneous media

Derivation of Laplace’s Equation

Slide 6

In the absence of charge, v = 0 and Poisson’s equation reduces to Laplace’s equation.

0V vV

2 vV

2 0V

Laplace’s equation for inhomogeneous media

Laplace’s equation for homogeneous media

2 is called “the Laplacian”

5

6

Page 4: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

4

No Charge in Electrostatics?

Slide 7

+ + + + + + + + + + + + + + + + + +

‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐

No charge in the region between the plates.

2 0V

Notes

• Poisson’s and Laplace’s equations describe how electric potential varies throughout a volume.

• These are scalar differential equations and usually easier to solve than vector differential equations.

• Use Poisson’s equation when there is charge and Laplace’s equation when there is not.

• Laplace’s equation is particularly important in electrostatics because it can be used to calculate electric potential around conductors maintained at different voltages.

• Uniqueness theorem states that there exists only one solution.

Slide 8

7

8

Page 5: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

5

Meaning of Laplace’s Equation

Slide 9

Meaning of Laplace’s Equation

10

2 0u

Laplace’s equation is

2 is a 3D second‐order derivative. 

A second‐order derivative quantifies curvature.

But, we set the second‐order derivative to zero.

Functions satisfying Laplace’s equation vary linearly.

9

10

Page 6: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

6

Problem Setup

11

Suppose we know the value of V(x,y) at some points in space.

What does the function look like at every other point?

Figure it out by solving Laplace’s equation.

2 , 0V x y

Solution of Laplace’s Equation

12

Laplace’s equation is sort of a “number filler inner.”

Laplace’s equation fills in the numbers so they vary linearly between known regions.

11

12

Page 7: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

7

Another Example

13

Solving Laplace’s Equation

Slide 14

13

14

Page 8: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

8

Recipe for Solving Laplace’s Equation

Slide 15

Laplace’s equation is solved as a boundary value problem (i.e. partial differential equation plus boundary conditions).

2. Solve Laplace’s equation 2V = 0 in each homogeneous region.

a. When V is a function of only one variable, use direct integration.

b. Otherwise, use separation of variables.

3. Apply the boundary conditions at the edges of the homogeneous regions.

4. Calculate 𝐸 from V using 𝐸 ∇𝑉. 

5. Calculate 𝐷 from 𝐸 using 𝐷 𝜀𝐸. 

1. Choose a coordinate system that will simplify the math.

Example #1 – Voltage Between the Plates of a Capacitor

Slide 16

Suppose there exists a medium with permittivity  and thickness d.

15

16

Page 9: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

9

Example #1 – Voltage Between the Plates of a Capacitor

Slide 17

Then apply a voltage V0 across that medium.

Suppose there exists a medium with permittivity  and thickness d.

Example #1 – Voltage Between the Plates of a Capacitor

Slide 18

Then apply a voltage V0 across that medium, which puts charge on the plates.

Suppose there exists a medium with permittivity  and thickness d.

17

18

Page 10: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

10

Example #1 – Voltage Between the Plates of a Capacitor

Slide 19

Calculate the electric potential and electric field between the plates.

Then apply a voltage V0 across that medium, which puts charge on the plates.

Suppose there exists a medium with permittivity  and thickness d.

Example #1 – Voltage Between the Plates of a Capacitor

Slide 20

Step 1 – Choose a coordinate system.

Cartesian

19

20

Page 11: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

11

Example #1 – Voltage Between the Plates of a Capacitor

Slide 21

Step 2 – Solve Laplace’s equation

2

0

0

0 0

V

V

V d V

If we assume the device is uniform in the x and ydirections, Laplace’s equation reduces to

2 2 2

2 2 20

V V V

x y z

2

2 0d V

dz

Example #1 – Voltage Between the Plates of a Capacitor

Slide 22

Step 2 – Solve Laplace’s equation

Integrate to get

2

20

d VV z az b

dz

21

22

Page 12: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

12

Example #1 – Voltage Between the Plates of a Capacitor

Slide 23

Step 3 – Apply boundary conditions.

First boundary condition…

0 0 0 0 0V V a b b

Example #1 – Voltage Between the Plates of a Capacitor

Slide 24

Step 3 – Apply boundary conditions.

Second boundary condition…

00 0 0

VV d V V d a d V a

d

23

24

Page 13: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

13

Example #1 – Voltage Between the Plates of a Capacitor

Slide 25

Step 3 – Apply boundary conditions.

Altogether, the solution is

0 0V

V z z z dd

Example #1 – Voltage Between the Plates of a Capacitor

Slide 26

Step 4 – Calculate 𝐸 from V.

The electric field intensity is

0 0 0 ˆ z z z

V V Vd dE V E V E z E a

dz dz d d d

Observe that 𝐸 does not 

depend on .

25

26

Page 14: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

14

Example #1 – Voltage Between the Plates of a Capacitor

Slide 27

Step 5 – Calculate 𝐷 from 𝐸.

Applying the constitutive relation, we get the electric flux density

0 0ˆ ˆ z z

V VD E D a D a

d d

Resistors

Slide 28

27

28

Page 15: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

15

What is a Resistor?

Slide 29

A resistor is a passive two‐terminal electrical component that limits the conductivity so as to limit current flow.

Analysis Setup

Slide 30

S

J

+‐ V

I

?V

RI

29

30

Page 16: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

16

Derivation of Resistance for Uniform Conductivity

Slide 31

Electric Current Density

IJ

S

Ohm’s Law

J E

E

Electric Field Intensity

VE

V

I V

S

V

I S

R RS S

Derivation of Resistance for Nonuniform Conductivity

Slide 32

Voltage across conductor

V E d

Now we must use electromagnetic analysis to derive V and I.

Current through conductor

S S

I J ds E ds

S

E dV

RI E ds

31

32

Page 17: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

17

Recipe for Analyzing Resistors

1. Choose a convenient coordinate system.2. Assume V0 as the potential difference across the 

terminals of the conductor.3. Calculate electric potential V by solving Laplace’s 

equation 2V = 0.4. Calculate 𝐸 using 𝐸 ∇𝑉.5. Calculate I from                           .

6. Calculate R using R = V0/I.

Slide 33

S

I E ds

Note: The final equation for R should not contain V0 or I.  Use this as a self‐check.

The Parallel Plate Resistor

Slide 34

dR

S

surface areaS

33

34

Page 18: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

18

Capacitors

Slide 35

What is a Capacitor?

Slide 36

A capacitor is a passive two‐terminal electrical component that can store and release electric energy.  It supplies current so as to keep the voltage across its terminals constant.

35

36

Page 19: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

19

Capacitance, C

Slide 37

Capacitance is defined as the magnitude of the charge on one of the plates to the potential difference between the two plates.

Q

Q

0

QC

V

We do not care about the signs to calculate capacitance.

Recipe for Analyzing Capacitors

1. Choose a convenient coordinate system.

2. Let the plates carry charges +Q and -Q.

3. Calculate 𝐷 using Gauss’ law.

4. Calculate 𝐸 using 𝐸 𝐷/𝜀.

5. Calculate V0 using                         .

6. Calculate C using                    .

Slide 38

0

L

V E d

0C Q VNote: The final equation for C should not contain Q or V0.  Use this as a self‐check.

37

38

Page 20: Lecture -- Electrostatic Devices · Poisson’s equation for homogeneous media Derivation of Laplace’s Equation Slide 6 In the absence of charge, v= 0 and Poisson’s equation reduces

10/5/2019

20

Some Simple Capacitors

Slide 39

SC

d

2

ln

LC

ba

39