66
Lecture I, 24. Sep. 2001 Antennas & Propagation Antennas & Propagation Mischa Dohler Mischa Dohler King’s College London King’s College London Centre for Telecommunications Centre for Telecommunications Research Research

Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Embed Size (px)

Citation preview

Page 1: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Antennas

&

Propagation

Mischa DohlerMischa Dohler

King’s College LondonKing’s College London

Centre for Telecommunications ResearchCentre for Telecommunications Research

Page 2: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Overview (entire lecture)

- Introduction to Communication SystemsIntroduction to Communication Systems

- Mathematical & Physical FundamentalsMathematical & Physical Fundamentals

- Fundamentals of AntennasFundamentals of Antennas

- Practical AntennasPractical Antennas

- Propagation Propagation MechanismsMechanisms & & ModellingModelling

- Wireless Communication LinksWireless Communication Links

- Cellular Concept Cellular Concept

Page 3: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion Part I

Introduction

Page 4: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

1. GENERAL

SOURCE

SOURCECODING

CHANNELCODING

TRANSMITTERTx

SINK

SOURCEDE-COD

CHANNELDE-COD

NOISE &INTERF.

CHANNEL RECEIVERRx

Page 5: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

2. DETAIL

SOURCE SOURCECODING

CHANNELCODING

Tx CHANNEL Rx CHANNELDE-COD

SOURCEDE-COD

SINK

- Human Speech- HiFi / TV- Data

Quality Delay

Page 6: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

2. DETAIL

SOURCE SOURCECODING

CHANNELCODING

Tx CHANNEL Rx CHANNELDE-COD

SOURCEDE-COD

SINK

“ The process of efficiently converting the output of either

analogue or digital source into a sequence of binary digits is

called: “

SOURCE CODING1. Electromagnetic representation

(current)

2. Quantization/Digitalization

3. Compression (minimize redundancy)

Page 7: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

2. DETAIL

SOURCE SOURCECODING

CHANNELCODING

Tx CHANNEL Rx CHANNELDE-COD

SOURCEDE-COD

SINK

“ The introduction of controlled redundancy into a signal to com-pensate for any sources of noise

and interference is called: “

CHANNEL CODING

- repetition (no intelligence)

- other coding (intelligence)

Input k bits Output n bits: k/n code rate

Page 8: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

2. DETAIL

SOURCE SOURCECODING

CHANNELCODING

Tx CHANNEL Rx CHANNELDE-COD

SOURCEDE-COD

SINK

The interface which modulates the digital bit stream onto an

appropriate waveform, capable of propagating through the

communication channel, is called:

MODULATOR or TRANSMITTER

Page 9: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

2. DETAIL

SOURCE SOURCECODING

CHANNELCODING

Tx CHANNEL Rx CHANNELDE-COD

SOURCEDE-COD

SINK

The medium between Tx and Rx is called:

CHANNEL

- Wireless- Telephone- Fiber cable

Each of the channels has unique features with respect to signal distortion and noise. Thus each is treated separately and the modulation schemes differ!

Page 10: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

2. DETAIL

SOURCE SOURCECODING

CHANNELCODING

Tx NOISE Rx CHANNELDE-COD

SOURCEDE-COD

SINK

All processes which degrade the signal in an additive manner (and which autocorrelation function is a Dirac

delta) are called:

NOISE

- Thermal noise (Tx, cable, Rx)

- Natural and man-made noise- Interferences (usually from other man

operated systems)

Page 11: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

2. DETAIL

SOURCE SOURCECODING

CHANNELCODING

Tx CHANNEL Rx CHANNELDE-COD

SOURCEDE-COD

SINK

- Performs optimum combining and processing of the received distorted wave form.

Page 12: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

2. DETAIL

SOURCE SOURCECODING

CHANNELCODING

Tx CHANNEL Rx CHANNELDE-COD

SOURCEDE-COD

SINK

- Using the introduced redundancy it retrieves the desired information.

Page 13: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

2. DETAIL

SOURCE SOURCECODING

CHANNELCODING

Tx CHANNEL Rx CHANNELDE-COD

SOURCEDE-COD

SINK

- Reproduces the original signal from the source to be delivered to the sink.

Page 14: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

3. KINGS

SOURCE SOURCECODING

CHANNELCODING

Tx CHANNEL Rx CHANNELDE-COD

SOURCEDE-COD

SINK

Dr. Marvasti: “Information Theory”

Page 15: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

3. KINGS

SOURCE SOURCECODING

CHANNELCODING

Tx CHANNEL Rx CHANNELDE-COD

SOURCEDE-COD

SINK

Dr. Marvasti: “Information Theory”

Prof. Aghvami: “Digital Communication”

Page 16: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

3. KINGS

SOURCE SOURCECODING

CHANNELCODING

Tx CHANNEL Rx CHANNELDE-COD

SOURCEDE-COD

SINK

Dr. Marvasti: “Information Theory”

Prof. Aghvami: “Digital Communication”

Mischa: “Antennas & Propagation”

Page 17: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

SOURCE SOURCECODING

CHANNELCODING

Tx CHANNEL Rx CHANNELDE-COD

SOURCEDE-COD

SINK

4. MATHS & PHYSICS

PHYSICS: - transformation of non-electrical signals into electromagnetic signals

MATHEMATICS: - Nyquist sampling theorem- optimum digitalization laws- Shannon’s capacity formula

Page 18: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

SOURCE SOURCECODING

CHANNELCODING

Tx CHANNEL Rx CHANNELDE-COD

SOURCEDE-COD

SINK

4. MATHS & PHYSICS

PHYSICS: - none

MATHEMATICS: - complete coding theory

Page 19: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

SOURCE SOURCECODING

CHANNELCODING

Tx CHANNEL Rx CHANNELDE-COD

SOURCEDE-COD

SINK

4. MATHS & PHYSICS

PHYSICS: - Maxwell’s equations (current, decoupling waves, etc)

MATHEMATICS: - Vector analysis- Differential equations- Fourier transformation

Page 20: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

SOURCE SOURCECODING

CHANNELCODING

Tx CHANNEL Rx CHANNELDE-COD

SOURCEDE-COD

SINK

4. MATHS & PHYSICS

PHYSICS: - Maxwell’s equations (free space, reflection, etc)

MATHEMATICS: - Probability theory (CLT, distributions, etc)

Page 21: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Communication Systems

SOURCE SOURCECODING

CHANNELCODING

Tx NOISE Rx CHANNELDE-COD

SOURCEDE-COD

SINK

4. MATHS & PHYSICS

PHYSICS: - Quantum theory

MATHEMATICS: - Operator theory- Theory of stochastic processes

Page 22: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion Part II

Mathematical

&

Physical Foundations

Page 23: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Overview

- Fourier TransformFourier Transform

- Maxwell’s EquationsMaxwell’s Equations

- Wave EquationWave Equation

- Probability TheoryProbability Theory

Page 24: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

Given a varying signal s(t) in the time-domain, the

spectral components S(f) are obtained as follows:

dtetsfS ftj 2)()(

And vice versa:

dfefSts ftj 2)()(

Page 25: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

Mathematicians used to transform a function f(x) to

(a) make certain operations easier

(b) make certain features and properties

visible.There are 3 basic types of transformations of f(x):

(1) Differential Transformation (local):x

xfxD

)(

)(

(2) Functional Transformation (local): )()( 2 xfxF

(3) Integral Transformation (global): D

dxxfI )(

D

dxxgxfI ),()( D

dxxxfI )cos()(

Page 26: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

Properties of the Integral Transformation

(1) Global: It is global, because it accumulates (integration)

the weighted properties of the function f(x) over

the ENTIRE region of definition of f(x).

D

dxxgxfI ),()(

Page 27: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

Properties of the Integral Transformation

(2) Resonance: Function g(x,w) is a resonant function, because

the integration with f(x) makes those

components in f(x) visible, which equal or

resemble g(x,w).

D

dxxgxfI ),()(

0 : f(x) has components as g(x,w)

= 0 : f(x) has no components as g(x,w)

Example: g(x)=cos (wx ) and f(x)=cos( w x ) | f(x)=cos( 2w x )

D

dxxxI 0)cos()cos(

D

dxxxI 0)cos()2cos(

Page 28: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

Properties of the Integral Transformation

(3) Orthogonal: If g(x,w) is orthogonal for different w in the

sense:

D

dxxgxfI ),()(

D

dxxgxg 0),(),( 21

then there does exist a UNIQUEinverse

transformation F-1. (Example)

If not, then not unique, yet still useful (Wavelets)

Page 29: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

How did Physicists and Engineers use it?

Association: (1) f(x) s(t) with –inf < t < +inf

(2) g(x,w) { sin(w*t) , cos(w*t) }

D

dxxgxfI ),()(

dtfttsfS )2sin()()(1 Thus we get:

dtfttsfS )2cos()()(2

dtetsfS ftj 2)()(

Page 30: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

Main messages of the Fourier Transformation:

dtetsfS ftj 2)()(

(1) For a fixed frequency f the integral tells us how

much of that harmonic is present in the signal s(t).

Spectrogram

fA

f

Page 31: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

(2) Smoothness:

s(t)

t

Very

smooth

|S(f)|

f

FT

|S(f)|

f

FT

50Hz

s(t)

t

smooth50Hz

|S(f)|

f

FT

100Hz

s(t)

t

steeper

100Hz

(more changes per time!)

Page 32: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

(2) Smoothness:

s(t)

t

smooth

|S(f)|

f

FT50Hz

50Hz

s(t)

t

steeper

|S(f)|

f

FT100Hz

100Hz

+

s(t)

t

even

steeper

|S(f)|

f

FT

100Hz

50Hz + 100Hz

50Hz

Page 33: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

(2) Smoothness:

s(t)

t

|S(f)|

f

FT

50Hz

smooth

s(t)

t

|S(f)|

f

FT

100Hz

‘rocky’

Page 34: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

(2) Smoothness:

s(t)

t

|S(f)|

f

FT

50Hz

T=20mssinc(f)

s(t)

t

|S(f)|

f

FT

100Hz

T=10ms

Page 35: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

Filter: What makes spectrum infinite?

s(t)

t

|S(f)|

f

FT

50Hz

T=20mssinc(f)

|S(f)|

f50Hz

s(t)

t

IFTT=20ms

Page 36: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

Filter: In Telecommunications each user is

confined to a certain spectrum band. Thus,

filters have to be applied to confine the infinite

bandwidth of the rectangular pulse.

s(t)

t

T=20ms

|S(f)|

f50Hz

s(t)

t

IFTT=20ms

|S(f)|

f

FT

50Hz

filter

Page 37: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

“The steeper the signal in time and the

more amplitude changes per time a

signal has, the higher are the high

frequency components of the

spectrum.”

Page 38: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

CAUTION!!!

Do NOT FORGET that the transformation is global!

We summed upon the entire time-domain. Thus, what

happens at certain instances or during a short period of

time is AVERAGED OUT!

T=20ms

s(t)

t

|S(f)|

f

FT

50Hz

sinc(f)‘0’ ‘0’‘1’

s(t)

t

T=10ms‘00’ ‘00’‘11’

|S(f)|

f100Hz

FT

theoretically

prac

tical

ly

Page 39: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Fourier Transform

Thus the traditional FT has drawbacks:

It does tell us which frequencies are used,

but not when!

Example: Chirp (what makes spectrum appear infinite?)

Moral: Just use the FT if you are interested, which

(approximate) spectrum the signal

occupies during the entire time of

appearance!

Blackboard!

Page 40: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

1. Mathematical Basics

2. Physical Basics

3. Physical Experiences

4. Derivations Maxwell’s Equations

5. Discussion

D div 0 div B

t

B

Erot t

DJHrot

Page 41: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(1) Mathematical Basics:

- Scalar: Quantity with magnitude only.

- Vector: Quantity with magnitude and direction.

- dot-product: A·B = |A|·|B|·cosφ projection: active

passive

= AxBx+ AyBy+ AzBz (scalar)

- vector-prod.: AB = |A|·|B|·sinφ area: active

active

= (vector) Zyx

zyx

BBB

AAA

zyx

Page 42: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(1) Mathematical Basics:

- Vector-Field: Region where in each point a vector is

defined.- Scalar-Field: Region where in each point a scalar is

defined.Lets look at the change within a scalar field (Temperature):

(0,0,0)m T(0,0,0) = 10°

(1,1,1)m T(1,1,1) = 20°m

Km

TT

3

10

)0,0,0()1,1,1(

)0,0,0()1,1,1(

The ‘change’ has a magnitude and a direction, thus is a

vector!

The gradient of a scalar field defines a vector field.

Page 43: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(1) Mathematical Basics:

In general: If we have a scalar field φ, then it defines a

unique gradient field E and vice versa!

grad

,,,,,,

,,,,,,

zyx

zyxE

z

zyx

y

zyx

x

zyx

z

zyx

y

zyx

x

zyx

Rule: Working with vector fields, it is ALWAYS

easier to find and operate with the

appropriate scalar- field (potential) and

then to differentiate!

Page 44: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(2) Physical Basics:

a) Coulomb’s Lawa) Coulomb’s Law

FF

Q1 Q2

r

rF

221

0

221

4

1

r

QQr

QQk

ε … permittivity (weakening)

Page 45: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(2) Physical Basics:

b) Electric Field (Intensity) Eb) Electric Field (Intensity) E

Q1

Q2

Test charge Q2

Force Field

rF

Ε21

02 4

1

r

Q

Q

Page 46: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(2) Physical Basics:

c) Electric Flux (Density) Dc) Electric Flux (Density) D

Roughly speaking, we look for a quantity, which

describes the electric field independent of the

materials but exclusively dependent on the sources.

rΕ21

04

1

r

Q

rD

21

4 r

Q

ED 0

Q1

Area

Page 47: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(2) Physical Basics:

d) Charge Density d) Charge Density ρρ

V

Q

dV

dQ

V

QV

0

lim

Page 48: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(2) Physical Basics:

e) Current Ie) Current I

dt

dQ

t

QI

Page 49: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(2) Physical Basics:

f) Current Density Jf) Current Density J

dA

dI

A

IJ

I

A

Page 50: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(2) Physical Basics:

g) Magnetic Flux (Density) Bg) Magnetic Flux (Density) B

N SField (B)

I

F

BLF I

L

FB

I

As done with the

electrical field we define

the magnetic field

through its force on

magnetic objects.

Page 51: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

In 1820 Biot and Savart found out:

20

2 4 r

LI

r

LIk

B

μ … permeability (strength.)I

ΔL

Maxwell’s Equations

(2) Physical Basics:

g) Magnetic Flux (Density) Bg) Magnetic Flux (Density) B

20 sin

4 r

LI

20

4 r

I dlrdB

)(0 If

Page 52: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(2) Physical Basics:

h) Magnetic Field Hh) Magnetic Field H

Again, we look for a physical value which is independent of the

materials involved:

)(0 If B

0

BH

Page 53: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(3) Mathematical Basics:

a) Divergence diva) Divergence div

We would like to be able to read and understand that formula!

D div

Imagine we have a source, e.g. a spring of water.

We want to find a physical variable and a measure, which

somehow characterises the impact of that source onto its

surroundings.

Page 54: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(3) Mathematical Basics:

a) Divergence diva) Divergence div

What do we know?

(i) Variable What does a water source cause?

a) water pressure (no direction, good for grad)

b) speed v of water (magnitude & direction)

Impact Strength (of the source)

Page 55: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(3) Mathematical Basics:

a) Divergence diva) Divergence div

(ii) Measure In dependency of the distance from the source,

we want to evaluate the impact of the

source.First Choice

Impact absolute value of the water speed. Reasonable?

Second Choice

Impact difference of the absolute value of the water speed.

Page 56: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(3) Mathematical Basics:

a) Divergence diva) Divergence div

(Distance)

)(MessengerImpact

x

v

Does a wave coming along the y-axis make me move along x or z? NO!

xx

v

Impact

A wave from x & y & z makes me move simultaneously along x,y & z!

zyxzyx

vvv

Impact

Page 57: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(3) Mathematical Basics:

a) Divergence diva) Divergence div

zyxzyx

vvv

Impact

zyxzyx

vvv

Impact

v divImpact

Page 58: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(3) Mathematical Basics:

a) Divergence diva) Divergence div

Impact Strength (of the source) (Distance)

)(MessengerImpact

(Distance)

)(Messenger source) theof (Strength

Page 59: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(3) Mathematical Basics:

a) Divergence diva) Divergence div

Strength (of the source) = ρ

Electric Field E

Electric Flux D = Messenger

D

DDD

div

zyxzyx

Page 60: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(3) Mathematical Basics:

a) Divergence diva) Divergence div

What does then mean: div B = 0

How to read that?

1. Lets turn it round: 0 = div B

2. There is nothing, what causes a magnetic field to

diverge. Thus, there do not exist magnetic charges.

Thus there does not exist a source and a

sink of the magnetic field. Thus the magnetic field

lines are ALWAYS closed.

Page 61: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(3) Mathematical Basics:

b) Rotation rot (curl)b) Rotation rot (curl)

We would like to be able to read and understand that formula, too!

Basically, the same principles as for the divergence apply. The only

differences are that

1. The impact is perpendicular to its cause, thus perpendicular to

the action of the source. (sailing)

2. Since it has a direction, it is a vector.

JH rot

Page 62: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(3) Mathematical Basics:

b) Rotation rot (curl)b) Rotation rot (curl)

JH rot J

H

How to read it?

zHH

yHH

xHH

J

yxxzzyxyzxyz

Page 63: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(3) Mathematical Basics:

c) Comparison div & rot (curl)c) Comparison div & rot (curl)

zHH

yHH

xHH

H

yxxzzyxyzxyzrot

zyxzyx

DDD

D div

z

y

x

Page 64: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

(3) Mathematical Basics:

d) Nabla Notationd) Nabla Notation

zyxzyx

Nabla Vector

zyxzyx

zyxzyx

DDD

D

... H

gradDD div

HH rot

Page 65: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

D div 0 div B

t

B

Erot t

DJHrot

HB

ED

0

0

They seem coupled.

Page 66: Lecture I, 24. Sep. 2001 Antennas & Propagation Mischa Dohler King’s College London Centre for Telecommunications Research

Lecture I, 24. Sep. 2001

Ant

enna

s &

Pro

paga

tion

Ant

enna

s &

Pro

paga

tion

Maxwell’s Equations

t

B

Erot

THE KEY TO ANY OPERATING ANTENNA

1. You create a time variant current density J

2. This causes a varying magnetic field H

3. This causes a varying electric field E

4. This causes varying magnetic field H

t

D

JHrot