Lecture-Slides CHAPTER 02

Embed Size (px)

DESCRIPTION

Modern Control Systems

Citation preview

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Mathematical Modelsof

    Systems

    Chapter 2

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Introduction

    Differential Equations of Physical Systems

    Linear Approximation of Physical Systems

    The Laplace Transform

    The Transfer Function of Linear Systems

    Block Diagram Models

    Signal-Flow Graphs Models

    Outline

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    To understand and control complex physical systems, we need their mathematical models.

    To obtain mathematical models, we need the relationship between the system variables.

    As the systems under consideration are dynamic in nature, then this relationship is in the form of

    differential equations.

    Introduction

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    In general, the linear differential equation of an nth-order system is written:

    1st order linear ordinary differential equation:

    2nd order linear ordinary differential equations:

    In this course we treat only LINEAR ORDINARY DIFFERNTIAL EQUATIONS

    Differential Equations

    )()()()()(

    11

    1

    1tftya

    dt

    tdya

    dt

    tyda

    dt

    tydon

    n

    nn

    n

    )()()(

    tftyadt

    tdyo

    )()()()(

    12

    2

    tftyadt

    tdya

    dt

    tydo

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Methods of Modeling Linear System:

    Transfer Function Method (only linear systems)

    State-Variable Method (both linear and nonlinear systems)

    Most dynamic systems have nonlinear behavior:

    Linearization by proper assumptions and approximations

    Modeling of Physical Systems

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    The motion of a Mechanical system:

    Translation

    Rotation

    Combination of above

    Modeling of Mechanical Systems

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Translational motion:

    Newtons 2nd law of motion

    Example: A mass M under the action of force f(t).

    Modeling of Mechanical Systems

    M

    )(ty

    )(tf

    dt

    tdvM

    dt

    tydMtMatf

    )()()()(

    2

    2

    MaFext

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Linear Spring:

    Hooks law:

    Viscous Damper:

    Modeling of Mechanical Systems

    )()( tKytf

    Bvdt

    tdyBtf

    )()(

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Mass-spring-damper system

    Modeling of Mechanical Systems

    2

    2)()(

    )()(dt

    tydM

    dt

    tdyBtKytf

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Rotational motion

    Eulers 2nd law of motion

    Example: A body with inertia J under the action of a torque (t).

    Modeling of Mechanical Systems

    Jext

    dt

    tdJ

    dt

    tdJtJt

    )()()()(

    2

    2

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Torsional Spring:

    Viscous damper:

    Modeling of Mechanical Systems

    )()( tKt

    Bdt

    tdBt

    )()(

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    A disk in a viscous medium and supported by a shaft

    Modeling of Mechanical Systems

    )()()()( tJtttds

    2

    2)()(

    )()(dt

    tdJ

    dt

    tdBtKt

    Jext

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Resistor:

    Inductor:

    Capacitor:

    Modeling of Electrical Systems

    R

    L

    C

    )(tv

    )(tv

    )(tv

    )(tI

    )(tI

    )(tI

    R

    tvtI

    )()(

    dttvL

    tI )(1

    )(

    dt

    tdvCtI

    )()(

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Kirchhoff s laws:

    Current law:

    The algebraic sum of all currents entering a node is zero.

    Voltage law:

    The algebraic sum of all voltage drops around a complete closed loop is zero.

    Example of RLC circuit:

    Modeling of Electrical Systems

    dttvLdt

    tdvC

    R

    tvtr )(

    1)()()(

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Spring-Mass-Damper system:

    RLC circuit:

    Rotational motion:

    This is called as velocity voltage analogy (force-current analogy)

    Analogy

    dt

    tdJtBdttKt

    )()()()(

    dt

    tdvMtBvdttvKtf

    )()()()(

    dt

    tdvC

    R

    tvdttv

    Ltr

    )()()(

    1)(

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Linearization(Linear Approximation)

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    A linear system satisfies the following properties:

    Superposition

    Homogeneity

    Example:

    Test whether is linear.

    Linearization

    Linearsystem

    )()(2211tuatua )()(

    2211tyatya

    5xf(x)

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Examples of physical systems

    Linearization

    )()()()(

    2

    2

    tutydt

    tydLC

    dt

    tdyRC

    )()()(

    2

    2

    tudt

    tdyB

    dt

    tydM

    dt

    tdyB

    )(

    M

    )())(()()(

    2

    2

    tutyfdt

    tdyB

    dt

    tydM

    B

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Examples of physical systems

    A nonlinear system can be described by a linear model for a small range of input values around an operating

    point.

    Linearization

    )())(()()(

    2

    2

    tutyfdt

    tdyB

    dt

    tydM

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    To find the linear model of a nonlinear system f(y)

    We expand f(y) into a Taylor series around the operating point or equilibrium point (yo, f(yo)):

    If the variation around the operating point, is small, then we may neglect the higher-order terms:

    This approximation results in a linear (straight line) relationship

    Linearization

    oo yy

    o

    yy

    o

    ody

    fdyy

    dy

    dfyyyfyf

    2

    22

    !2!1)()(

    oyyy

    ycyf )(

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Linearization of differential equations

    Example: Pendulum oscillator model

    Linearization around the equilibrium point

    This approximation is reasonably accurate for

    Linearization

    sin)( MgLT

    )()()(oo

    od

    dTTT

    o

    o0

    44

    MgLT )(

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Laplace Transform (LT)

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    LT is a mathematical tool that:

    Transforms many time (t) domain functions f(t) into algebraic functions F(s) of a complex domain (s).

    Provides an algebraic way to solve linear time invariant differential equations.

    Can be used to predict the system performance without actually solving system differential equations.

    Laplace Transform (LT)

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Solution of differential equations

    Obtain linearized differential equation.

    Obtain the Laplace transform of the differential equation.

    Solve the algebraic equation by the inverse Laplace transform.

    Laplace Transform (LT)

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Laplace Transform of a function f(t):

    is the Laplace transform operator

    (s) is a complex variable:

    f(t) is a function of time (t) with f(t)=0 for t

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Theorem 1: Multiplication by a constant

    Theorem 2: Sum and differences

    Theorem 3: Differentiation

    Theorems of Laplace Transform

    )()( skFtkf

    )()()()(2121sFsFtftf

    )0()()(

    fssFdt

    tdf

    0

    2

    2

    2)(

    )0()()(

    tdt

    tdfsfsFs

    dt

    tfd

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Step function:

    Unit step function:

    LTs of Simple Functions

    0

    00)(

    tc

    ttf

    s

    ce

    s

    cdtcedtetfsF

    st

    t

    st

    t

    st

    000

    )(

    s

    csF )(

    ssF

    1)(

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Ramp function:

    Exponential function:

    Sinusoidal function:

    LTs of Simple Functions

    0

    00)(

    tct

    ttf 2)(

    s

    csF

    0

    00)(

    te

    ttf

    at assF

    1)(

    22)(

    s

    sF

    0sin

    00)(

    tt

    ttf

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Table of LTs

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    First order linear differential equation

    Let

    Now, as:

    LT of equation (1) is:

    LTs of Differential Equations

    oo

    ayytf ,)0(,0)(

    )1()()()(

    tftyadt

    tdyo

    )0()()(

    )()(

    yssYdt

    tdy

    sYty

    s

    ysY

    o

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Second order linear differential equation (Spring-Mass-Damper)

    Let

    LT of equation (1) is:

    LTs of Differential Equations

    )1()()()()(

    2

    2

    tftKydt

    tdyB

    dt

    tydM

    0)(

    ,)0(,0)(

    0

    t

    odt

    tdyyytf

    KBsMs

    yBMssY

    o

    2

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    The inverse LT of F(s) is:

    This is a complex integral and is rarely used.

    For simple functions, we directly refer to the LTs table.

    For complex functions, we first perform the partial-fraction expansion on F(s) and then use the LTs table.

    Inverse Laplace Transform

    j

    j

    stdsesF

    jtfsF

    2

    11

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Consider the following Laplace Transform function:

    N(s) and D(s) are the polynomials of (s).

    Characteristic equation:

    Roots (s1, s2, sn) of this characteristic equation are called the poles of the system.

    Distinct poles

    Repeated poles

    Partial-Fraction Expansion

    sD

    sNsG

    o

    n

    n

    n

    n

    nasasasassD

    1

    1

    2

    2

    1

    1

    KBsMs

    yBMssY

    o

    2

    0sD

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Case 1: Distinct poles

    Consider the function

    Write G(s) in terms of partial-fraction expansion:

    Determine the coefficient k1 and k2

    Partial-Fraction Expansion

    31

    2

    ss

    s

    sD

    sNsG

    2

    11

    1

    1

    ssD

    sNsk

    31

    21

    s

    k

    s

    ksG

    2

    13

    3

    2

    ssD

    sNsk

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    The simplified function is:

    Now taking the inverse LT:

    Partial-Fraction Expansion

    32

    1

    12

    1

    sssG

    tt eetg 35.05.0

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Case 2: Repeated poles

    Consider the function

    Write G(s) in terms of partial-fraction expansion:

    Determine the coefficient k1 and k2

    Partial-Fraction Expansion

    21

    2

    s

    s

    sD

    sNsG

    11

    1

    2

    2

    ssD

    sNsk

    2

    21

    11

    s

    k

    s

    ksG

    11

    1

    2

    1

    ssD

    sNs

    ds

    dk

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    The simplified function is:

    Now taking the inverse LT:

    Partial-Fraction Expansion

    21

    1

    1

    1

    sssG

    tt teetg

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Solve the following 2nd order linear ODE

    With us(t) as unit step function and following initial conditions:

    Example

    tuty

    dt

    tdy

    dt

    tyds

    5232

    2

    2,10

    0

    tdt

    tdyy

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Transfer Function

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    The ratio of the Laplace Transform of the output variable to the Laplace Transform of the input variable, with all initial

    conditions to be zero.

    Consider the spring mass damper system: input is r(t), output is y(t).

    Transfer Function

    sRsKYsBsYsYMs 2

    trtKy

    dt

    tdyB

    dt

    tydM

    2

    2

    KBsMssR

    sYsG

    2

    1

    sInput

    sOutputsG

    tr

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Write the transfer function of the following circuit, where:

    Input: source voltage v1 Output: voltage drop across capacitor v2

    Transfer Function

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    DC Motor

    Converts DC electrical energy into rotational mechanical energy

    Transfer Function DC Motor

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    DC Motor

    Input: voltage (field, armature)

    Output: speed of shaft, position of the shaft

    Transfer Function DC Motor

    current armature

    current field

    ntdisplacemerotor

    voltagefield

    voltagearmature

    ti

    ti

    t

    tv

    tv

    a

    f

    f

    a

    sV

    ssG

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Two types of control of dc motor

    Field control

    (variable field voltage and fixed armature voltage)

    Armature control

    (variable armature voltage and fixed field voltage)

    Transfer Function DC Motor

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Field control of dc motor

    The angular displacement is proportional to the field voltage

    Transfer Function DC Motor

    voltagefield

    ntdisplacemeangular

    sV

    ssG

    f

    sVsGsf

    sVRsLBJss

    Ks

    f

    ff

    m

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    The air gap-flux is proportional to the field current

    The motor torque Tm is assumed to be related linearly to and the armature current:

    In case of field control, armature current is kept constant:

    Km is the motor constant

    Transfer Function DC Motor

    tiKtff

    titKtTam

    1

    titiKKtTaffm 1

    tiKtTfmm

    sIKsTfmm

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Relating armature voltage to armature current:

    In s-domain

    Thus the motor torque is:

    Transfer Function DC Motor

    dt

    tdiLtiRtv

    f

    ffff

    sVsLR

    sIf

    ff

    f

    1

    sVsLR

    KsT

    f

    ff

    m

    m

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    The load torque in time domain:

    In s-domain:

    Now:

    Transfer Function DC Motor

    tBdt

    tdJtT

    L

    sBJsssTL

    ff

    m

    fRsLBJss

    K

    sV

    ssG

    sTsTsTdLm

    dt

    tdt

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Transfer function

    Block diagram

    Transfer Function DC Motor

    sLRsVsI

    fff

    f

    1

    m

    f

    mK

    sI

    sT

    BJs

    s

    sTL

    ss

    s 1

    sTsTsTdmL

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Armature control of dc motor

    The angular displacement is proportional to the armature voltage

    Transfer Function DC Motor

    voltageArmature

    ntdisplacemeangular

    sV

    ssG

    a

    sVsGsa

    sVKKBJssLRs

    Ks

    a

    mbaa

    m

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    The air gap-flux is proportional to the field current

    The motor torque Tm is assumed to be related linearly to and the armature current:

    In case of armature control, field current is kept constant:

    Km is the motor constant

    Transfer Function DC Motor

    tiKtff

    titKtTam

    1

    titiKKtTaffm 1

    tiKtTamm

    sIKsTamm

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Relating armature voltage to armature current:

    Where vb is the back emf voltage:

    In s-domain

    Thus the motor torque is:

    Transfer Function DC Motor

    tvdt

    tdiLtiRtv

    b

    a

    aaaa

    sLR

    sKsVsI

    aa

    ba

    a

    sKsVsLR

    KsT

    ba

    aa

    m

    m

    tKtvbb

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Transfer function of armature controlled dc motor

    Transfer Function DC Motor

    mbaa

    m

    aKKBJssLRs

    K

    sV

    ssG

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Transfer Function DC Motor

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Gear ratio:

    Relate shaft torques:

    Transfer Function Gear Trains

    2

    1

    N

    Nn

    2

    1

    N

    N

    T

    T

    L

    m

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Tachometer

    An electromechanical device that converts mechanical energy into electrical energy.

    Input: shaft angular velocity

    Output: voltage

    Transfer Function Tachometer

    t

    s

    sVsG K

    2

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Consider an incompressible fluid in a tank:

    Determine the transfer function which relates head to inflow

    Mass balance:

    mass flow in mass flow out = accumulation rate of mass in tank

    Transfer Function Fluid System

    inletat rate flow volumetric:

    in tank fluid of head:)(

    outletat rate flow volumetric:)(q

    fluid ofdensity :

    area sectional-cross uniform:

    o

    iq

    th

    t

    A

    inflow

    head

    sQ

    sHsG

    i

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Consider an incompressible fluid in a tank:

    Determine the transfer function which relates head to inflow

    Energy balance:energy in energy out = accumulation of energy in tank

    Transfer Function Thermal System

    peratueoutlet tem:

    eratueinlet temp:

    sourceheat fromheat :

    inlet andoutlet at rate flow volumetric:

    heat specific:

    fluid ofdensity :

    area sectional-cross uniform:

    o

    i

    T

    T

    q

    C

    A

    eTemperaturInlet

    eTemperaturOutlet

    sT

    sTsG

    i

    o

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Block Diagram Models (BDM)

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    So far:

    Dynamic systems are represented by mathematical models:

    Set of simultaneous differential equations in time domain.

    Set of linear algebraic equations in the s-domain.

    Transfer function:

    Mathematically relating the output variable to the input variable in the s-domain.

    Block Diagram Model (BDM)

    Graphical technique for modeling control systems.

    Graphical relationship between the variables of interest.

    Introduction

    s

    ssG

    Input

    Output sG sInput sOutput

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Block Diagram Model Usage

    BDM provides a better understanding of the composition and interconnection of the components of a system.

    BDM describes the input-output relationship throughout the system with the help of transfer functions.

    Introduction

    ControllerProcess

    orPlant

    Feedback

    ActuatorRef.Input

    ActualOutput

    Measured output

    Error

    _

    + Actuatingsignal

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Linear spring

    Transfer function:

    Block diagram model:

    Introduction

    K

    sF

    sXsG

    K sF sX

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Field control DC motor

    Transfer function:

    Block diagram model:

    Introduction

    ff

    m

    fRsLBJss

    K

    sV

    ssG

    sVf

    s

    ff

    m

    RsLBJss

    K

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Elements of BDM

    Blocks

    The rectangular box that contains a component of a system.

    Signals

    Arrowed lines from one block to another representing input/output variables.

    Comparators (summing point)

    Junction point for signals comparison.

    Block Diagram Model

    ControllerProcess

    orPlant

    Feedback

    ActuatorRef.Input

    ActualOutput

    Measured output

    Error

    _

    + Actuatingsignal

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Comparator (summing point)

    To perform simple mathematical operations (addition or subtraction)

    Block Diagram Algebra

    +

    + sR

    sY

    sYsRsE

    _

    + sR

    sY

    sYsRsE

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Block

    To represent the transfer function of a component of a system or the system as a whole.

    Transfer function

    Block Diagram Algebra

    sG sU sY

    sU

    sYsG

    sUsGsY

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Combining blocks in cascade

    Block Diagram Algebra

    sXsGsGsX1213

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Combining blocks in Parallel

    Block Diagram Algebra

    sXsGsGsX1212

    sX1

    sX2

    sGsG21

    sX1

    sX2

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Feedback control system

    Transfer function:

    Forward-path TF:

    Loop TF:

    Block Diagram Algebra

    sHsG

    sG

    sR

    sY

    1

    sHsGsL

    sGsGsGsGpac

    sGa

    sGp sG c

    sH

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Eliminating a feedback loop

    Unity feedback loop

    Block Diagram Algebra

    G1

    G

    1X

    2X

    1X

    2XG

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Moving a summing point to the right of a block

    Block Diagram Algebra

    213GXGXX 213 XXGX

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Moving a summing point to the left of a block

    Block Diagram Algebra

    213XGXX

    G

    XX

    G

    X2

    1

    3

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Moving a takeoff point (pickoff point)to the left of a block

    Block Diagram Algebra

    12GXX

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Moving a takeoff point (pickoff point)to the right of a block

    Block Diagram Algebra

    G

    XX

    2

    1

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Example: reduce the following block diagram and determine the transfer function

    Block Diagram Reduction

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Example: reduce the following block diagram and determine the transfer function

    Block Diagram Reduction

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Block Diagram Reduction

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Block Diagram Reduction

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Block Diagram Reduction

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Block Diagram Reduction

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Example: reduce the following block diagram and determine the transfer function

    Block Diagram Reduction

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Multiple Inputs

    1. Set all inputs except one equal to zero

    2. Determine the output signal due to this one non-zero input

    3. Repeat the above steps for each of the remaining inputs in turn

    4. The total output of the system is the algebraic sum (superposition) of the outputs due to each of the inputs.

    Block Diagram Reduction

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Signal-Flow Graphs (SFG)

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Signal-flow graphs (SFG)

    A graphical representation of control systems (a simplified version of Block diagram model)

    The cause-and-effect relationship among the variables of a set of linear algebraic equations (like we have in case of linear

    control systems)

    A diagram consisting of nodes that are connected by several directed branches.

    Introduction

    sVsGsf

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Node (junction point):

    To represent the variables of the system

    Branch (line segment):

    To connect the nodes according to the cause-and-effect equations

    Branch is a unidirectional line segment (from input toward the output)

    Signal-Flow Graph Basic Elements

    sVf

    s sG

    sVsGsf

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Basic properties

    SFG applies only to linear systems

    The equations must be in algebraic form (in s-domain) in the form of cause-and-effect relationship.

    Example:

    For N equations;

    Signal-Flow Graph Basic Properties

    sYsGsYsGsY

    sYsGsYsGsY

    sYsGsYsGsY

    3342244

    4432233

    3321122

    NjsYsGsYkkj

    N

    k

    j1,

    1

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Input node (Source)

    A node that has only outgoing branches (example: node Y1)

    Output node (Sink)

    A node that has only incoming branches (example: Y4)

    Path

    A branch or a continuous sequence of branches that can be traversed from one node to another node

    Forward path

    A path that starts at an input node and ends at an output node with no node traversed more than once (example: Y1 to Y2 to Y3 )

    Loop

    A path that originates and terminates on the same node with no other node traversed more than once. (four loops in example)

    Signal-Flow Graph Terms

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Path gain The product of the branch gains encountered in traversing a

    path.

    For example, the path gain for the path Y1-Y2-Y3-Y4 is G12G23G34

    Forward-path gain The path gain of a forward path

    Loop gain The path gain of a loop

    Non-Touching loops Two loops are non-touching if they do not have a common

    node

    Signal-Flow Graph Terms

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    2 Forward paths:

    4 Loops:

    Non-touching loops:

    L1 and L3, L1 and L4, L2 and L3, L2 and L4

    Signal-Flow Graph Terms

    43211GGGGP

    87652GGGGP

    332HGL

    221HGL

    774HGL

    663HGL

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Series connection of branches

    Parallel branches

    Feedback control system

    Signal Flow Graphs Algebra

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Gain Formula

    The linear dependence between input variable and output variable

    Pk = Gain of the kth path from input variable to output variable

    = Determinant of the SFG

    k = Cofactor of the path Pk

    N = the total number of forward paths between input and

    output variable

    Signal Flow Graphs Gain Formula

    NN

    N

    k

    kkPPP

    P

    T

    22111

    input

    output

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    = 1 (sum of all loop gains)

    + (sum of the gain products of all combination of two non-touching loops)

    (sum of the gain products of all combination of three non-touching loops)

    +

    k = with all the loops touching the kth forward path put to zero

    Signal Flow Graphs Gain Formula

    nontoching

    pmn

    pmn

    nontoching

    mn

    mn

    n

    nLLLLLL

    ,,,

    1

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Find the system transfer function by using the gain formula of SFG

    Signal Flow Graphs Example

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Field-controlled motor

    Draw the signal-flow graph for the above block diagram

    Signal Flow Graph DC motor control

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Armature-controlled motor

    Signal Flow Graph DC motor control

    sD

    sD

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Determine the transfer function of the system from the following signal flow graph, by using Masons Gain

    formula.

    Also draw the equivalent block diagram

    Signal Flow Graphs Exercises (E2.22)

    NN

    N

    k

    kkPPP

    P

    sR

    sYsT

    22111

  • ME464-Sys Dyn & Ctrl Spring-2013 Dr. Shaukat Ali

    Determine the following transfer function:

    Determine a relationship for the system that will make Y2(s)independent of R1(s)

    Draw the equivalent block diagram

    Signal Flow Graphs Problems (P2.33)

    sR

    sYsT

    1

    2