74
Microelectronic Circuits Common drain amplifier

lecture4a

Embed Size (px)

DESCRIPTION

kolman hill notes

Citation preview

Page 1: lecture4a

Microelectronic Circuits

Common drain amplifier

Page 2: lecture4a

C D AMPLIFIER---source follower

Page 3: lecture4a

Small signal model

Page 4: lecture4a

Active load

Page 5: lecture4a

Rout---small

Page 6: lecture4a

Gain by Thevenin equivalent

Page 7: lecture4a

Bits, pilani

Full implementation

Page 8: lecture4a

Bits, pilani

Gain from small signal model

Rs= ro here

Page 9: lecture4a

Bits, pilani

Av variation

Page 10: lecture4a

Bits, pilani

Level shifter

Vout dc= Vindc-Vgs

Vgs can be adjusted for a given Ibias by adjusting w/L

Used in push pull amplifier for shifting dc bias

How much shift?

Page 11: lecture4a

Ex1-level shifter

Pmos requires high Vg, nmos requires low Vg

Vgs for both transistors are not optimized here.

vin

vin

Level shifter circuit

vin

Swing requirement

Page 12: lecture4a

Ex2-level shifter

Page 13: lecture4a

Charac. Of source follower

� Rin--high

� Rout--low

� Av ≈1

� It reduces Vswing of previous stage

� Non linearity due to gmb

Page 14: lecture4a

Vmin at x node of successor

constraint

Page 15: lecture4a

Comparison of gain with CSA

= ½ →1 If gm1 large

= 1

50% signal loss--Not an efficient drivers for small load

Page 16: lecture4a

Application Of Source Follower

� Voltage buffer--Bad driver as reduces signal

by half for small RL

� Level shifter--useful

Page 17: lecture4a

Bits, pilani

PMOS level shifter---shift up

Page 18: lecture4a

C G AMPLIFIER

Page 19: lecture4a
Page 20: lecture4a

Bits, pilani

Small signal model

Page 21: lecture4a

Bits, pilani

Input impedance Rin

Page 22: lecture4a

Bits, pilani

Rin for ideal cs load---infinite

Page 23: lecture4a

Bits, pilani

Rout

Page 24: lecture4a

Bits, pilani

Transconductance Gm

� Gm= gm+go+gmb

Page 25: lecture4a

Bits, pilani

Voltage gain

� Av= (gm+gmb) Rout

� No phase shift

Page 26: lecture4a

Transconductance amplifier

Page 27: lecture4a

Current amplifier

Page 28: lecture4a

2 STAGE AMPLIFIER

Page 29: lecture4a

Bits, pilani

Cascode amplifier

Page 30: lecture4a

Bits, pilani

Cascode load

Page 31: lecture4a

Bits, pilani

Small signal model

Page 32: lecture4a

Bits, pilani

Cd-Cg cascade

Page 33: lecture4a

Bits, pilani

Voltage swing

Page 34: lecture4a

Bits, pilani

Ex– analysis using the equivalent

Page 35: lecture4a

Bits, pilani

Page 36: lecture4a

Bits, pilani

Trans impedance

Page 37: lecture4a

Analysis in stages

Page 38: lecture4a
Page 39: lecture4a

Gain calculation in stages

� Vout/ vin= [vout /vo1] [vo1/ vin]

� = [gm2 (ro2||RL)] [ gm1 [(1/gm2)||ro1)]]

Or

� Vout/ vin= [vout /vo1] [vo1/ vin]

� = [ [gm2 / (1+ gm2 (ro1||Rd1) ] X ( gm2 ro2 (ro1||Rd1)) || RL] ]

X [ gm1 (ro1||Rd1)]GM2

Rout2

Vo1/vin

Page 40: lecture4a

Bits, pilani

To compute overall gain using Norton equivalent

↓gm vin ro

i1

Input to second stage is current i1--So, draw first stage as Norton equivalent--Compute i1 by taking Rin2 loading into account--comput vout by taking i1 as input--vout = i1 Rd2--i1 = [Ro1/ (Ro1+ Rin2) ] (gm vin)Loading effect is considered only once

↑i1

Rin2= 1/gm2Rout1

Page 41: lecture4a

Bits, pilani

v1

↑i1

=

Page 42: lecture4a

Bits, pilani

Voltage gain using thevenin eq.

Page 43: lecture4a

Bits, pilani

Analysis in stages

Thevenin equivalent of first stage

Page 44: lecture4a

Bits, pilani

Thevenin equivalent

vo1

Page 45: lecture4a

Bits, pilani

V1 signal computation

Rin2

v1= ro1

v1 ≠ vin eqSignal loss takes place

Page 46: lecture4a

Bits, pilani

Circuit for Gm computation-2nd stage

This circuit can be used for Gm (= io/v1) calculation

Req will have no effect on Gm value

v1

v1short

Page 47: lecture4a

Bits, pilani

v1

This circuit can not be used for Rout computation

Reason----actual input is current signal

Analysis becomes clear when we use Nortons

equivalent circuit

Page 48: lecture4a

Bits, pilani

So Circuit for Rout computation- 2nd stage

v1short

Page 49: lecture4a

Bits, pilani

Page 50: lecture4a

Bits, pilani

Comparison of cascode and CSA

� SAME VOLTAGE SWING, POWER

DISSIPATION

� CSA----- Av = [gm/2 ro ]---doubles

� CASCODE---- Av = (gmro)(gmro)

Page 51: lecture4a

Bits, pilani

Applications

� High gain amplifier

� High bandwidth

Page 52: lecture4a

Bits, pilani

Shielding property

� Negative feedback

Page 53: lecture4a

Bits, pilani

Current source load

Page 54: lecture4a

Bits, pilani

Double Cascode

� Voltage swing severely affected

Page 55: lecture4a

CSA, CASCODE-- SAME GAIN

Page 56: lecture4a

Differential amplifier

Page 57: lecture4a

How ?

Page 58: lecture4a

Differential input���� no cap reqd.

Page 59: lecture4a

Comparison with csa –same power dissipation

Page 60: lecture4a

Bits, pilani

Differential amplifier— extra benefit

Extra node available

Page 61: lecture4a

Bits, pilani

Extra benefit ---input signal Noise cancellation

Page 62: lecture4a

Bits, pilani

CSA-CSA coupled at source

Page 63: lecture4a

Bits, pilani

CSA with Rs

Page 64: lecture4a

Bits, pilani

CD-CG cascade

Page 65: lecture4a

Bits, pilani

Characteristics—diff mode

Page 66: lecture4a

Bits, pilani

Characteristics—diff mode

Page 67: lecture4a

Bits, pilani

Lecture-5

Page 68: lecture4a

Bits, pilani

Transit Frequency

Page 69: lecture4a

Bits, pilani

MOS capacitances

� Cgs

� Cgd

� Cgb

� Csb

� Cdb

Page 70: lecture4a

Bits, pilani

MOS unity gain frequency wT

wT = (gm-sCgd) /[s (Cgs+Cgd)]

Page 71: lecture4a

Bits, pilani

Transit frequency

Wt=Wz

Wz Wt

I

Page 72: lecture4a

Bits, pilani

MOS unity gain frequency wT

� Limits for MOSFETs:

� Metric –C.S short-circuit current gain unit pt:

� wT = (gm-SCgd)/[s(Cgs+Cgd)]

� wT is approximately = gm/Cgs

� = 3 un(VGS -VT)/2L2

Where gm = (W/L) unCox(VGS -VT) and

Cgs = (2/3)WLCox

� so wT≈ 3 µn(VGS -VT)/2L2

� Design lessons –

� bias at large ID

� minimize L (w in as L2) , λ (= 1/L)increases, ROUT dec.

� use n-channel over p-channel , NOISE increases

Page 73: lecture4a

Bits, pilani

UNITY GAIN FREQUENCY

Page 74: lecture4a

Bits, pilani

BJT circuits