22
Lectures D25-D26 : 3D Rigid Body Dynamics 12 November 2004

Lectures D25-D26 : 3D Rigid Body Dynamics

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lectures D25-D26 : 3D Rigid Body Dynamics

Lectures D25-D26 :3D Rigid Body Dynamics

12 November 2004

Page 2: Lectures D25-D26 : 3D Rigid Body Dynamics

OutlineOutline

Dynamics 16.07 Dynamics D25-D26 1

•Review of Equations of Motion

•Rotational Motion

•Equations of Motion in Rotating Coordinates

•Euler Equations

•Example: Stability of Torque Free Motion

•Gyroscopic Motion

- Euler Angles- Steady Precession

•Steady Precession with M = 0

Page 3: Lectures D25-D26 : 3D Rigid Body Dynamics

Equations of MotionEquations of Motion

Dynamics 16.07 Dynamics D25-D26 2

Conservation of Linear Momentum

L = F, L = mvG

Conservation of Angular Momentum

HG = MG, HG = IGω

orHO = MO, HO = IOω

Page 4: Lectures D25-D26 : 3D Rigid Body Dynamics

Equations of Motion in Rotating CoordinatesEquations of Motion in Rotating Coordinates

Dynamics 16.07 Dynamics D25-D26 3

Angular Momentum

HG = IGω (or HO = IOω)

Time variation

- Non-rotating axes XY Z (I changes)

H = Iω + Iω . . . I big problem!

- Rotating axes xyz (I constant)

H = (H)xyz + Ω × H

= I(ω)xyz + Ω × H

Page 5: Lectures D25-D26 : 3D Rigid Body Dynamics

Equations of Motion in Rotating CoordinatesEquations of Motion in Rotating Coordinates

Dynamics 16.07 Dynamics D25-D26 4

(H)xyz + Ω × H = M

or,

Hx −HyΩz +HzΩy = Mx

Hy −HzΩx +HxΩz = My

Hz −HxΩy +HyΩx = Mz

xyz axis can be any right-handed set of axis, but

. . . will choose xyz (Ω) to simplify analysis (e.g. I constant)

Page 6: Lectures D25-D26 : 3D Rigid Body Dynamics

Example: Parallel Plane MotionExample: Parallel Plane Motion

Dynamics 16.07 Dynamics D25-D26 5

ωx = ωy = 0, ωz 6= 0

Hx = −Ixzωz, Hy = −Iyzωz, Hz = Izωz

Body fixed axis Ω = ω (and z ≡ Z)

− Ixzωz + Iyzω2z = Mx (1)

−Iyzωz − Ixzω2z = My (2)

Izωz = Mz (3)Solve (3) for ωz, and then, (1) and (2) for Mx and My.

Page 7: Lectures D25-D26 : 3D Rigid Body Dynamics

Euler’s EquationsEuler’s Equations

Dynamics 16.07 Dynamics D25-D26 6

If xyz are principal axes of inertia

•Hx = Ixωx, Hy = Iyωy,Hz = Izωz

•Ω = ω

Ixωx − (Iy − Iz)ωyωz = Mx

Iyωy − (Iz − Ix)ωzωx = My

Izωz − (Ix − Iy)ωxωy = Mz

Page 8: Lectures D25-D26 : 3D Rigid Body Dynamics

Euler’s EquationsEuler’s Equations

Dynamics 16.07 Dynamics D25-D26 7

•Body fixed principal axes

•Right-handed coordinate frame

•Origin at:

– Center of mass G (possibly accelerated)– Fixed point O

•Non-linear equations . . . hard to solve

•Solution gives angular velocity components . . . inunknown directions (need to integrate ω todetermine orientation).

Page 9: Lectures D25-D26 : 3D Rigid Body Dynamics

Example: Stability of Torque Free MotionExample: Stability of Torque Free Motion

Dynamics 16.07 Dynamics D25-D26 8

Body spinning about principal axis of inertia,

ωz = ω, ωx = ωy = 0

Consider small perturbation

ωx, ωy, ω

After initial perturbation M = 0

Ixωx − (Iy − Iz)ωyωz = 0 (1)

Iyωy − (Iz − Ix)ωzωx = 0 (2)

Izωz − (Ix − Iy)ωxωy︸ ︷︷ ︸small

= 0 (3)

Page 10: Lectures D25-D26 : 3D Rigid Body Dynamics

Example: Stability of Torque Free MotionExample: Stability of Torque Free Motion

Dynamics 16.07 Dynamics D25-D26 9

From (3) → ωz ≈ ω ≡ constant

Differentiate (1) and substitute value of ωy from (2),→ . . .

Ixωx −(Iy − Iz)(Iz − Ix)

Iyω2ωx = 0

or,

ωx − Aωx = 0, A = −(Iz − Iy)(Iz − Ix)

IxIyω2

Solutions,ωx = Ae

√At +Be−

√At

Page 11: Lectures D25-D26 : 3D Rigid Body Dynamics

Example: Stability of Torque Free MotionExample: Stability of Torque Free Motion

Dynamics 16.07 Dynamics D25-D26 10

•A > 0 →√

A > 0 → Growth → Unstable

Ix < Iz < Iy, or Iy < Iz < Ix

•A < 0 →√

A = iα → Oscillatory → Stable

Iz > Ix, Iy, or Iz < Ix, Iy

Page 12: Lectures D25-D26 : 3D Rigid Body Dynamics

Gyroscopic MotionGyroscopic Motion

Dynamics 16.07 Dynamics D25-D26 11

•Bodies symmetric w.r.t.(spin) axisIz = I, Ix = Iy = I0

•Origin at fixed point O (or at G)

Page 13: Lectures D25-D26 : 3D Rigid Body Dynamics

Gyroscopic MotionGyroscopic Motion

Dynamics 16.07 Dynamics D25-D26 12

•XY Z fixed axes

•x′y′z body axes — angular velocity ω

•xyz “working” axes — angular velocity Ω

Page 14: Lectures D25-D26 : 3D Rigid Body Dynamics

Gyroscopic MotionGyroscopic Motion Euler AnglesEuler Angles

Dynamics 16.07 Dynamics D25-D26 13

φ : Precessionθ : Nutationψ : Spin

– position of xyz requires φ and θ– position of x′y′z requires φ, θ and ψ

Relation between (φ, θ, ψ) and ω,(and Ω)

ωx = θ Ωx = θ

ωy = φ sin θ Ωy = φ sin θ

ωz = φ cos θ + ψ Ωz = φ cos θ

Page 15: Lectures D25-D26 : 3D Rigid Body Dynamics

Gyroscopic MotionGyroscopic Motion Euler AnglesEuler Angles

Dynamics 16.07 Dynamics D25-D26 14

Angular Momentum

Hx = Ixωx = I0θ

Hy = Iyωy = I0φ sin θ

Hz = Izωz = I(φ cos θ + ψ)

Equation of Motion,

Hx −HyΩz +HzΩy = Mx

Hy −HzΩx +HxΩz = My

Hz −HxΩy +HyΩx = Mz

Page 16: Lectures D25-D26 : 3D Rigid Body Dynamics

Gyroscopic MotionGyroscopic Motion Euler AnglesEuler Angles

Dynamics 16.07 Dynamics D25-D26 15

become,

I0(θ − φ2 sin θ cos θ) + Iφ sin θ(φ cos θ + ψ) = Mx

I0(φ sin θ + 2φθ cos θ) − Iθ(φ cos θ + ψ) = My

I(ψ + φ cos θ − φθ sin θ) = Mz

. . . not easy to solve!!

Page 17: Lectures D25-D26 : 3D Rigid Body Dynamics

Gyroscopic MotionGyroscopic Motion Steady PrecessionSteady Precession

Dynamics 16.07 Dynamics D25-D26 16

φ = constant, φ = 0

θ = constant, θ = θ = 0

ψ = constant, ψ = 0

Page 18: Lectures D25-D26 : 3D Rigid Body Dynamics

Gyroscopic MotionGyroscopic Motion Steady PrecessionSteady Precession

Dynamics 16.07 Dynamics D25-D26 17

φ sin θ[I(φ cos θ + ψ) − I0φ cos θ] = Mx

0 = My

0 = Mz

Also, note that (H)xyz = 0 →

H does not change in xyz axes

External Moment

Mx = mgzG sin θ

Page 19: Lectures D25-D26 : 3D Rigid Body Dynamics

Gyroscopic MotionGyroscopic Motion Steady PrecessionSteady Precession

Dynamics 16.07 Dynamics D25-D26 18

Then,

Iφψ − (I0 − I)φ2 cos θ = mgzG

If ψ φ, or, θ ≈ π2,

φ =mgzG

φ: precession velocity,ψ: spin velocity

Page 20: Lectures D25-D26 : 3D Rigid Body Dynamics

Steady Precession with M = 0Steady Precession with M = 0

Dynamics 16.07 Dynamics D25-D26 19

MG = 0 ⇒ HG = constant

HGx = I0ωx = 0

HGy = I0ωy = HG sin θ

HGz = Iωz = HG cos θ

tan θ =HGy

HGz

=I0

I

ωy

ωz=I0

Itanβ

Page 21: Lectures D25-D26 : 3D Rigid Body Dynamics

Steady Precession with M = 0Steady Precession with M = 0Direct PrecessionDirect Precession

Dynamics 16.07 Dynamics D25-D26 20

From x-component of angular momentum equation,

φ =Iψ

(I0 − I) cos θ

If I0 > I, then β < θ (tan θ = (I0/I) tanβ), → φ

same sign as ψ

Page 22: Lectures D25-D26 : 3D Rigid Body Dynamics

Steady Precession with M = 0Steady Precession with M = 0Retrograde PrecessionRetrograde Precession

Dynamics 16.07 Dynamics D25-D26 21

φ =Iψ

(I0 − I) cos θ

If I0 < I, then β > θ (tan θ = (I0/I) tanβ), → φ

andψ have opposite signs