49
Leslie Matrix II Formal Demography Stanford Spring Workshop in Formal Demography May 2008 James Holland Jones Department of Anthropology Stanford University May 2, 2008 1

Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Leslie Matrix II

Formal DemographyStanford Spring Workshop in Formal Demography

May 2008

James Holland JonesDepartment of Anthropology

Stanford University

May 2, 2008

1

Page 2: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Outline

1. Spectral Decomposition

2. Keyfitz Momentum

3. Transient Dynamics in terms of Eigenvectors

4. Matrix Perturbations

(a) Sensitivity(b) Elasticity(c) Second Derivatives

Stanford Summer Short Course: Leslie Matrix II 2

Page 3: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Spectral Decomposition of the Projection Matrix

Suppose we are given an initial population vector, n(0)

We can write n(0) as a linear combination of of the right eigenvectors, ui of theprojection matrix A

n(0) = c1u1 + c2u2 + · · ·+ ckuk

where the ci are a set of coefficients

We can collect the eigenvectors into a matrix and the coefficients into a vector andre-write this equation as:

n(0) = Uc

Stanford Summer Short Course: Leslie Matrix II 3

Page 4: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

From this it is clear that

c = U−1n(0)

Now, U−1 is just the matrix of left eigenvectors (or their complex conjugatetranspose), so:

ci = v∗i n(0)

Stanford Summer Short Course: Leslie Matrix II 4

Page 5: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Spectral Decomposition II

Project the initial population vector n(0) forward by multiplying it by the projectionmatrix A

n(1) = An(0)

=∑

i

ciAui

=∑

i

ciλiui

Multiply again!

n(2) = An(1)

Stanford Summer Short Course: Leslie Matrix II 5

Page 6: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

=∑

i

ciλiAui

=∑

i

ciλ2iui

We could keep going, but at this point it isn’t hard to believe that the followingholds:

n(t) =∑

i

ciλtiui (1)

Equivalently:

n(t) =∑

i

λtiuiv∗i n(0) (2)

This is known as the Spectral Decomposition of the projection matrix A

It is instructive to compare this to the solution for population growth in anunstructured (i.e., scalar) population, characterized by a geometric rate of increasea:

Stanford Summer Short Course: Leslie Matrix II 6

Page 7: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

N(t + 1) = aN(t)

N(t) = N(0)at

For the scalar case, the solution is exponential

For a k-dimensional matrix, this solution means that the population size at time tis a weighted sum of k exponentials

While both depend on the initial conditions, the k-dimensional case weights theinitial population vector by the reproductive values of the k classes

Stanford Summer Short Course: Leslie Matrix II 7

Page 8: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Population Momentum

0.00 0.05 0.10 0.15

020

4060

80

Fraction of Stable Population

Age

growingstationary

Stanford Summer Short Course: Leslie Matrix II 8

Page 9: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Keyfitz (1971) Formulation for Population Momentum

The ratio of population size at the ultimate equilibrium and just before the fertilitytransition

M =b◦e0

(R0 − 1

R0

)(3)

where b is the gross birth rate:

b =1∫ β

αe−rxl(x)dx

◦e0 is the life expectancy at birth

Stanford Summer Short Course: Leslie Matrix II 9

Page 10: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

µ is the mean age of childbearing in the stationary population:

µ =

∫ β

αxl(x)m(x)dx∫ β

αl(x)m(x)dx

R0 is the net reproduction ratio:

R0 =∫ β

α

l(x)m(x)dx

Stanford Summer Short Course: Leslie Matrix II 10

Page 11: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Momentum in Terms of Matrix Formalism

First recall the spectral decomposition of the projection matrix A:

n(t) =∑

i

ciλtiui

where the coefficients of the sum ci are

ci = v∗i n(0)

The (scalar) product of the initial population size and the reproductive value vectorcorresponding to the ith eigenvalue

Stanford Summer Short Course: Leslie Matrix II 11

Page 12: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Momentum is the Ratio of Eventual Size to the Size atFertility Drop

M = limt→∞

‖n(t)‖‖n(0)‖

(4)

where ‖n‖ =∑

i ni is the total population size

The population under the old and new rates will be characterized by eigenvalues,

λ(old)i and λ

(new)i

limt→∞

n(t)

λ(new)1

= limt→∞

n(t) (5)

=(v(new)∗

1 n(0))u(new)

1 (6)

Stanford Summer Short Course: Leslie Matrix II 12

Page 13: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

This follows directly from the spectral decomposition of the projection matrix

Substitute this into equation 4

M =eT

(v(new)∗

1 n(0))u(new)∗

eTn(0)(7)

where e is a vector of ones.

This much simpler computationally than the original Keyfitz (1971) formulation

Stanford Summer Short Course: Leslie Matrix II 13

Page 14: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Transient Dynamics and Convergence

Re-write the spectral decomposition for the projection matrix A, expanding the sumfor expository purposes

n(t) = c1λt1u+c2λ

t2u2 + · · ·+ ckλ

tkuk

If A is irreducible and primitive, then the Perron-Frobenius theorem insures thatone of the eigenvalues, λ1, of A will be:

• Strictly positive

• Real

• Greater than or equal to all other eigenvalues

Because of this, all the exponential terms in the spectral decomposition of A becomenegligible compared to the one associated with λ1 when t gets large

To see this divide both sides of the spectral decomposition of A by the dominanteigenvalue raised to the t power λt

1:

Stanford Summer Short Course: Leslie Matrix II 14

Page 15: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

n(t)λt

1

= c1u1 + c2

(λ2

λ1

)t

u2 + · · ·+ ck

(λk

λ1

)t

uk (8)

Since λ1 > λi for i ≥ 2, each of the fractions involving the eigenvalues will approachzero as t →∞

Taking this limit, we see that:

limn→∞

n(t)λt

1

= c1u1 (9)

This is the Strong Ergodic Theorem

The long term dynamics of a population governed by primitive matrix A aredescribed by growth rate λ1 and population structure u1

Stanford Summer Short Course: Leslie Matrix II 15

Page 16: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Yes, But How Soon to Convergence?

Clearly, a population will converge to its asymptotic behavior faster is λ1 is largerelative to the other eigenvalues

That’s because λi/λ1 (i > 1) will be smaller and approach zero more rapidly as itis powered up

The classic measure of convergence is the ratio of the dominant to the absolutevalue of the subdominant eigenvalue

ρ = λ1/|λ2|

The quantity ρ is known as the damping ratio

From equation 8, we can write

limt→∞

(n(t)λ1

− c1u1 + c2ρ−tu2

)= 0

Stanford Summer Short Course: Leslie Matrix II 16

Page 17: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

For large t and some constant k

∥∥∥∥n(t)λ1

− c1u1

∥∥∥∥ ≤ kρt

= ke− log ρ

Convergence to stable structure (and therefore growth at rate λ1) is asymptoticallyexponential at a rate at least as fast as log ρ

Note that convergence could be faster (e.g., if n(0) = u1)

The time tx it takes for the influence of λ1 to be x times larger than λ2 is

(λ1

|λ2|

)tx

= x

or

Stanford Summer Short Course: Leslie Matrix II 17

Page 18: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

tx = log(x)/ log(ρ)

Stanford Summer Short Course: Leslie Matrix II 18

Page 19: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

How Far is a Population from the Stable Age Distribution?

The classic measure of distance is attributable to Keyfitz (1968) and is a standardmeasure of the distance between two probability vectors

∆(x,u) =12

∑i

|xi − wi|

Keyfitz’s ∆ takes a maximum value of ∆ = 1, clearly, ∆ = 0 when two vectors areidentical

Cohen developed two metrics that account not just for the population vector but forthe possible route through which a population structure can converge to stability

s(A,n(0), t) =t∑

u=0

(n(u)λu

1

− c1u1

)Stanford Summer Short Course: Leslie Matrix II 19

Page 20: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

r(A,n(0), t) =t∑

u=0

∣∣∣∣n(u)λu

1

− c1u1

∣∣∣∣Cohen’s measures of distance between the observed population vector and the stablevector is simply the sum of the absolute values of these vectors as t →∞

D1 =∑

i

limt→∞

|si(A,n(0), t)|

D1 =∑

i

limt→∞

|ri(A,n(0), t)|

Stanford Summer Short Course: Leslie Matrix II 20

Page 21: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Matrix Perturbations

This derivation follows Caswell (2001)

We start from the general matrix population model:

Aw = λu (10)

Now we perturb the system

(A + dA)(u + du) = (λ + dλ)(u + du) (11)

Multiply all the products and discard the second-order terms such as (dA)(du)

Aw + A(du) + (dA)u = λu + λ(du) + (dλ)u (12)

Simplify this to yield

Stanford Summer Short Course: Leslie Matrix II 21

Page 22: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

A(du) + (dA)u = λ(du) + (dλ)u (13)

Multiply both sides by v∗ to get

v∗A(du) + v∗(dA)u = λv∗(du) + v∗(dλ)u (14)

From the definition of a left eigenvector, we know that the first term on the left-handside is the same as the first term on the right-hand side. Similarly, because the rightand left eigenvectors are scaled so that 〈u,v〉 = 1, the last term simplifies to dλ.We are left with

v∗dAu = dλ (15)

When we do a perturbation analysis, we typically only change a single element ofA. Thus the basic formula for the sensitivity of the dominant eigenvalue to a smallchange in element aij is

∂λ

∂aij= viuj (16)

Stanford Summer Short Course: Leslie Matrix II 22

Page 23: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

In other words, the sensitivity of fitness to a small change in projection matrixelement aij is simply the ith element of the left eigenvector weighted by theproportion of the stable population in the jth class (assuming vectors have beennormed such that 〈vu〉 = 1)

Stanford Summer Short Course: Leslie Matrix II 23

Page 24: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Eigenvalue Sensitivities are Linear Estimates of the Change inλ1, Given a Perturbation

λ

ija

Stanford Summer Short Course: Leslie Matrix II 24

Page 25: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Lande’s Theorem

Imagine a multivariate phenotype (e.g., a life history) z

Lande (1982) shows that when selection is weak, the change in the phenotype ∆zis given by

∆z = λ−1 Gs

wher G is the additive genetic covariance matrix for the transitions in the life-cycleand s is a column vector of all the life-cycle transition sensitivities

The sensitivities therefore represent the force of selection on the phenotype

Stanford Summer Short Course: Leslie Matrix II 25

Page 26: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Some R Code for Calculating Sensitivities

A recipe!

> lambda <- eigen(A)> U <- lambda$vectors> u <- abs(Re(U[,1]))> V <- solve(Conj(U))> v <- abs(Re(V[1,]))> s <- v%o%w> s[A == 0] <- 0

Extract and plot them

> surv.sens <- s[row(s) == col(s)+1]> fert.sens <- s[1,]> age <- seq(0,45,by=5)> plot(age,surv.sens,type="l",lwd=3,col="turquoise")> lines(age[4:10], fs[4:10], lwd=3, col="magenta")> legend(30,.17,c("survival","fertility"), lwd=3, col=c("turquoise","magenta"))

Stanford Summer Short Course: Leslie Matrix II 26

Page 27: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

0 10 20 30 40

0.00

0.05

0.10

0.15

Age

Sen

sitiv

itysurvivalfertility

Stanford Summer Short Course: Leslie Matrix II 27

Page 28: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Elasticities

Another measure of the change in a matrix given a small change in an underlyingelement is the eigenvalue elasticity:

eij =∂ log λ

∂ log aij

Elasticities are proportional sensitivities: they measure the linear change on a logscale

An important property of elasticities is that they sum to one

∑i,j

eij = 1

Stanford Summer Short Course: Leslie Matrix II 28

Page 29: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

0 10 20 30 40

0.00

0.05

0.10

0.15

Age

Ela

stic

itysurvivalfertility

Stanford Summer Short Course: Leslie Matrix II 29

Page 30: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

The Universality of the Human Life Cycle

There is a great variety of human demographic experience

How does this variation translate into the force of selection on the human life cycle?

Sampling the full variety of human demographic variation is hopeless

Adopt a strategy (following Livi-Bacci) of filling out a demographic space andexploring the boundaries of the region

Stanford Summer Short Course: Leslie Matrix II 30

Page 31: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

The Human Demographic Space

2 3 4 5 6 7 8

20

30

40

50

60

70

80

Total Fertility Rate

e0

−0.02

−0.020

0

0

0

00.02

0.02

0.02

0.04

Stanford Summer Short Course: Leslie Matrix II 31

Page 32: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Mortality

0 20 40 60 80 100

−8

−6

−4

−2

Age

Log(

Mor

talit

y R

ate)

!KungAcheVenUSA

Stanford Summer Short Course: Leslie Matrix II 32

Page 33: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Fertility

0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Age

AS

FR

!KungAcheVenUSA

Stanford Summer Short Course: Leslie Matrix II 33

Page 34: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Survival Elasticities

0 10 20 30 40

0.00

0.05

0.10

0.15

0.20

Age

Ela

stic

ity!KungAcheVenUSA

Stanford Summer Short Course: Leslie Matrix II 34

Page 35: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Fertility Elasticities

0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

Age

Ela

stic

ity!KungAcheVenUSA

Stanford Summer Short Course: Leslie Matrix II 35

Page 36: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Eigenvalue Second Derivatives

We can measure the curvature of the fitness surface

∂2λ(1)

∂aij∂akl= s

(1)il

∑m6=1

s(m)kj

λ(1) − λ(m)+ s

(1)kj

∑m6=1

s(m)il

λ(1) − λ(m), (17)

where m is the rank of the projection matrix,

s(m)ij = ∂λ(m)/∂aij,

and λ(m) is the mth eigenvalue of the projection matrix

Stanford Summer Short Course: Leslie Matrix II 36

Page 37: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Sensitivity of Elasticities

One application of the eigenvalue second derivatives is calculating how elasticitieswill change when vital rates are perturbed

i.e., the sensitivities of the elasticities:

∂eij

∂akl=

aij

λ

∂2λ

∂aij∂akl− aij

λ2

∂λ

∂aij

∂λ

∂akl+

δikδjl

λ

∂λ

∂aij(18)

where δik and δjl indicate the Kronecker delta function where δik = 1 if i = k,otherwise δik = 0

Stanford Summer Short Course: Leslie Matrix II 37

Page 38: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Sensitivities of Fertility Elasticities (Fertility)

10 20 30 40

0.00

0.05

0.10

0.15

Age (Fertility)

∂∂2 λλ∂∂F

i2

F10

10 20 30 40

0.00

0.05

0.10

0.15

Age (Fertility)

∂∂2 λλ∂∂F

i2

F15

10 20 30 40

−0.

050.

000.

050.

100.

15

Age (Fertility)

∂∂2 λλ∂∂F

i2

F20

10 20 30 40

−0.

050.

000.

050.

10

Age (Fertility)

∂∂2 λλ∂∂F

i2

F25

10 20 30 40

−0.

050.

000.

050.

10

Age (Fertility)

∂∂2 λλ∂∂F

i2

F30

10 20 30 40

0.00

0.05

0.10

Age (Fertility)

∂∂2 λλ∂∂F

i2

F35

10 20 30 40

0.00

0.04

0.08

0.12

Age (Fertility)

∂∂2 λλ∂∂F

i2

F40

10 20 30 40

0.00

0.04

0.08

0.12

Age (Fertility)

∂∂2 λλ∂∂F

i2

F45

10 20 30 40

0.00

0.04

0.08

0.12

Age (Fertility)

∂∂2 λλ∂∂F

i2

F50

Stanford Summer Short Course: Leslie Matrix II 38

Page 39: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Sensitivities of Survival Elasticities (Survival)

0 5 10 15 20 25 30 35

−0.

010.

000.

010.

02

Age (Survival)

∂∂2 λλ∂∂S

i2

S0

0 5 10 15 20 25 30 35

−0.

020.

000.

01

Age (Survival)

∂∂2 λλ∂∂S

i2

S5

0 5 10 15 20 25 30 35

−0.

020.

000.

010.

02

Age (Survival)

∂∂2 λλ∂∂S

i2

S10

0 5 10 15 20 25 30 35

−0.

010.

010.

03

Age (Survival)

∂∂2 λλ∂∂S

i2

S15

0 5 10 15 20 25 30 35

−0.

010.

010.

03

Age (Survival)

∂∂2 λλ∂∂S

i2

S20

0 5 10 15 20 25 30 35

−0.

010.

010.

03

Age (Survival)

∂∂2 λλ∂∂S

i2

S25

0 5 10 15 20 25 30 35

−0.

010.

000.

010.

02

Age (Survival)

∂∂2 λλ∂∂S

i2

S30

0 5 10 15 20 25 30 35

−0.

005

0.00

50.

015

Age (Survival)

∂∂2 λλ∂∂S

i2

S35

0 10 20 30 40

0.00

00.

010

0.02

0Age

∂∂2 λλ∂∂S

i2

S40

Stanford Summer Short Course: Leslie Matrix II 39

Page 40: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Sensitivities of Survival Elasticities (Fertility)

0 10 20 30 40

−0.

100.

000.

10

Age (Fertility)

∂∂2 λλ∂∂S

iFj

S0

0 10 20 30 40

−0.

100.

000.

05

Age (Fertility)

∂∂2 λλ∂∂S

iFj

S5

0 10 20 30 40

−0.

050.

000.

05

Age (Fertility)

∂∂2 λλ∂∂S

iFj

S10

0 10 20 30 40

−0.

08−

0.04

0.00

0.04

Age (Fertility)

∂∂2 λλ∂∂S

iFj

S15

0 10 20 30 40

−0.

06−

0.02

0.02

0.06

Age (Fertility)

∂∂2 λλ∂∂S

iFj

S20

0 10 20 30 40

−0.

040.

000.

040.

08

Age (Fertility)

∂∂2 λλ∂∂S

iFj

S25

0 10 20 30 40

−0.

020.

020.

060.

10

Age (Fertility)

∂∂2 λλ∂∂S

iFj

S30

0 10 20 30 40

0.00

0.04

0.08

0.12

Age (Fertility)

∂∂2 λλ∂∂S

iFj

S35

0 10 20 30 40

0.00

0.04

0.08

0.12

Age (Fertility)

∂∂2 λλ∂∂S

iFj

S40

Stanford Summer Short Course: Leslie Matrix II 40

Page 41: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Sensitivities of Fertility Elasticities (Survival)

0 10 20 30 40

−0.

005

0.00

50.

010

Age (Survival)

∂∂2 λλ∂∂F

iSj

F10

0 10 20 30 40

−0.

020.

00

Age (Survival)

∂∂2 λλ∂∂F

iSj

F15

0 10 20 30 40

−0.

020.

00

Age (Survival)

∂∂2 λλ∂∂F

iSj

F20

0 10 20 30 40

−0.

015

0.00

00.

010

0.02

0

Age (Survival)

∂∂2 λλ∂∂F

iSj

F25

0 10 20 30 40

−0.

005

0.00

50.

015

Age (Survival)

∂∂2 λλ∂∂F

iSj

F30

0 10 20 30 40

−0.

005

0.00

5

Age (Survival)

∂∂2 λλ∂∂F

iSj

F35

0 10 20 30 40

−0.

004

0.00

20.

006

Age (Survival)

∂∂2 λλ∂∂F

iSj

F40

0 10 20 30 40

−5e

−04

5e−

04

Age (Survival)

∂∂2 λλ∂∂F

iSj

F45

Stanford Summer Short Course: Leslie Matrix II 41

Page 42: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

More Uses for Sensitivities: Stochastic Population Growth

Assume a population living in an i.i.d. random environment

The population is characterized by a mean projection matrix A, with its associatedeigenvalue λ

Tuljapurkar’s small noise approximation for the stochastic growth rate is:

log λs = log λ− σ2

2

where

σ2 = sT Cs

where C is the covariance matrix for life-cycle transitions across time

Stanford Summer Short Course: Leslie Matrix II 42

Page 43: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

When the environment is not i.i.d., there is a second term in the formula for log λs

to account for the autocorrelation

This term also contains sensitivities – the transient effects of autocorrelation will begreater for transitions to which λ is more sensitive (see Tuljapurkar & Haridas 2006)

Stanford Summer Short Course: Leslie Matrix II 43

Page 44: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Migration Matrices

Imagine a population divided between two regions where there is migration betweenthe regions

Rogers (1966) introduced the multi-regional model, which has the following structure

Multi-regional models take the form of block matrices

The matrices along the digonal of the super-matrix are the Leslie matrices trackingsurvival and fertility within the subpopulations

The matrices on the off-diagonals of the super-matrix track the movement betweenthe different sub-populations

R =(

A1 M1←2

M2←1 A2

)(19)

A1 is the Leslie matrix for the population in region 1, A2 is the Leslie matrix forthe population in region 2

Stanford Summer Short Course: Leslie Matrix II 44

Page 45: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

M1←2 is the matrix moving individuals from region 2 to region 1 and M2←1 is thematrix moving individuals from region 1 to region 2

Stanford Summer Short Course: Leslie Matrix II 45

Page 46: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Migration Matrices 2

We can draw a life-cycle graph for this simple multi-regional model

3’

1P2

F2F3

M1M2

M’2M’1

P’1 P’2

F’2 F’3

1 2 3

1’ 2’

P

Stanford Summer Short Course: Leslie Matrix II 46

Page 47: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Migration Matrices 3

Assume there are three age classes, with reproduction in the last two

Migration is bidirectional and we assume that a migrant of age i at time t becomesage i + 1 at t + 1

The multi-regional matrix R accounts for the survival and reproduction of the twosub-populations as well as the movement between them

Denote the survival probabilities and fertility and migration rates of the firstpopulation: Pi, Fi, and Mi

Denote the same rates for the second population as P ′i , F ′i , and M ′i

Stanford Summer Short Course: Leslie Matrix II 47

Page 48: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

Migration Matrices 4

The multi-regional model for the simple system described is:

R =

0 F2 F3 0 0 0P1 0 0 M1 0 00 P2 0 0 M2 00 0 0 0 F ′2 F ′3

M ′1 0 0 P ′1 0 0

0 M ′2 0 0 P ′2 0

We can analyze this matrix in the same way we would study any other projectionmatrix

This includes the stable age distribution in the two regions, the reproductive valuesin the two regions, and the growth rate of the overall population

Stanford Summer Short Course: Leslie Matrix II 48

Page 49: Leslie Matrix II Formal Demography Stanford Spring ... › ... › Jones-Leslie2-050208.pdf · Stanford Summer Short Course: Leslie Matrix II 26. 0 10 20 30 40 0.00 0.05 0.10 0.15

We can calculate the sensitivities of this growth rate to changes not only in thesurvival probabilities and fertility rates, but also in the migration rates

This might be interesting if, for example, this were a model of rural-urban migrationwhere the urban population has a lower fertility and we wanted to know

Stanford Summer Short Course: Leslie Matrix II 49