82
Section 3.5 Inverse Trigonometric Functions V63.0121.041, Calculus I New York University November 1, 2010 Announcements I Midterm grades have been submitted I Quiz 3 this week in recitation on Section 2.6, 2.8, 3.1, 3.2 I Thank you for the evaluations . . . . . .

Lesson16 -inverse_trigonometric_functions_041_slides

Embed Size (px)

Citation preview

Page 1: Lesson16  -inverse_trigonometric_functions_041_slides

Section 3.5Inverse Trigonometric

FunctionsV63.0121.041, Calculus I

New York University

November 1, 2010

Announcements

I Midterm grades have been submittedI Quiz 3 this week in recitation on Section 2.6, 2.8, 3.1, 3.2I Thank you for the evaluations

. . . . . .

Page 2: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Announcements

I Midterm grades have beensubmitted

I Quiz 3 this week inrecitation on Section 2.6,2.8, 3.1, 3.2

I Thank you for theevaluations

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 2 / 32

Page 3: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Objectives

I Know the definitions,domains, ranges, andother properties of theinverse trignometricfunctions: arcsin, arccos,arctan, arcsec, arccsc,arccot.

I Know the derivatives of theinverse trignometricfunctions.

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 3 / 32

Page 4: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

What is an inverse function?

DefinitionLet f be a function with domain D and range E. The inverse of f is thefunction f−1 defined by:

f−1(b) = a,

where a is chosen so that f(a) = b.

Sof−1(f(x)) = x, f(f−1(x)) = x

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 4 / 32

Page 5: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

What is an inverse function?

DefinitionLet f be a function with domain D and range E. The inverse of f is thefunction f−1 defined by:

f−1(b) = a,

where a is chosen so that f(a) = b.

Sof−1(f(x)) = x, f(f−1(x)) = x

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 4 / 32

Page 6: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

What functions are invertible?

In order for f−1 to be a function, there must be only one a in Dcorresponding to each b in E.

I Such a function is called one-to-oneI The graph of such a function passes the horizontal line test: any

horizontal line intersects the graph in exactly one point if at all.I If f is continuous, then f−1 is continuous.

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 5 / 32

Page 7: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Outline

Inverse Trigonometric Functions

Derivatives of Inverse Trigonometric FunctionsArcsineArccosineArctangentArcsecant

Applications

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 6 / 32

Page 8: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

. .x

.y

.sin.

.−π

2

.

2

.y = x

.

. .arcsin

I The domain of arcsin is [−1,1]I The range of arcsin is

[−π

2,π

2

]

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32

Page 9: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

. .x

.y

.sin.

.

.

.−π

2

.

2

.y = x

.

. .arcsin

I The domain of arcsin is [−1,1]I The range of arcsin is

[−π

2,π

2

]

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32

Page 10: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

. .x

.y

.sin.

.

.

.−π

2

.

2

.y = x

.

. .arcsin

I The domain of arcsin is [−1,1]I The range of arcsin is

[−π

2,π

2

]

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32

Page 11: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arcsin

Arcsin is the inverse of the sine function after restriction to [−π/2, π/2].

. .x

.y

.sin.

.

.

.−π

2

.

2

.y = x

.

. .arcsin

I The domain of arcsin is [−1,1]I The range of arcsin is

[−π

2,π

2

]

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 7 / 32

Page 12: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arccos

Arccos is the inverse of the cosine function after restriction to [0, π]

. .x

.y

.cos..0

..π

.y = x

.

. .arccos

I The domain of arccos is [−1,1]I The range of arccos is [0, π]

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32

Page 13: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arccos

Arccos is the inverse of the cosine function after restriction to [0, π]

. .x

.y

.cos.

.

..0

..π

.y = x

.

. .arccos

I The domain of arccos is [−1,1]I The range of arccos is [0, π]

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32

Page 14: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arccos

Arccos is the inverse of the cosine function after restriction to [0, π]

. .x

.y

.cos.

.

..0

..π

.y = x

.

. .arccos

I The domain of arccos is [−1,1]I The range of arccos is [0, π]

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32

Page 15: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arccos

Arccos is the inverse of the cosine function after restriction to [0, π]

. .x

.y

.cos.

.

..0

..π

.y = x

.

. .arccos

I The domain of arccos is [−1,1]I The range of arccos is [0, π]

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 8 / 32

Page 16: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arctan

Arctan is the inverse of the tangent function after restriction to[−π/2, π/2].

. .x

.y

.tan

.−3π2

.−π

2.π

2 .3π2

.y = x

.arctan

.−π

2

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π

2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32

Page 17: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arctan

Arctan is the inverse of the tangent function after restriction to[−π/2, π/2].

. .x

.y

.tan

.−3π2

.−π

2.π

2 .3π2

.y = x

.arctan

.−π

2

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π

2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32

Page 18: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arctan

Arctan is the inverse of the tangent function after restriction to[−π/2, π/2].

. .x

.y

.tan

.−3π2

.−π

2.π

2 .3π2

.y = x

.arctan

.−π

2

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π

2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32

Page 19: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arctan

Arctan is the inverse of the tangent function after restriction to[−π/2, π/2].

. .x

.y

.tan

.−3π2

.−π

2.π

2 .3π2

.y = x

.arctan

.−π

2

2

I The domain of arctan is (−∞,∞)

I The range of arctan is(−π

2,π

2

)I lim

x→∞arctan x =

π

2, limx→−∞

arctan x = −π

2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 9 / 32

Page 20: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arcsec

Arcsecant is the inverse of secant after restriction to[0, π/2) ∪ (π,3π/2].

. .x

.y

.sec

.−3π2

.−π

2.π

2 .3π2

.y = x

.

.

2

.3π2

I The domain of arcsec is (−∞,−1] ∪ [1,∞)

I The range of arcsec is[0,

π

2

)∪(π2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32

Page 21: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arcsec

Arcsecant is the inverse of secant after restriction to[0, π/2) ∪ (π,3π/2].

. .x

.y

.sec

.−3π2

.−π

2.π

2 .3π2

.

.

.y = x

.

.

2

.3π2

I The domain of arcsec is (−∞,−1] ∪ [1,∞)

I The range of arcsec is[0,

π

2

)∪(π2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32

Page 22: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arcsec

Arcsecant is the inverse of secant after restriction to[0, π/2) ∪ (π,3π/2].

. .x

.y

.sec

.−3π2

.−π

2.π

2 .3π2

.

.

.y = x

.

.

2

.3π2

I The domain of arcsec is (−∞,−1] ∪ [1,∞)

I The range of arcsec is[0,

π

2

)∪(π2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32

Page 23: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

arcsec

Arcsecant is the inverse of secant after restriction to[0, π/2) ∪ (π,3π/2].

. .x

.y

.sec

.−3π2

.−π

2.π

2 .3π2

.

.

.y = x

.

.

2

.3π2

I The domain of arcsec is (−∞,−1] ∪ [1,∞)

I The range of arcsec is[0,

π

2

)∪(π2, π]

I limx→∞

arcsec x =π

2, limx→−∞

arcsec x =3π2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 10 / 32

Page 24: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Values of Trigonometric Functions

x 0π

2

sin x 0 12

√22

√32

1

cos x 1√32

√22

12

0

tan x 01√3

1√3 undef

cot x undef√3 1

1√3

0

sec x 12√3

2√2

2 undef

csc x undef 22√2

2√3

1

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 11 / 32

Page 25: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Check: Values of inverse trigonometric functions

Example

FindI arcsin(1/2)I arctan(−1)

I arccos

(−√22

)

Solution

6I −π

4I

3π4

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 12 / 32

Page 26: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Check: Values of inverse trigonometric functions

Example

FindI arcsin(1/2)I arctan(−1)

I arccos

(−√22

)

Solution

6

I −π

4I

3π4

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 12 / 32

Page 27: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

What is arctan(−1)?

. .

.

..3π/4

..−π/4

.sin(3π/4) =√22

.cos(3π/4) = −√22.sin(π/4) = −

√22

.cos(π/4) =√22

I Yes, tan(3π4

)= −1

I But, the range of arctan is(−π

2,π

2

)I Another angle whose

tangent is −1 is −π

4, and

this is in the right range.I So arctan(−1) = −π

4

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32

Page 28: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

What is arctan(−1)?

. .

.

..3π/4

..−π/4

.sin(3π/4) =√22

.cos(3π/4) = −√22

.sin(π/4) = −√22

.cos(π/4) =√22

I Yes, tan(3π4

)= −1

I But, the range of arctan is(−π

2,π

2

)I Another angle whose

tangent is −1 is −π

4, and

this is in the right range.I So arctan(−1) = −π

4

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32

Page 29: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

What is arctan(−1)?

. .

.

..3π/4

..−π/4

.sin(3π/4) =√22

.cos(3π/4) = −√22

.sin(π/4) = −√22

.cos(π/4) =√22

I Yes, tan(3π4

)= −1

I But, the range of arctan is(−π

2,π

2

)

I Another angle whosetangent is −1 is −π

4, and

this is in the right range.I So arctan(−1) = −π

4

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32

Page 30: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

What is arctan(−1)?

. .

.

..3π/4

..−π/4

.sin(3π/4) =√22

.cos(3π/4) = −√22

.sin(π/4) = −√22

.cos(π/4) =√22

I Yes, tan(3π4

)= −1

I But, the range of arctan is(−π

2,π

2

)I Another angle whose

tangent is −1 is −π

4, and

this is in the right range.

I So arctan(−1) = −π

4

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32

Page 31: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

What is arctan(−1)?

. .

.

..3π/4

..−π/4

.sin(3π/4) =√22

.cos(3π/4) = −√22

.sin(π/4) = −√22

.cos(π/4) =√22

I Yes, tan(3π4

)= −1

I But, the range of arctan is(−π

2,π

2

)I Another angle whose

tangent is −1 is −π

4, and

this is in the right range.I So arctan(−1) = −π

4

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 13 / 32

Page 32: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Check: Values of inverse trigonometric functions

Example

FindI arcsin(1/2)I arctan(−1)

I arccos

(−√22

)

Solution

6I −π

4

I3π4

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 14 / 32

Page 33: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Check: Values of inverse trigonometric functions

Example

FindI arcsin(1/2)I arctan(−1)

I arccos

(−√22

)

Solution

6I −π

4I

3π4

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 14 / 32

Page 34: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Caution: Notational ambiguity

..sin2 x = (sin x)2 .sin−1 x = (sin x)−1

I sinn x means the nth power of sin x, except when n = −1!I The book uses sin−1 x for the inverse of sin x, and never for

(sin x)−1.

I I use csc x for1

sin xand arcsin x for the inverse of sin x.

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 15 / 32

Page 35: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Outline

Inverse Trigonometric Functions

Derivatives of Inverse Trigonometric FunctionsArcsineArccosineArctangentArcsecant

Applications

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 16 / 32

Page 36: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

The Inverse Function Theorem

Theorem (The Inverse Function Theorem)

Let f be differentiable at a, and f′(a) ̸= 0. Then f−1 is defined in anopen interval containing b = f(a), and

(f−1)′(b) =1

f′(f−1(b))

In Leibniz notation we have

dxdy

=1

dy/dx

Upshot: Many times the derivative of f−1(x) can be found by implicitdifferentiation and the derivative of f:

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 17 / 32

Page 37: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

The Inverse Function Theorem

Theorem (The Inverse Function Theorem)

Let f be differentiable at a, and f′(a) ̸= 0. Then f−1 is defined in anopen interval containing b = f(a), and

(f−1)′(b) =1

f′(f−1(b))

In Leibniz notation we have

dxdy

=1

dy/dx

Upshot: Many times the derivative of f−1(x) can be found by implicitdifferentiation and the derivative of f:

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 17 / 32

Page 38: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Illustrating the Inverse Function Theorem.

.

Example

Use the inverse function theorem to find the derivative of the square rootfunction.

Solution (Newtonian notation)

Let f(x) = x2 so that f−1(y) =√y. Then f′(u) = 2u so for any b > 0 we have

(f−1)′(b) =1

2√b

Solution (Leibniz notation)

If the original function is y = x2, then the inverse function is defined by x = y2.Differentiate implicitly:

1 = 2ydydx

=⇒ dydx

=1

2√x

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 18 / 32

Page 39: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Illustrating the Inverse Function Theorem.

.

Example

Use the inverse function theorem to find the derivative of the square rootfunction.

Solution (Newtonian notation)

Let f(x) = x2 so that f−1(y) =√y. Then f′(u) = 2u so for any b > 0 we have

(f−1)′(b) =1

2√b

Solution (Leibniz notation)

If the original function is y = x2, then the inverse function is defined by x = y2.Differentiate implicitly:

1 = 2ydydx

=⇒ dydx

=1

2√x

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 18 / 32

Page 40: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Illustrating the Inverse Function Theorem.

.

Example

Use the inverse function theorem to find the derivative of the square rootfunction.

Solution (Newtonian notation)

Let f(x) = x2 so that f−1(y) =√y. Then f′(u) = 2u so for any b > 0 we have

(f−1)′(b) =1

2√b

Solution (Leibniz notation)

If the original function is y = x2, then the inverse function is defined by x = y2.Differentiate implicitly:

1 = 2ydydx

=⇒ dydx

=1

2√x

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 18 / 32

Page 41: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√1− x2

So

ddx

arcsin(x) =1√

1− x2 .

.1 .x

. .y = arcsin x

.√1− x2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32

Page 42: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√1− x2

So

ddx

arcsin(x) =1√

1− x2

.

.1 .x

. .y = arcsin x

.√1− x2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32

Page 43: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√1− x2

So

ddx

arcsin(x) =1√

1− x2

.

.1 .x

. .y = arcsin x

.√1− x2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32

Page 44: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√1− x2

So

ddx

arcsin(x) =1√

1− x2

.

.1 .x

. .y = arcsin x

.√1− x2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32

Page 45: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√1− x2

So

ddx

arcsin(x) =1√

1− x2

.

.1 .x

. .y = arcsin x

.√1− x2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32

Page 46: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√1− x2

So

ddx

arcsin(x) =1√

1− x2

.

.1 .x

. .y = arcsin x

.√1− x2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32

Page 47: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arcsin

Let y = arcsin x, so x = sin y. Then

cos ydydx

= 1 =⇒ dydx

=1

cos y=

1cos(arcsin x)

To simplify, look at a righttriangle:

cos(arcsin x) =√1− x2

So

ddx

arcsin(x) =1√

1− x2 .

.1 .x

. .y = arcsin x

.√1− x2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 19 / 32

Page 48: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Graphing arcsin and its derivative

I The domain of f is [−1,1],but the domain of f′ is(−1,1)

I limx→1−

f′(x) = +∞

I limx→−1+

f′(x) = +∞ ..|.−1

.|.1

.

. .arcsin

.1√

1− x2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 20 / 32

Page 49: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Composing with arcsin

Example

Let f(x) = arcsin(x3 + 1). Find f′(x).

SolutionWe have

ddx

arcsin(x3 + 1) =1√

1− (x3 + 1)2ddx

(x3 + 1)

=3x2√

−x6 − 2x3

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 21 / 32

Page 50: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Composing with arcsin

Example

Let f(x) = arcsin(x3 + 1). Find f′(x).

SolutionWe have

ddx

arcsin(x3 + 1) =1√

1− (x3 + 1)2ddx

(x3 + 1)

=3x2√

−x6 − 2x3

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 21 / 32

Page 51: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arccos

Let y = arccos x, so x = cos y. Then

− sin ydydx

= 1 =⇒ dydx

=1

− sin y=

1− sin(arccos x)

To simplify, look at a righttriangle:

sin(arccos x) =√1− x2

So

ddx

arccos(x) = − 1√1− x2 .

.1.√1− x2

.x. .y = arccos x

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 22 / 32

Page 52: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arccos

Let y = arccos x, so x = cos y. Then

− sin ydydx

= 1 =⇒ dydx

=1

− sin y=

1− sin(arccos x)

To simplify, look at a righttriangle:

sin(arccos x) =√1− x2

So

ddx

arccos(x) = − 1√1− x2 .

.1.√1− x2

.x. .y = arccos x

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 22 / 32

Page 53: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Graphing arcsin and arccos

..|.−1

.|.1

.

. .arcsin

.

. .arccos

Note

cos θ = sin(π2− θ)

=⇒ arccos x =π

2− arcsin x

So it’s not a surprise that theirderivatives are opposites.

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 23 / 32

Page 54: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Graphing arcsin and arccos

..|.−1

.|.1

.

. .arcsin

.

. .arccosNote

cos θ = sin(π2− θ)

=⇒ arccos x =π

2− arcsin x

So it’s not a surprise that theirderivatives are opposites.

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 23 / 32

Page 55: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1+ x2

So

ddx

arctan(x) =1

1+ x2 .

.x

.1. .y = arctan x

.√1+ x2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32

Page 56: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1+ x2

So

ddx

arctan(x) =1

1+ x2

.

.x

.1. .y = arctan x

.√1+ x2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32

Page 57: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1+ x2

So

ddx

arctan(x) =1

1+ x2

.

.x

.1

. .y = arctan x

.√1+ x2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32

Page 58: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1+ x2

So

ddx

arctan(x) =1

1+ x2

.

.x

.1. .y = arctan x

.√1+ x2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32

Page 59: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1+ x2

So

ddx

arctan(x) =1

1+ x2

.

.x

.1. .y = arctan x

.√1+ x2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32

Page 60: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1+ x2

So

ddx

arctan(x) =1

1+ x2

.

.x

.1. .y = arctan x

.√1+ x2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32

Page 61: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arctan

Let y = arctan x, so x = tan y. Then

sec2 ydydx

= 1 =⇒ dydx

=1

sec2 y= cos2(arctan x)

To simplify, look at a righttriangle:

cos(arctan x) =1√

1+ x2

So

ddx

arctan(x) =1

1+ x2 .

.x

.1. .y = arctan x

.√1+ x2

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 24 / 32

Page 62: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Graphing arctan and its derivative

. .x

.y

.arctan

.1

1+ x2

.π/2

.−π/2

I The domain of f and f′ are both (−∞,∞)

I Because of the horizontal asymptotes, limx→±∞

f′(x) = 0

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 25 / 32

Page 63: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Composing with arctan

Example

Let f(x) = arctan√x. Find f′(x).

Solution

ddx

arctan√x =

11+

(√x)2 d

dx√x =

11+ x

· 12√x

=1

2√x+ 2x

√x

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 26 / 32

Page 64: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Composing with arctan

Example

Let f(x) = arctan√x. Find f′(x).

Solution

ddx

arctan√x =

11+

(√x)2 d

dx√x =

11+ x

· 12√x

=1

2√x+ 2x

√x

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 26 / 32

Page 65: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arcsec

Try this first.

Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =√x2 − 11

So

ddx

arcsec(x) =1

x√x2 − 1 .

.x

.1. .y = arcsec x

.√

x2 − 1

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32

Page 66: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arcsec

Try this first. Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =√x2 − 11

So

ddx

arcsec(x) =1

x√x2 − 1 .

.x

.1. .y = arcsec x

.√

x2 − 1

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32

Page 67: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arcsec

Try this first. Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =√x2 − 11

So

ddx

arcsec(x) =1

x√x2 − 1

.

.x

.1. .y = arcsec x

.√

x2 − 1

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32

Page 68: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arcsec

Try this first. Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =√x2 − 11

So

ddx

arcsec(x) =1

x√x2 − 1

.

.x

.1. .y = arcsec x

.√

x2 − 1

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32

Page 69: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arcsec

Try this first. Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =√x2 − 11

So

ddx

arcsec(x) =1

x√x2 − 1

.

.x

.1

. .y = arcsec x

.√

x2 − 1

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32

Page 70: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arcsec

Try this first. Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =√x2 − 11

So

ddx

arcsec(x) =1

x√x2 − 1

.

.x

.1. .y = arcsec x

.√

x2 − 1

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32

Page 71: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arcsec

Try this first. Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =√x2 − 11

So

ddx

arcsec(x) =1

x√x2 − 1

.

.x

.1. .y = arcsec x

.√

x2 − 1

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32

Page 72: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Derivation: The derivative of arcsec

Try this first. Let y = arcsec x, so x = sec y. Then

sec y tan ydydx

= 1 =⇒ dydx

=1

sec y tan y=

1x tan(arcsec(x))

To simplify, look at a righttriangle:

tan(arcsec x) =√x2 − 11

So

ddx

arcsec(x) =1

x√x2 − 1 .

.x

.1. .y = arcsec x

.√

x2 − 1

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 27 / 32

Page 73: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Another Example

Example

Let f(x) = earcsec 3x. Find f′(x).

Solution

f′(x) = earcsec 3x · 13x√

(3x)2 − 1· 3

=3earcsec 3x

3x√9x2 − 1

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 28 / 32

Page 74: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Another Example

Example

Let f(x) = earcsec 3x. Find f′(x).

Solution

f′(x) = earcsec 3x · 13x√

(3x)2 − 1· 3

=3earcsec 3x

3x√9x2 − 1

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 28 / 32

Page 75: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Outline

Inverse Trigonometric Functions

Derivatives of Inverse Trigonometric FunctionsArcsineArccosineArctangentArcsecant

Applications

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 29 / 32

Page 76: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Application

ExampleOne of the guiding principles ofmost sports is to “keep youreye on the ball.” In baseball, abatter stands 2 ft away fromhome plate as a pitch is thrownwith a velocity of 130 ft/sec(about 90mph). At what ratedoes the batter’s angle of gazeneed to change to follow theball as it crosses home plate?

SolutionLet y(t) be the distance from the ball to home plate, and θ the angle thebatter’s eyes make with home plate while following the ball. We knowy′ = −130 and we want θ′ at the moment that y = 0.

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 30 / 32

Page 77: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Application

ExampleOne of the guiding principles ofmost sports is to “keep youreye on the ball.” In baseball, abatter stands 2 ft away fromhome plate as a pitch is thrownwith a velocity of 130 ft/sec(about 90mph). At what ratedoes the batter’s angle of gazeneed to change to follow theball as it crosses home plate?

SolutionLet y(t) be the distance from the ball to home plate, and θ the angle thebatter’s eyes make with home plate while following the ball. We knowy′ = −130 and we want θ′ at the moment that y = 0.

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 30 / 32

Page 78: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

SolutionLet y(t) be the distance from the ball to home plate, and θ the angle thebatter’s eyes make with home plate while following the ball. We knowy′ = −130 and we want θ′ at the moment that y = 0.

We have θ = arctan(y/2). Thus

dθdt

=1

1+ (y/2)2· 12dydt

When y = 0 and y′ = −130,then

dθdt

∣∣∣∣y=0

=1

1+ 0·12(−130) = −65 rad/sec

The human eye can only trackat 3 rad/sec!

..2 ft

.y

.130 ft/sec

.

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32

Page 79: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

SolutionLet y(t) be the distance from the ball to home plate, and θ the angle thebatter’s eyes make with home plate while following the ball. We knowy′ = −130 and we want θ′ at the moment that y = 0.We have θ = arctan(y/2). Thus

dθdt

=1

1+ (y/2)2· 12dydt

When y = 0 and y′ = −130,then

dθdt

∣∣∣∣y=0

=1

1+ 0·12(−130) = −65 rad/sec

The human eye can only trackat 3 rad/sec!

..2 ft

.y

.130 ft/sec

.

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32

Page 80: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

SolutionLet y(t) be the distance from the ball to home plate, and θ the angle thebatter’s eyes make with home plate while following the ball. We knowy′ = −130 and we want θ′ at the moment that y = 0.We have θ = arctan(y/2). Thus

dθdt

=1

1+ (y/2)2· 12dydt

When y = 0 and y′ = −130,then

dθdt

∣∣∣∣y=0

=1

1+ 0·12(−130) = −65 rad/sec

The human eye can only trackat 3 rad/sec!

..2 ft

.y

.130 ft/sec

.

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32

Page 81: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

SolutionLet y(t) be the distance from the ball to home plate, and θ the angle thebatter’s eyes make with home plate while following the ball. We knowy′ = −130 and we want θ′ at the moment that y = 0.We have θ = arctan(y/2). Thus

dθdt

=1

1+ (y/2)2· 12dydt

When y = 0 and y′ = −130,then

dθdt

∣∣∣∣y=0

=1

1+ 0·12(−130) = −65 rad/sec

The human eye can only trackat 3 rad/sec!

..2 ft

.y

.130 ft/sec

.

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 31 / 32

Page 82: Lesson16  -inverse_trigonometric_functions_041_slides

. . . . . .

Summary

y y′

arcsin x1√

1− x2

arccos x − 1√1− x2

arctan x1

1+ x2

arccot x − 11+ x2

arcsec x1

x√x2 − 1

arccsc x − 1x√x2 − 1

I Remarkable that thederivatives of thesetranscendental functionsare algebraic (or evenrational!)

V63.0121.041, Calculus I (NYU) Section 3.5 Inverse Trigonometric Functions November 1, 2010 32 / 32