49
Gogny interactions with tensor terms Marta Anguiano Departamento de Física Atómica, Molecular y Nuclear (UGR) First Gogny Conference Bruyères-le-Châtel, December 2015

@let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

  • Upload
    hakiet

  • View
    219

  • Download
    3

Embed Size (px)

Citation preview

Page 1: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Gogny interactions with tensor terms

Marta Anguiano

Departamento de Física Atómica, Molecular y Nuclear (UGR)

First Gogny Conference

Bruyères-le-Châtel, December 2015

Page 2: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Work in colaboration with

I Rémi Bernard

Universidad Autónoma de Madrid (Spain)

I Giampaolo Co’ and Viviana De Donno

Università del Salento (Italy)

I Marcella Grasso

Institut de Physique Nuclèaire, IN2P3-CNRS, UniversitèParis-Sud (France)

I Antonio M. Lallena

Universidad de Granada (Spain)

Page 3: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Outline

Introduction

The method

Results

Perspectives

Page 4: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Outline

Introduction

The method

Results

Perspectives

Page 5: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Outline

Introduction

The method

Results

Perspectives

Page 6: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Outline

Introduction

The method

Results

Perspectives

Page 7: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Motivation

I Tensor force is usually neglected in mean-field methods.I Shell evolution cannot be studied without tensor force (nuclei far

from the stability line).I Crucial in the study of properties of spin and spin-isospin states

(Gamow-Teller and spin-dipole excitations).I Some experiments which indicates the role of the tensor force:

1. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004):Proton splitting 1h11/2 − 1g7/2 in Z = 50 increases with neutron excess

2. Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):Reduction of the neutron splitting 1f7/2 − 2p3/2 in N = 28 going from 49Ca to 47Ar

3. Burgunder et al., Phys. Rev. Lett 112, 042502 (2014):Neutron splitting 2p3/2 − 2p1/2 for N = 20

Page 8: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Motivation

I Tensor force is usually neglected in mean-field methods.I Shell evolution cannot be studied without tensor force (nuclei far

from the stability line).I Crucial in the study of properties of spin and spin-isospin states

(Gamow-Teller and spin-dipole excitations).I Some experiments which indicates the role of the tensor force:

1. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004):Proton splitting 1h11/2 − 1g7/2 in Z = 50 increases with neutron excess

2. Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):Reduction of the neutron splitting 1f7/2 − 2p3/2 in N = 28 going from 49Ca to 47Ar

3. Burgunder et al., Phys. Rev. Lett 112, 042502 (2014):Neutron splitting 2p3/2 − 2p1/2 for N = 20

Page 9: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Motivation

I Tensor force is usually neglected in mean-field methods.I Shell evolution cannot be studied without tensor force (nuclei far

from the stability line).I Crucial in the study of properties of spin and spin-isospin states

(Gamow-Teller and spin-dipole excitations).I Some experiments which indicates the role of the tensor force:

1. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004):Proton splitting 1h11/2 − 1g7/2 in Z = 50 increases with neutron excess

2. Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):Reduction of the neutron splitting 1f7/2 − 2p3/2 in N = 28 going from 49Ca to 47Ar

3. Burgunder et al., Phys. Rev. Lett 112, 042502 (2014):Neutron splitting 2p3/2 − 2p1/2 for N = 20

Page 10: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Motivation

I Tensor force is usually neglected in mean-field methods.I Shell evolution cannot be studied without tensor force (nuclei far

from the stability line).I Crucial in the study of properties of spin and spin-isospin states

(Gamow-Teller and spin-dipole excitations).I Some experiments which indicates the role of the tensor force:

1. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004):Proton splitting 1h11/2 − 1g7/2 in Z = 50 increases with neutron excess

2. Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):Reduction of the neutron splitting 1f7/2 − 2p3/2 in N = 28 going from 49Ca to 47Ar

3. Burgunder et al., Phys. Rev. Lett 112, 042502 (2014):Neutron splitting 2p3/2 − 2p1/2 for N = 20

Page 11: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Motivation

I Tensor force is usually neglected in mean-field methods.I Shell evolution cannot be studied without tensor force (nuclei far

from the stability line).I Crucial in the study of properties of spin and spin-isospin states

(Gamow-Teller and spin-dipole excitations).I Some experiments which indicates the role of the tensor force:

1. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004):Proton splitting 1h11/2 − 1g7/2 in Z = 50 increases with neutron excess

2. Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):Reduction of the neutron splitting 1f7/2 − 2p3/2 in N = 28 going from 49Ca to 47Ar

3. Burgunder et al., Phys. Rev. Lett 112, 042502 (2014):Neutron splitting 2p3/2 − 2p1/2 for N = 20

Page 12: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Motivation

I Tensor force is usually neglected in mean-field methods.I Shell evolution cannot be studied without tensor force (nuclei far

from the stability line).I Crucial in the study of properties of spin and spin-isospin states

(Gamow-Teller and spin-dipole excitations).I Some experiments which indicates the role of the tensor force:

1. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004):Proton splitting 1h11/2 − 1g7/2 in Z = 50 increases with neutron excess

2. Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):Reduction of the neutron splitting 1f7/2 − 2p3/2 in N = 28 going from 49Ca to 47Ar

3. Burgunder et al., Phys. Rev. Lett 112, 042502 (2014):Neutron splitting 2p3/2 − 2p1/2 for N = 20

Page 13: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Motivation

I Tensor force is usually neglected in mean-field methods.I Shell evolution cannot be studied without tensor force (nuclei far

from the stability line).I Crucial in the study of properties of spin and spin-isospin states

(Gamow-Teller and spin-dipole excitations).I Some experiments which indicates the role of the tensor force:

1. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004):Proton splitting 1h11/2 − 1g7/2 in Z = 50 increases with neutron excess

2. Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):Reduction of the neutron splitting 1f7/2 − 2p3/2 in N = 28 going from 49Ca to 47Ar

3. Burgunder et al., Phys. Rev. Lett 112, 042502 (2014):Neutron splitting 2p3/2 − 2p1/2 for N = 20

Page 14: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

The tensor interaction

I We have proposed different types of finite range tensorinteractions onto D1S and D1M Gogny parametrizations.

I Different fits have been done in order to fix the free parameters ineach case:

1. Adding a the tensor-isospin term, and modifying the strength of thespin-orbit term: D1ST

2. Adding a pure tensor and tensor-isospin terms: D1ST2a, D1ST2b3. Adding a pure tensor, tensor-isospin and modifying the spin-orbit

term: D1ST2c

I With these interactions, we have studied:

1. Binding and single particle energies in HF approximation.2. Excitation states with DRPA and CRPA approximations:

2.1 0− excitation in spherical nuclei2.2 IS and IV states in N = Z and 1+ excitation in N 6= Z nuclei2.3 Magnetic states and charge-exchange excitations

3. Pairing properties using a HF+BCS model.

Page 15: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

The tensor interaction

I We have proposed different types of finite range tensorinteractions onto D1S and D1M Gogny parametrizations.

I Different fits have been done in order to fix the free parameters ineach case:

1. Adding a the tensor-isospin term, and modifying the strength of thespin-orbit term: D1ST

2. Adding a pure tensor and tensor-isospin terms: D1ST2a, D1ST2b3. Adding a pure tensor, tensor-isospin and modifying the spin-orbit

term: D1ST2c

I With these interactions, we have studied:

1. Binding and single particle energies in HF approximation.2. Excitation states with DRPA and CRPA approximations:

2.1 0− excitation in spherical nuclei2.2 IS and IV states in N = Z and 1+ excitation in N 6= Z nuclei2.3 Magnetic states and charge-exchange excitations

3. Pairing properties using a HF+BCS model.

Page 16: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

The tensor interaction

I We have proposed different types of finite range tensorinteractions onto D1S and D1M Gogny parametrizations.

I Different fits have been done in order to fix the free parameters ineach case:

1. Adding a the tensor-isospin term, and modifying the strength of thespin-orbit term: D1ST

2. Adding a pure tensor and tensor-isospin terms: D1ST2a, D1ST2b3. Adding a pure tensor, tensor-isospin and modifying the spin-orbit

term: D1ST2c

I With these interactions, we have studied:

1. Binding and single particle energies in HF approximation.2. Excitation states with DRPA and CRPA approximations:

2.1 0− excitation in spherical nuclei2.2 IS and IV states in N = Z and 1+ excitation in N 6= Z nuclei2.3 Magnetic states and charge-exchange excitations

3. Pairing properties using a HF+BCS model.

Page 17: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

The tensor interaction

I We have proposed different types of finite range tensorinteractions onto D1S and D1M Gogny parametrizations.

I Different fits have been done in order to fix the free parameters ineach case:

1. Adding a the tensor-isospin term, and modifying the strength of thespin-orbit term: D1ST

2. Adding a pure tensor and tensor-isospin terms: D1ST2a, D1ST2b3. Adding a pure tensor, tensor-isospin and modifying the spin-orbit

term: D1ST2c

I With these interactions, we have studied:

1. Binding and single particle energies in HF approximation.2. Excitation states with DRPA and CRPA approximations:

2.1 0− excitation in spherical nuclei2.2 IS and IV states in N = Z and 1+ excitation in N 6= Z nuclei2.3 Magnetic states and charge-exchange excitations

3. Pairing properties using a HF+BCS model.

Page 18: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

The tensor interaction

I We have proposed different types of finite range tensorinteractions onto D1S and D1M Gogny parametrizations.

I Different fits have been done in order to fix the free parameters ineach case:

1. Adding a the tensor-isospin term, and modifying the strength of thespin-orbit term: D1ST

2. Adding a pure tensor and tensor-isospin terms: D1ST2a, D1ST2b3. Adding a pure tensor, tensor-isospin and modifying the spin-orbit

term: D1ST2c

I With these interactions, we have studied:

1. Binding and single particle energies in HF approximation.2. Excitation states with DRPA and CRPA approximations:

2.1 0− excitation in spherical nuclei2.2 IS and IV states in N = Z and 1+ excitation in N 6= Z nuclei2.3 Magnetic states and charge-exchange excitations

3. Pairing properties using a HF+BCS model.

Page 19: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

The tensor interaction

I We have proposed different types of finite range tensorinteractions onto D1S and D1M Gogny parametrizations.

I Different fits have been done in order to fix the free parameters ineach case:

1. Adding a the tensor-isospin term, and modifying the strength of thespin-orbit term: D1ST

2. Adding a pure tensor and tensor-isospin terms: D1ST2a, D1ST2b3. Adding a pure tensor, tensor-isospin and modifying the spin-orbit

term: D1ST2c

I With these interactions, we have studied:

1. Binding and single particle energies in HF approximation.2. Excitation states with DRPA and CRPA approximations:

2.1 0− excitation in spherical nuclei2.2 IS and IV states in N = Z and 1+ excitation in N 6= Z nuclei2.3 Magnetic states and charge-exchange excitations

3. Pairing properties using a HF+BCS model.

Page 20: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

The tensor interaction

I We have proposed different types of finite range tensorinteractions onto D1S and D1M Gogny parametrizations.

I Different fits have been done in order to fix the free parameters ineach case:

1. Adding a the tensor-isospin term, and modifying the strength of thespin-orbit term: D1ST

2. Adding a pure tensor and tensor-isospin terms: D1ST2a, D1ST2b3. Adding a pure tensor, tensor-isospin and modifying the spin-orbit

term: D1ST2c

I With these interactions, we have studied:

1. Binding and single particle energies in HF approximation.2. Excitation states with DRPA and CRPA approximations:

2.1 0− excitation in spherical nuclei2.2 IS and IV states in N = Z and 1+ excitation in N 6= Z nuclei2.3 Magnetic states and charge-exchange excitations

3. Pairing properties using a HF+BCS model.

Page 21: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

The tensor interaction

I We have proposed different types of finite range tensorinteractions onto D1S and D1M Gogny parametrizations.

I Different fits have been done in order to fix the free parameters ineach case:

1. Adding a the tensor-isospin term, and modifying the strength of thespin-orbit term: D1ST

2. Adding a pure tensor and tensor-isospin terms: D1ST2a, D1ST2b3. Adding a pure tensor, tensor-isospin and modifying the spin-orbit

term: D1ST2c

I With these interactions, we have studied:

1. Binding and single particle energies in HF approximation.2. Excitation states with DRPA and CRPA approximations:

2.1 0− excitation in spherical nuclei2.2 IS and IV states in N = Z and 1+ excitation in N 6= Z nuclei2.3 Magnetic states and charge-exchange excitations

3. Pairing properties using a HF+BCS model.

Page 22: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

The tensor interaction

I We have proposed different types of finite range tensorinteractions onto D1S and D1M Gogny parametrizations.

I Different fits have been done in order to fix the free parameters ineach case:

1. Adding a the tensor-isospin term, and modifying the strength of thespin-orbit term: D1ST

2. Adding a pure tensor and tensor-isospin terms: D1ST2a, D1ST2b3. Adding a pure tensor, tensor-isospin and modifying the spin-orbit

term: D1ST2c

I With these interactions, we have studied:

1. Binding and single particle energies in HF approximation.2. Excitation states with DRPA and CRPA approximations:

2.1 0− excitation in spherical nuclei2.2 IS and IV states in N = Z and 1+ excitation in N 6= Z nuclei2.3 Magnetic states and charge-exchange excitations

3. Pairing properties using a HF+BCS model.

Page 23: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

The tensor interaction

I We have proposed different types of finite range tensorinteractions onto D1S and D1M Gogny parametrizations.

I Different fits have been done in order to fix the free parameters ineach case:

1. Adding a the tensor-isospin term, and modifying the strength of thespin-orbit term: D1ST

2. Adding a pure tensor and tensor-isospin terms: D1ST2a, D1ST2b3. Adding a pure tensor, tensor-isospin and modifying the spin-orbit

term: D1ST2c

I With these interactions, we have studied:

1. Binding and single particle energies in HF approximation.2. Excitation states with DRPA and CRPA approximations:

2.1 0− excitation in spherical nuclei2.2 IS and IV states in N = Z and 1+ excitation in N 6= Z nuclei2.3 Magnetic states and charge-exchange excitations

3. Pairing properties using a HF+BCS model.

Page 24: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

The tensor interaction

I We have proposed different types of finite range tensorinteractions onto D1S and D1M Gogny parametrizations.

I Different fits have been done in order to fix the free parameters ineach case:

1. Adding a the tensor-isospin term, and modifying the strength of thespin-orbit term: D1ST

2. Adding a pure tensor and tensor-isospin terms: D1ST2a, D1ST2b3. Adding a pure tensor, tensor-isospin and modifying the spin-orbit

term: D1ST2c

I With these interactions, we have studied:

1. Binding and single particle energies in HF approximation.2. Excitation states with DRPA and CRPA approximations:

2.1 0− excitation in spherical nuclei2.2 IS and IV states in N = Z and 1+ excitation in N 6= Z nuclei2.3 Magnetic states and charge-exchange excitations

3. Pairing properties using a HF+BCS model.

Page 25: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

The tensor interaction

I We have proposed different types of finite range tensorinteractions onto D1S and D1M Gogny parametrizations.

I Different fits have been done in order to fix the free parameters ineach case:

1. Adding a the tensor-isospin term, and modifying the strength of thespin-orbit term: D1ST

2. Adding a pure tensor and tensor-isospin terms: D1ST2a, D1ST2b3. Adding a pure tensor, tensor-isospin and modifying the spin-orbit

term: D1ST2c

I With these interactions, we have studied:

1. Binding and single particle energies in HF approximation.2. Excitation states with DRPA and CRPA approximations:

2.1 0− excitation in spherical nuclei2.2 IS and IV states in N = Z and 1+ excitation in N 6= Z nuclei2.3 Magnetic states and charge-exchange excitations

3. Pairing properties using a HF+BCS model.

Page 26: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Our Hartree-Fock (HF) approximation

I We considere as effective nucleon-nucleon interaction afinite-range two-body force of the type:

V(~r1, ~r2) =

6∑p=1

Vp(~r1, ~r2)Op(1, 2) + VSO(~r1, ~r2) + VDD(~r1, ~r2) + VCoul(~r1, ~r2)

I Op(1, 2) indicates 1, ~τ1 · ~τ2, ~σ1 · ~σ2, ~σ1 · ~σ2 ~τ1 · ~τ2, S12, S12 ~τ1 · ~τ2.I VSO and VDD, terms of zero-range (like the corresponding terms

in Skyrme-like forces)I We solve, in coordinate space, a set of equations of the type:

− ~2

2mk∇2

1 φk(~r1)+ U(~r1)φk(~r1) −∫

d3r2W(~r1, ~r2)φk(~r2) = εkφk(~r1)

I Hartree (Direct) termI Fock (Exchange) term

Page 27: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Our Hartree-Fock (HF) approximation

I We considere as effective nucleon-nucleon interaction afinite-range two-body force of the type:

V(~r1, ~r2) =

6∑p=1

Vp(~r1, ~r2)Op(1, 2) + VSO(~r1, ~r2) + VDD(~r1, ~r2) + VCoul(~r1, ~r2)

I Op(1, 2) indicates 1, ~τ1 · ~τ2, ~σ1 · ~σ2, ~σ1 · ~σ2 ~τ1 · ~τ2, S12, S12 ~τ1 · ~τ2.I VSO and VDD, terms of zero-range (like the corresponding terms

in Skyrme-like forces)I We solve, in coordinate space, a set of equations of the type:

− ~2

2mk∇2

1 φk(~r1)+ U(~r1)φk(~r1) −∫

d3r2W(~r1, ~r2)φk(~r2) = εkφk(~r1)

I Hartree (Direct) termI Fock (Exchange) term

Page 28: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Our Hartree-Fock (HF) approximation

I We considere as effective nucleon-nucleon interaction afinite-range two-body force of the type:

V(~r1, ~r2) =

6∑p=1

Vp(~r1, ~r2)Op(1, 2) + VSO(~r1, ~r2) + VDD(~r1, ~r2) + VCoul(~r1, ~r2)

I Op(1, 2) indicates 1, ~τ1 · ~τ2, ~σ1 · ~σ2, ~σ1 · ~σ2 ~τ1 · ~τ2, S12, S12 ~τ1 · ~τ2.I VSO and VDD, terms of zero-range (like the corresponding terms

in Skyrme-like forces)I We solve, in coordinate space, a set of equations of the type:

− ~2

2mk∇2

1 φk(~r1)+ U(~r1)φk(~r1) −∫

d3r2W(~r1, ~r2)φk(~r2) = εkφk(~r1)

I Hartree (Direct) termI Fock (Exchange) term

Page 29: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Our Hartree-Fock (HF) approximation

I We considere as effective nucleon-nucleon interaction afinite-range two-body force of the type:

V(~r1, ~r2) =

6∑p=1

Vp(~r1, ~r2)Op(1, 2) + VSO(~r1, ~r2) + VDD(~r1, ~r2) + VCoul(~r1, ~r2)

I Op(1, 2) indicates 1, ~τ1 · ~τ2, ~σ1 · ~σ2, ~σ1 · ~σ2 ~τ1 · ~τ2, S12, S12 ~τ1 · ~τ2.I VSO and VDD, terms of zero-range (like the corresponding terms

in Skyrme-like forces)I We solve, in coordinate space, a set of equations of the type:

− ~2

2mk∇2

1 φk(~r1)+ U(~r1)φk(~r1) −∫

d3r2W(~r1, ~r2)φk(~r2) = εkφk(~r1)

I Hartree (Direct) termI Fock (Exchange) term

Page 30: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Our Hartree-Fock (HF) approximation

I We considere as effective nucleon-nucleon interaction afinite-range two-body force of the type:

V(~r1, ~r2) =

6∑p=1

Vp(~r1, ~r2)Op(1, 2) + VSO(~r1, ~r2) + VDD(~r1, ~r2) + VCoul(~r1, ~r2)

I Op(1, 2) indicates 1, ~τ1 · ~τ2, ~σ1 · ~σ2, ~σ1 · ~σ2 ~τ1 · ~τ2, S12, S12 ~τ1 · ~τ2.I VSO and VDD, terms of zero-range (like the corresponding terms

in Skyrme-like forces)I We solve, in coordinate space, a set of equations of the type:

− ~2

2mk∇2

1 φk(~r1)+ U(~r1)φk(~r1) −∫

d3r2W(~r1, ~r2)φk(~r2) = εkφk(~r1)

I Hartree (Direct) termI Fock (Exchange) term

Page 31: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Our Hartree-Fock (HF) approximation

I We considere as effective nucleon-nucleon interaction afinite-range two-body force of the type:

V(~r1, ~r2) =

6∑p=1

Vp(~r1, ~r2)Op(1, 2) + VSO(~r1, ~r2) + VDD(~r1, ~r2) + VCoul(~r1, ~r2)

I Op(1, 2) indicates 1, ~τ1 · ~τ2, ~σ1 · ~σ2, ~σ1 · ~σ2 ~τ1 · ~τ2, S12, S12 ~τ1 · ~τ2.I VSO and VDD, terms of zero-range (like the corresponding terms

in Skyrme-like forces)I We solve, in coordinate space, a set of equations of the type:

− ~2

2mk∇2

1 φk(~r1)+ U(~r1)φk(~r1) −∫

d3r2W(~r1, ~r2)φk(~r2) = εkφk(~r1)

I Hartree (Direct) termI Fock (Exchange) term

Page 32: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Fit of the tensor terms: D1ST interaction

v6,b(r) = v6,AV18(r)(

1 − e−br2)

V6(q)S12(q) =∫

d3reiq·rv6(r)S12(r) = −4π∫

drr2j2(qr)v6(r)S12(r)

Page 33: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Fit of the tensor force: D1STEnergies of the first 0− states

12.0

14.0

16.0

18.0

20.0

8.0

10.0

12.0

0.0 0.4 0.8 1.2 1.64.0

6.0

8.0

10.0

3.0

5.0

7.0

9.0

3.0

5.0

7.0

0.0 0.4 0.8 1.2 1.6

2.0

4.0

6.0

ω[M

eV]

0−

b [fm−2] b [fm−2]

12C

16O

40Ca

48Ca

90Zr

208Pb

I Fit for 16O:E(0−)=10.96MeV

I D1STb=0.6 fm−2,W0=134 MeV

I D1MTb=0.25 fm−2,W0=122.5 MeV

Phenomenological RPA with LM + v6,b(r)

Page 34: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Fit of the tensor force: D1ST2a and D1ST2b

I Experimentally, the difference between the energies of thesingle-particle neutron 2p3/2, 1f7/2 states increases from 40Ca to48Ca: O. Sorlin and M.-G. Pourquet, Prog. Part. Nucl. Phys. 61, 602 (2008)

18 20 22 24 26 28 30

3.0

3.4

3.8

4.2

4.6

5.0

5.4

5.8

18 20 22 24 26 28 30

GAP(N

=28)[M

eV]

N N

(a) (b)

Ca

SLy5T

SLy4

SLy5T (−αT)

D1S(−T)

D1S

D1ST

M. A et al., Phys. Rev. C86, 054302 (2012)

Page 35: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Fit of the tensor force: D1ST2a and D1ST2b

N. Onishi and J.W. Negele, NPA301 (1978), 336

Vtensor(~r1,~r2) = (VT1 + VT2 Pτ12) S12 e−(r1−r2)2/µ2

T

=

[(VT1 +

12

VT2

)+

12

VT2 τ (1) · τ (2)

]S12 e−(r1−r2)

2/µ2T

D1ST2a → neutron 1f splitting in 48Ca and 0− state of 16O:

VT1 = −135 MeV, VT2 = 115 MeV

D1ST2b→ N = 28 neutron gap increase from 40Ca to 48Ca asobtained in HF calculations with the SLy5T force and 0− state of 16O:

VT1 = −182 MeV, VT2 = 102 MeV

Page 36: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Fits of the tensor force: D1ST2c

Following the strategy of Zalewski et al., Phys. Rev. C77, 024316 (2008):

D1ST2c→ neutron 1f splitting in 40Ca, 48Ca and 56Ni

1. First, we fit the splitting 1f in 40Ca by modifying the spin-orbitparameter WLS,

2. second, we fit the splitting 1f in 48Ca adjusting the like-particlepart of the Gogny tensor term and, VT1 + VT2,

3. finally, we use the 56Ni to fit the neutron-proton contribution of thetensor term, VT2 .1

WLS = 103 MeV fm5, VT1 = −135 MeV, VT2 = 60 MeV

D1MT2c → following the same procedure, and using D1M asstarting point we have fit another interaction

WLS = 95 MeV fm5, VT1 = −175 MeV, VT2 = 40 MeV

1M. Grasso and M. A, Phys. Rev. C88, 054328 (2014)

Page 37: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Fits of the tensor force: D1ST2c

Following the strategy of Zalewski et al., Phys. Rev. C77, 024316 (2008):

D1ST2c→ neutron 1f splitting in 40Ca, 48Ca and 56Ni

1. First, we fit the splitting 1f in 40Ca by modifying the spin-orbitparameter WLS,

2. second, we fit the splitting 1f in 48Ca adjusting the like-particlepart of the Gogny tensor term and, VT1 + VT2,

3. finally, we use the 56Ni to fit the neutron-proton contribution of thetensor term, VT2 .1

WLS = 103 MeV fm5, VT1 = −135 MeV, VT2 = 60 MeV

D1MT2c → following the same procedure, and using D1M asstarting point we have fit another interaction

WLS = 95 MeV fm5, VT1 = −175 MeV, VT2 = 40 MeV

1M. Grasso and M. A, Phys. Rev. C88, 054328 (2014)

Page 38: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Fits of the tensor force: D1ST2c

Following the strategy of Zalewski et al., Phys. Rev. C77, 024316 (2008):

D1ST2c→ neutron 1f splitting in 40Ca, 48Ca and 56Ni

1. First, we fit the splitting 1f in 40Ca by modifying the spin-orbitparameter WLS,

2. second, we fit the splitting 1f in 48Ca adjusting the like-particlepart of the Gogny tensor term and, VT1 + VT2,

3. finally, we use the 56Ni to fit the neutron-proton contribution of thetensor term, VT2 .1

WLS = 103 MeV fm5, VT1 = −135 MeV, VT2 = 60 MeV

D1MT2c → following the same procedure, and using D1M asstarting point we have fit another interaction

WLS = 95 MeV fm5, VT1 = −175 MeV, VT2 = 40 MeV

1M. Grasso and M. A, Phys. Rev. C88, 054328 (2014)

Page 39: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Bulk properties of spherical nuclei

6.0

7.0

8.0

9.0

14

16

22

24

28 40

48

52

60

48

56

68

78

90 100

114

116

132

208

6.0

7.0

8.0

9.0

-6.0

-4.0

-2.0

0.0

2.0

A

∆E

E/A

[MeV

]E/A

[MeV

]

D1S

D1M

D1S

D1ST exp

D1M

D1MT exp

O Ca Ni Zr Sn Pb

(a)

(b)

(c)

∆E = 100ED1αT − ED1α

ED1α

α ≡ S,M

Page 40: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

s.p. energies of spin–orbit partnersProtons

-4.0

-2.0

0.0

2.0

-4.0

-2.0

0.0

2.0

14

16

22

24

28 40

48

52

60

48

56

68

78

90 100

114

116

132

208

-4.0

-2.0

0.0

2.0

A

∆s[M

eV]

D1S

D1M

O Ca Ni Zr Sn Pb

1p

1d

1f

(a)

(b)

(c)

s = εl−1/2 − εl+1/2

Neutrons

-4.0

-2.0

0.0

2.0

-4.0

-2.0

0.0

2.0

14

16

22

24

28 40

48

52

60

48

56

68

78

90 100

114

116

132

208 -4.0

-2.0

0.0

2.0

A

∆s[M

eV]

D1S

D1M

O Ca Ni Zr Sn Pb

1p

1d

1f

(a)

(b)

(c)

∆s = sD1αT − sD1α

Page 41: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Discrete RPA: 0− states

exp D1S D1ST D1M D1MT

12C 18.40 19.63 14.42 18.83 15.2716O 10.96 13.95 10.94 13.08 10.96

40Ca 10.78 12.22 9.57 11.56 9.6048Ca 8.05 14.10 11.63 12.85 11.26

208Pb 5.28 8.27 7.93 8.24 7.92

M. A et al. Phys. Rev. C83 (2011) 064306

Exp. values:A. Heusler et al. Phys. Rev. C75 (2007) 024312

http://www.nndc.bnl.gov/

Page 42: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Discrete RPA: 1+ excitations in N 6= Z nuclei

-3.0

-2.0

-1.0

0.0

1.0

14 22 24 28 48 52 60 114 116 132 208

-3.0

-2.0

-1.0

0.0

1.0

A

[MeV

][M

eV]

D1S

D1M

O Ca Sn Pb

(a)

(b)

ωtt − ωnn (ωtt − ωtn) + (ωt − ωn)ωtt − ωtn

ωt − ωn

First 1+ state in 208Pb

E(1+1 ) B(M1)1[MeV] [µ2

n]exp 5.85 2.0

D1S 7.80 5.08D1ST 4.76 2.41D1M 6.50 2.33

D1MT 4.82 1.80

M. A et al. Phys. Rev. C83 (2011) 064306

Page 43: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Continuum RPA: Magnetic dipole response in O isotopes

0 60 120 180

0.000

0.002

0.004

0.006

0 5 10 15 20

0

2

4

6

8

10

0 5 10 15 20

0

2

4

6

8

10

0 10 20 30 40 50

0.00

0.04

0.08

B(M

1)↑(µ

2 N)

B(M

1)↑(µ

2 N)

ω (MeV) ω (MeV)

22O

28O

16O

24O

nntntt

(a) (b)

(c) (d)

main p-h excitation⇒ [(ν1d3/2)(ν1d5/2)−1]

Page 44: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Continuum RPA: Magnetic dipole response in Ca isotopes

0 10 20 30 40

10-2

100

102

0 10 20 30 40

B(M

1)↑(µ

2 N)

ω (MeV) ω (MeV)

52Ca48Ca

(a) (b)

main p-h excitation⇒ [(ν1f5/2)(ν1f7/2)−1]

E(1+): 10.23 MeV (EXP) 10.15 MeV (D1S) 8.56 MeV (D1ST)

Page 45: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Charge exchange excitations: 1+ GT and SQ

0

5

10

15

0.0

0.4

0.8

0

5

10

15

20

0

1

2

3

0 10 20 30

0

20

40

60

80

0 10 20 30 40 50 60 70

0

5

10

15

20

D1M

D1MT2c

exp

48Ca(p, n)48Sc 48Ca(p, n)48Sc

90Zr(p, n)90Nb 90Zr(p, n)90Nb

208Pb(p, n)208Bi 208Pb(p, n)208Bi

ΓGT−

1+(ω)(M

eV−1)

ΓSQ−

1+(ω)(×

100MeV

−1fm

4)

ω (MeV) ω (MeV)

(a)

(b)

(c)

(d)

(e)

(f)

V. De Donno et al., Phys. Rev. C90, 024326 (2014)

Page 46: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Splitting in 40Ca, 36S and 34Si: N = 20 isotones

Tensor induced and pure spin-orbit effects

From 40Ca to 36S (tensor) From 36S to 34Si (spin orbit)Splitting D1S D1S

2p 13% 43%D1ST2a D1ST2a

2p 40% 39%D1ST2c D1ST2c

2p 27% 42%

Reductions of the neutron 2p splitting.

M. Grasso and M. Anguiano, Phys. Rev. C92, 054216 (2015)

Page 47: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Interplay between tensor force and pairing correlations

0

3

6

9

12

114 120 126 132 138 144 150 156

0

2

4

6

8

〈(∆N)2〉 p

〈(∆N)2〉 p

HFB

HF+BCS

HFB

HF+BCS

A

N = 82

(a)

(b)

D1S

D1ST2a

Pairing field in HFB: VCentral + VSO + VCoul.

Pairing field in BCS: VCentral

Page 48: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

Interplay between tensor force and pairing correlations

0.0

0.2

0.4

0.6

0.8

1.0

134 140 146 152

-10

-8

-6

-4

v2

ǫ(M

eV)

N = 82

A

(a)

(b)

1g7/2

2d5/2

1g7/2

2d5/2

D1S

D1ST2aProton Levels

Tensor force?

neutron 1h11/2

Page 49: @let@token Gogny interactions with tensor terms - CEA/CEA · PDF fileGogny interactions with tensor terms Marta Anguiano ... 2.Gaudefroy et al., Phys. Rev. Lett 97, 092501 (2006):

A new fit for the tensor interaction

Vtensor(~r1,~r2) = VT S12 e−(r1−r2)2/µ2

T + VTτ τ (1) · τ (2) S12 e−(r1−r2)2/µ2

1. A more general fit, with five parameters

WLS VT VTτ µT µTτ

2. How? Using the procedure following to obtain D1ST2c, andadding two observables more.

Energy of the first 0− state of 16O and 1+ GT of 48Ca