103
 Technical information Bending Technology

Library Bending Technology

Embed Size (px)

Citation preview

Page 1: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 1/103

 

Technical information

Bending Technology

Page 2: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 2/103

Page 3: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 3/103

 

Technical information

Bending Technology

Edition: 05/2007 

Page 4: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 4/103

 

Ordering Information Please state title of document, desired language and date of edition.

TRUMPF Werkzeugmaschinen GmbH + Co. KGTechnische Dokumentation

Johann-Maus-Straße 2D-71254 DitzingenFon: +49 (0) 71 56/3 03-0Fax: +49 (0) 71 56/3 03-5 40Internet: http//www.trumpf.comE-Mail: [email protected]

This document was compiled by the Technical Documentation Dept. of TRUMPF Werkzeugmaschinen GmbH + Co. KG

 All rights, in particular the right to reproduce, distribute or translate this

documentation, are reserved to TRUMPF Werkzeugmaschinen GmbH + Co.KG, even in case of patent and industrial rights applications. No part of thisdocumentation may be reproduced, processed, duplicated or distributed by means of electronic systems in any form whatsoever without the prior writtenconsent of TRUMPF Werkzeugmaschinen GmbH + Co. KG Subject to errorsand technical changes.

© TRUMPF Werkzeugmaschinen GmbH + Co. KG 

TRUMPF Werkzeugmaschinen GmbH + Co. KG cannot be held responsiblefor possible mistakes in this documentation. Any warranty for direct and indirect damages, arising in connection with the delivery or the use of thisdocumentation, is excluded, as far as this is in conformity with the law.

Page 5: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 5/103

 

T488EN00.DOC  Before You proceed... 0-5 

Before You proceed...

This Technical information brochure "Bending Technology"provides a quick overview of the essentials of bending.

 After a brief outline of the TruBend Series 5000, the individual sub-assemblies of the press brake are described in greater detail. Thisis followed by explanations on the technology of bending (bendingmethods and calculations) and of the TRUMPF tooling system;attention is also paid to the ACB® angle sensor. Informationconcerning materials and tips and tricks from daily practice roundoff the topics discussed.

 A list of key words provided at the end of this document makes iteasier to find specific information more quickly.

Contents

Page 6: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 6/103

 

0-6 Table of Contents T488EN00.DOC  

Table of Contents

Chapter 1 Machine technology TruBend Series 5000 

1.  Machine concept............................................................ 1-3 2.  Technical data................................................................ 1-4 2.1   Axes of the TruBend Series 5000.................................... 1-6 3.

 Sub-assemblies ............................................................. 1-7

 3.1  Machine frame................................................................. 1-8 3.2  Ram and downstroking drive ......................................... 1-10 3.3  Bed with crowning.......................................................... 1-11 3.4  Tool holder..................................................................... 1-13 

Lower tool adjustment, I axis.................................... 1-14 Lower tool adjustment by example of 

„Flattening“................................................................ 1-15 CNC-controlled lower tool adjustment (Option)........ 1-18 Bending aid (optional)............................................... 1-19 

3.5  TASC 6000 control ........................................................ 1-22 Control panel ............................................................ 1-23 Operating station ...................................................... 1-24  Additional footswitch................................................. 1-25 

4.  Backgauge.................................................................... 1-26 4.1  Backgauge axis system................................................. 1-29 4.2  Technical data: Backgauge ........................................... 1-31 4.3  Stop fingers and stop positions ..................................... 1-33 

Micrometer stop fingers (Option).............................. 1-35 5.  TRUMPF BendGuard ................................................... 1-36 

Chapter 2 Technology (Application technology) 

1.  Bending methods: Overview ........................................ 2-3 1.1   Air bending....................................................................... 2-3 1.2  Coining............................................................................. 2-5 

Page 7: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 7/103

 

T488EN00.DOC  Table of Contents 0-7 

1.3  Hemming.......................................................................... 2-7 1.4  Flattening......................................................................... 2-8 1.5  Sensor bending................................................................ 2-9 

Overview: Sensor bending ....................................... 2-13 Learned bend............................................................ 2-13 

2.  Calculations ................................................................. 2-14 2.1  Press tonnage................................................................ 2-14 2.2  Box height...................................................................... 2-17 2.3  Inside radius .................................................................. 2-19 2.4  Selecting the die width................................................... 2-21 2.5  Shortest flange length.................................................... 2-23 2.6  Flat length...................................................................... 2-26 

Calculating the flat length in case of large bend

radii ........................................................................... 2-27 Calculating the flat length in case of small bend

radii ........................................................................... 2-29 Use of the compensation value in the machine

controller................................................................... 2-33 2.7  Minimum distances and lengths .................................... 2-34 2.8  Different bending flange shapes.................................... 2-35 

Chapter 3 Tool system 1.  Terminology................................................................... 3-2 2.  Tools from TRUMPF ...................................................... 3-3 2.1  Tool identification............................................................. 3-3 2.2  Upper tools ...................................................................... 3-4 2.3  Lower tools ...................................................................... 3-6 

Die width..................................................................... 3-6 Opening angle ............................................................ 3-7

 2.4  Tools for thin sheets ...................................................... 3-11 2.5  System segmentation of tools ....................................... 3-13 3.  Laser hardening........................................................... 3-15 4.  Imprint-free bending.................................................... 3-16 5.  Special tools................................................................. 3-18 

Page 8: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 8/103

 

0-8 Table of Contents T488EN00.DOC  

Chapter 4 Index 

Page 9: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 9/103

 

T488EN01.DOC  Machine technology TruBend Series 5000 1-1 

Chapter 1

Machine technologyTruBend Series 5000

1.  Machine concept............................................................ 1-3 2.  Technical data................................................................ 1-4 2.1   Axes of the TruBend Series 5000.................................... 1-6 3.  Sub-assemblies ............................................................. 1-7 3.1  Machine frame................................................................. 1-8 3.2  Ram and downstroking drive ......................................... 1-10 3.3  Bed with crowning.......................................................... 1-11 3.4  Tool holder..................................................................... 1-13 

Lower tool adjustment, I axis.................................... 1-14 Lower tool adjustment by example of 

„Flattening“................................................................ 1-15 CNC-controlled lower tool adjustment (Option)........ 1-18 Bending aid (optional)............................................... 1-19 

3.5  TASC 6000 control ........................................................ 1-22 Control panel ............................................................ 1-23 Operating station ...................................................... 1-24  Additional footswitch................................................. 1-25 

Page 10: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 10/103

 

1-2 Machine technology TruBend Series 5000 T488EN01.DOC  

4.  Backgauge.................................................................... 1-26 4.1  Backgauge axis system................................................. 1-29 4.2  Technical data: Backgauge ........................................... 1-31 4.3  Stop fingers and stop positions ..................................... 1-33 

Micrometer stop fingers (Option).............................. 1-35 5.  TRUMPF BendGuard ................................................... 1-36 

Page 11: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 11/103

 

T488EN01.DOC  Machine concept 1-3 

1. Machine concept

Die TruBend Series 5000 comprises CNC-controlled press brakesfor bending flat metal workpieces.

The machines are designed for a great variety of bending tasksand are distinguished by the following features:

• CNC backgauge system.

• Downstroking drive with two tandem cylinders.

• Lower tool adjustment (hemming without tool change).

• Self-centering tool holder.

• Quick and easy operation and programming.

• High level of work safety.

• Defined tilt of the ram.

• Automatic crowning.

Page 12: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 12/103

 

1-4 Technical data T488EN01.DOC  

2. Technical data

E

D

C

 A

B

 

Machine layout

TruBend 5050 5085 5085 S 5130

Tonnage [kN] 500 850 850 1300

Machine dimensions Bending length (A) [mm] 1275 2210 2720 3230

Width between columns (B) [mm] 1040 1750 2260 2690

Throat (C) [mm] 420 420 420 420

Bed width [mm] 100 120 120 120

Open height (die space) (D) [mm] 385 385 (615) 385 (615) 385 (615)

Working height with 100 mmlower tool (E)

[mm] 1050 1050 1050 1050

Speeds Y axis

Y rapid down speed [mm/s] 220 220 220 220

Y press speed [mm/s] 0.1 - 10 0.1 - 10 0.1 - 10 0.1 - 10

Y rapid up speed [mm/s] 220 220 220 220

 Y axis (ram) Stroke [mm] 215 215 (445) 215 (445) 215 (445)

Ram positioningaccuracy

[mm] 0.005 0.005 0.005 0.005

Ram tilt [mm] ±10 ±10 ±10 ±10

The values in brackets apply to enlarged versions (options)

Fig. 44112

Tab. 1-1

Page 13: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 13/103

 

T488EN01.DOC  Technical data 1-5 

TruBend 5170 5170 S 5230 5230 S 5320

Tonnage [kN] 1700 1700 2300 2300 3200

Machine dimensions Bending length (A) [mm] 3230 4250 3230 4250 4420

Width between columns (B) [mm] 2690 3680 3690 3680 3680

Throat (C) [mm] 420 420 420 420 420

Bed width [mm] 120 180 180 180 200

Open height (die space) (D) [mm] 615 615 615 615 615

Working height with 100 mmlower tool (E)

[mm] 1050 1050 1050 1050 1050

Speeds Y axis

Y rapid down speed [mm/s] 220 220 220 220 220

Y press speed [mm/s] 0.1 - 10 0.1 - 10 0.1 - 10 0.1 - 10 0.1 - 10

Y rapid up speed [mm/s] 220 220 220 220 220

 Y axis (ram) Stroke [mm] 445 445 445 445 445

Ram positioning

accuracy[mm] 0.005 0.005 0.005 0.005 0.005

Ram tilt [mm] ±10 ±10 ±10 ±10 ±10

Tab. 1-2

Page 14: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 14/103

 

1-6 Technical data T488EN01.DOC  

2.1 Axes of the TruBend Series 5000

R1

X1

Z1

R2

X2

Z2

Y1

IV

Y2

 Axes of the TruBend Series 5000

Axis Description TruBend 5050 TruBend 5085 – 5320

I axis Lower tool adjustment(forward and back) Pneumatic or CNC controlled* Pneumatic or CNC controlled*

R axis Height adjustment of stopfingers

CNC controlled CNC controlled

V axis Crowning Not available Manual or CNC controlled*

X axis Backgauge traveland stop fingers forwardand back

CNC controlled CNC controlled

Y axis Ram motion and ram tilt CNC controlled CNC controlled

Z axis Stop finger travel (left andright)

Manual or CNC controlled*

Manual or CNC controlled*

Bending aid (BH1/BH2)* Workpiece support Not available CNC controlled*Options

Fig. 38803

Tab. 1-3

Page 15: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 15/103

 

T488EN01.DOC  Sub-assemblies 1-7 

3. Sub-assemblies

6

1

2

4

10

7

8

9

5

3

 

1 Y drive and hydraulics2 Control panel

3 Upper tool clamp

4 Backgauge

5 Hydraulic cylinder 6 Ram

7 TRUMPF BendGuard

8 Lower tool clamp

9 Machine body10 Operating station

Sub-assemblies, TruBend Series 5000 machine Fig. 44068

Page 16: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 16/103

 

1-8 Sub-assemblies T488EN01.DOC  

3.1 Machine frame

The machine frame is a C-frame comprising two side frames(housings), the bed and connection support.

The pressure cylinders and the ram are mounted on the upper partof the C-frame. Due to this arrangement, the C-frame spreadsapart during the bending process (C-frame deflection).

This inevitable physical principle is compensated for by the control(deflection compensation). There is therefore no negative impacton the bending results.

 AktioReaktio

   Y   S

  o   l   l

   Y

   I  s   t

YIst > YSoll

 

Frame deflection

• The press force acts upon the machine bed during the bending

process (action).• This leads to a counter-force arising in the C-frame of the side

housings (reaction).

• Deflection occurs, despite the robust construction of the sidehousings. This is the reason why the upper tool penetrates lessdeeply into the lower tool than the hydraulic cylinders travel onthe stroke.

Frame deflection

Fig. 32203

Page 17: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 17/103

 

T488EN01.DOC  Sub-assemblies 1-9 

On the TruBend 5050 – 5320, C-frame deflection is compensatedfor by the machine control.

Two machine parameters are available for deflectioncompensation:

• The compensation value [bar], with which the counter-pressureis compensated.

• The deflection constant [µm/bar], with which the pressure-dependent deflection is equalized.

These machine parameters can be checked or adapted at any timeusing a service program.

Deflection compensation

Page 18: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 18/103

 

1-10 Sub-assemblies T488EN01.DOC  

3.2 Ram and downstroking drive

The ram is guided by means of adjustable cam followers. The ramis highly rigid and is spherically suspended, allowing it to be tilted.

The downstroking drive is an electro-hydraulic drive featuring twotandem cylinders (left / right) each. The cylinders are controlled bymeans of proportional valves.

Features:

• Exact synchronous motion of both cylinders pairs (Y1/Y2).

• Long service life of the guides and sealing elements.

• High positioning accuracy of the ram. The machine is equippedwith an incremental path measurement system.

1

3

2

 

1 Control block on cylinder pair Y1

2 Control block on cylinder pair Y2

3 Pump block

Ram and downstroking drive

Embedded at the front of the ram is a busbar (CAN bus) for connecting the modules of the ACB angle sensor.

Fig. 43679

ACB busbar 

Page 19: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 19/103

 

T488EN01.DOC  Sub-assemblies 1-11 

3.3 Bed with crowning

The bed, or press table, is parallel and at right angles to themounting surfaces of the hydraulic cylinders and the guideways of 

the backgauge. It has a milled surface for the crowning motor.

 A movable wedge plate and the lower tool holder are mountedabove the crowning motor.

Under load, the ram, with the two hydraulic cylinder axes Y1 andY2, acts like a beam on two supports. Despite the high moment of resistance, the ram bows under load, i.e. during the bendingprocess.

Directly beneath the hydraulic cylinders, therefore, the upper toolplunges deeper into the die than it does at ram center.

This effect varies with the length of the bend and the presstonnage. As a result, ram deflection increases with higher tonnages and longer bends.

Without crowning

Y1 Y2

 

With crowning

1

Y1 Y2

 

1 Crowning --- Deformation

Machine bed

Force distribution

during bending

Fig. 32205, 32206

Page 20: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 20/103

 

1-12 Sub-assemblies T488EN01.DOC  

Crowning refers to the calculated and mechanically adjustedcurvature of the machine bed. Crowning provides for parallelismbetween the ram and the bed (press table).

Since the press tonnage, the distance between cylinder pairs Y1and Y2, the geometry and the material properties of the ram, andthus the resistance moment, are known, the expected bowing canbe calculated.

Bowing is the vertical deviation from the horizontal bending line.This deviation is compensated for by crowning (V axis).

90°

90°

> 90°

90°

90°

90°

 

Bending results with/without crowning

The crowning mechanism consists of two wedge plates milled in awave pattern. The lower tool holder is mounted on the upper wedge plate. The lower wedge plate is worked (milled) directly intothe bed.The gradient angle of these wedge plates increases towards thecenter.The curvature (crowning value) in the bed needed to compensatefor the bowing of the ram is achieved by shifting the upper wedgeplate horizontally.

 Adjustment takes place manually or CNC-controlled via the gear motors integrated in the bed.

α1 α2 α 3 α 4 α 3α 4 α 2 α 1

α1 < α

2 < α3 < α

4

X

 

X Bowing

Principle of crowning

Purpose of crowning

Fig. 32207

Crowning

Fig. 51623

Page 21: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 21/103

 

T488EN01.DOC  Sub-assemblies 1-13 

3.4 Tool holder 

The tool holder is suitable for the use of head and shoulder-bearingtools. The press force is evenly transferred through the tool to the

workpiece, even in case of large tool heights or lateral forces (e.g.in hemming). Angle accuracy is not affected.

The upper and lower tool holders are machined and aligned insuch a way that the upper and lower tools are automaticallycentered after clamping.

In the case of head-bearing tools, the punch butts against theinside of the upper tool holder.

In the case of shoulder-bearing tools, the punch butts against theoutside of the upper tool holder.

Shoulder-bearing tool Head-bearing tool

Tool types

Upper tool holder Lower tool holder 

Modufix clamping Clamping via short-stroke cylinder 

Hydraulic clamping

Tools can be used in reverse

Clamping pressure: 50 bar 

Head-bearing

Shoulder-bearing

Fig. 35647, 35648

Tab. 1-4

Page 22: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 22/103

 

1-14 Sub-assemblies T488EN01.DOC  

Lower tool adjustment, I axis

The lower tool holder is mounted on the machine bed in such away that it can be shifted in X direction.

This adjustment is performed using pneumatic cylinders. The endpositions (fixed stops) are defined by means of various spacerswhich are adapted to the widths of the lower tools.

The position of the adjustment path in front of or behind the lower tool is set by means of the pivoting element.

Lower tool adjustment enables:

• Hemming (flattening) without tool change.

• Positioning of special dies.

• Station operation with tools of different heights.

• Work with lower tool adapters (e.g. two lower tools).

• Production of Z-bends with tool holder systems.• Facilitates removal of complex parts.

1 2 3 1

 

1 Fixation of adjustment path,

cannot be modified2 Spacer for the length of the

adjustment path

3 Pivoting element for position

of the adjustment path

I axis Fig. 29259

Page 23: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 23/103

 

T488EN01.DOC  Sub-assemblies 1-15 

Lower tool adjustment by example of „Flattening“

Program-controlled adjustment of the lower tool holder to fixedstop.

Two positions:

Flattening in rear tool position:

I axis is at the front. 

Flattening in rear tool position(without punch support):

I axis is at the front.

Flattening in front tool position: 

I axis is at the rear. 

Flatting at front and rear 

The fixed stop depends on the tool width of a 30° lower tool. Thefollowing spacers are available for this:

Die widths Spacers

W6, W8, W10 30 mm

W12 27.5 mm

W16 25 mm

W20 22.5 mm

W24

1

20 mm

In addition to this, specially configured spacers are also availablefor special dies.

1 The spacer for die width W24 is also suited for lower tool holder EV70 (holder for Z inserts).

Fig. 43700

Tab. 1-5

Page 24: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 24/103

 

1-16 Sub-assemblies T488EN01.DOC  

Prerequisite

• The pivoting element butts against the rear fixed stop.

• Appropriate spacer for lower tool has been loaded at the front.

1. Bend to an angle of 30°.I axis is located in the front position.

2. Flatten.I axis is located in the rear position.

Flattening at the front

Fig. 29860

Fig. 29861

Page 25: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 25/103

 

T488EN01.DOC  Sub-assemblies 1-17 

Prerequisite

• The pivoting element butts against the front fixed stop.

• Appropriate spacer for lower tool has been loaded at the rear.

1. Bend to an angle of 30°.I axis is located in the rear position.

2. Flatten.I axis is located in the front position.

Flattening at the rear 

Fig. 29858

Fig. 29859

Page 26: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 26/103

 

1-18 Sub-assemblies T488EN01.DOC  

CNC-controlled lower tool adjustment(Option)

CNC-controlled adjustment of lower tools allows tool designs thatwere previously impossible.In CNC-controlled lower tool adjustment, a CNC-controlledstepping motor is used for adjustment in X direction.The lower tool can therefore be shifted to any position within theentire travel range without having to interrupt production for retooling (pivoting element/spacer).Compressed air is therefore no longer required for press brakeoperation. (Exception: Stop finger clamping at the 2-axesbackgauge).)

CNC-controlled lower tool adjustment

Stepping motor unit

Fig. 44066

Fig. 44065

Page 27: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 27/103

 

T488EN01.DOC  Sub-assemblies 1-19 

Bending aid (optional)

Electromechanical bending aid for the TruBend 5085 - 5320.The bending aid can be moved manually parallel to the bed, in

order to adjust it to the bending length and/or to bending stations. Itcan also be adapted to different lower tool heights and widths bymeans of 2 adjusting screws.

Maximum 2 bending aids can be used on a machine.

• Relieve the operator when working with large and heavy parts.

• No counter-bending effects when bending thin workpieces withlarge flange lengths.

Capacities Max. swivel angle [°] 47

Max. working speed [°/s] 45

Max. support weight per arm [kg] 100

Max. Y speed [mm/s]for die width 6 mmfor die width 8 mmfor die width 10 mmfor die width 12 mmfor die width 18 mmfor die width 20 mm

2.53.54.05.06.58.5

Dimensions Weight per arm [kg] 330

Table width [mm] 275

Supported flange length [mm] 1000Setting range for lower tool height [mm] 30 - 150

Setting range for die width [mm] 6 - 100

Max. workpiece weight in the tableextension area [kg]

10

Technical data for the bending aid

NoteThe ram speed is automatically adapted for the chosen die width.

Advantages

Technical data

Tab. 1-6

Page 28: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 28/103

 

1-20 Sub-assemblies T488EN01.DOC  

The smaller the die width of a lower tool, the less vertical travel bythe ram is needed to achieve a defined bending angle. Since theswivel motion of the bending aid is synchronized with the verticaltravel of the ram and hence is also synchronized or parallel to themotion of the bending flange, the press speed must be reduced for 

small die widths.

Mild steel, bending angle 90°

Travel in case of sheet deformation (from clampingpoint to Y-nominal) [mm]

Die width Reduced ram speed [mm/s]

s = 1 mm s = 2 mm

6 2.5 2.407 -

8 3.5 3.541 3.173

10 4 4.432 3.972

12 5 5.539 4.807

The following options are available for the bending aid:

• Table extension.

• Table widening.

• Support table for table length extension.

Bending aid with two table widening sections and twotable extensions.

Reduced ram speed

Example

Tab. 1-7

Options for the bending aid

Fig. 29651

Page 29: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 29/103

 

T488EN01.DOC  Sub-assemblies 1-21 

The support brackets assist the operator when processing heavyand unwieldy workpieces. The support brackets are mounted onthe same guide system as the bending aid. They can however bedetached as required.

The support brackets can be used in combination with the bendingaid.

Support brackets

Support brackets

Fig. 38539

Page 30: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 30/103

 

1-22 Sub-assemblies T488EN01.DOC  

3.5 TASC 6000 control

The TASC 6000 control is distinguished by the following features:

• Bend sequence calculation.

• Tonnage calculation.

• Y parallelism calculation (station bending).

• Setup plan.

• Automatic crowning.

• Automatic stop finger positioning.

• Pre-selection, number of workpieces.

• Axes positioning from the operating station.

• Access to bending factors.

• 3D visualization.

• 2D programming.

• Teach function for all axes.• Collision check with visualization.

Page 31: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 31/103

 

T488EN01.DOC  Sub-assemblies 1-23 

Control panel

2

1

9

3

4

56

7

8

 

1 User interface / Touch screen

2 E-STOP impact switch

3 Numeric keyboard

4 Cursor key

5 START button

6 STOP button

7 Height adjustment lock

8 USB ports

9 Keyboard and mouse

Control panel

The TruBend Series 5000 can be operated per Touch screen aswell as per keyboard/mouse combinations and numerical inputfields. In addition to this, two USB ports located on the right side of the panel can be used for data transfer (bending programs /

software updates).The operating panel has a large pivot and swing area and can alsobe adjusted in height.Consequently, the bending space is not obstructed by the panel,allowing the operator to assume an ergonomically correct workposition at all times.

Fig. 42581

Page 32: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 32/103

 

1-24 Sub-assemblies T488EN01.DOC  

Operating station

1 LCD key pad

2 EMERGENCY UP foot switch

3 Storage tray

4 E-STOP impact switch

5 Control lamp

6 E-STOP release

7 RAM DOWN foot switch with

E-STOP function

Operating station Fig. 40676

Page 33: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 33/103

 

T488EN01.DOC  Sub-assemblies 1-25 

Additional footswitch

1 Connector 

2 EMERGENCY UP foot switch

3 RAM DOWN foot switch with

E-STOP function

4 Indicator lamp

5 E-STOP impact switch

6 E-STOP release

 Additional footswitch Fig. 42390

Page 34: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 34/103

 

1-26 Backgauge T488EN01.DOC  

4. Backgauge

The backgauge defines the flange size of a bend. The availablebackgauge systems are described in brief below.

Only parts with bending lines that are parallel to the indexing edgecan be bent with the 2-axis backgauge.

2-axis backgauge

• X drive (forward/back) by means of racks and pinions:high precision and dynamics.

• R drive (up/down) by means of ball screws.

• No Z drive (left/right): Stop fingers can only be offset manually.

The stop fingers are pneumatically clamped.

Only parts with bending lines that are parallel to the indexing edgecan be bent with the 4-axis backgauge.

4 -axis backgauge

• X drive (forward/back) by means of racks and pinions:high precision and dynamics.

2-axis backgauge

Fig. 45301

4-axis backgauge

Fig. 45302

Page 35: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 35/103

 

T488EN01.DOC  Backgauge 1-27 

• R drive (up/down) by means of ball screws.

• Z drive (left/right), Z1 and Z2 stop fingers by means of toothedbelt drive: high dynamics when positioning light-weight parts.

With the 5-axis backgauge, it is also possible to bend parts whichhave no bending lines parallel to the indexing edge.

Backgauge with relative X axis

• X drive (forward/back) by means of racks and pinions:high precision and dynamics.

• R drive (up/down) by means of ball screws.

• Z drive (left/right), Z1 and Z2 stop fingers by means of toothedbelt drive: high dynamics when positioning light-weightparts.Z2 stop finger can be moved ±75 mm in X direction via CNCcontrol.

5-axis backgauge

Fig. 45303

Page 36: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 36/103

 

1-28 Backgauge T488EN01.DOC  

With the 6-axis backgauge, it is also possible to bend parts whichhave no bending lines parallel to the indexing edge.

6-axis backgauge

• X drives (forward/back), X1 and X2 by means of racks andpinions: high precision and dynamics.

• R-drives (up/down), R1 and R2 by means of ball screws.

• Z-drives (left/right), Z1 and Z2 by means of racks and pinions:high precision and dynamics.

The 6-axis backgauge is not available for the TruBend 5050.

2-axis backgauge Bending lines run parallel to the indexing edge.

4-axis backgauge Bending lines run parallel to the indexing edge.

5-axis backgauge Bending lines need not run parallel to theindexing edge in X-direction (horizontal).

6-axis backgauge Bending lines need not run parallel to indexingedge in X and R-direction (horizontal / vertical).

6-axis backgauge

Fig. 45304

Technological aspects

Tab. 1-8

Page 37: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 37/103

 

T488EN01.DOC  Backgauge 1-29 

4.1 Backgauge axis system

Dimension R0 refers to the top of the lower tool clamp. In normal  bending (Manual mode, Production, Programming), however, the

stop finger is always 0.2 – 0.3 mm above R0 (top of lower tool).This means that both the lower tool height and the calculated or adjusted crowning value is taken into account by means of anappropriate zero point offset.This zero offset is not displayed.

R0

R+

R-

X0 X+

 

X axis, R axis

X axis and R axis

Fig. 23738

Page 38: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 38/103

 

1-30 Backgauge T488EN01.DOC  

Z0

Z+

Z2 Z1

1 2

 

1 Sheet 2 Machine bed

Z axis

The reference edges for the stop finger positions are at the outside

left and right.

In the "Clamping" indexing method, the workpiece is alignedexactly against the backgauge in both X and Z directions.The following clamping possibilities are supported:

• Clamping on one side

• Clamping on both sides

Clamping on both sides Clamping on one side

Clamping functions

Z axis

Fig. 51624

Clamping (5 and 6 axis

backgauge)

Fig. 35065

Page 39: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 39/103

 

T488EN01.DOC  Backgauge 1-31 

4.2 Technical data: Backgauge

R1

X1

Z1

R2

X2

Z2

 Axes: Backgauge

TruBend 5050 5085 5850 S 5130 5170

X1/X2 axis [mm] 600 600 600 600 600

R1/R2 axis2 [mm] -50+200

-50+200

-50+200

-50+200

-50+200

4 axis [mm] 753 1463 1973 2403 2403

5 axis [mm] 670 1380 1890 2320 2320

Travel range

Z1/Z2 axis

6 axis [mm] - 1340 1850 2280 2280

In X direction [mm] 860 860 860 860 860

4 /5 axis [mm] 929.5 1640 2150 2580 2580

Max. stop range

InZ direction

6 axis [mm] - 1530 2040 2470 2470

X1/X2 axis [mm/s] 0 - 1000 0 - 1000 0 - 1000 0 - 1000 0 - 1000

R1/R2 axis [mm/s] 0 - 330 0 - 330 0 - 330 0 - 330 0 - 330

Speeds

Z1/Z2 axis [mm/s] 0 - 1000 0 - 1000 0 - 1000 0 - 1000 0 - 1000

X1/X2 axis [mm] 0.04 0.04 0.04 0.04 0.04

R1/R2 axis [mm] 0.08 0.08 0.08 0.08 0.08

Positioning accuracy

Z1/Z2 axis [mm] 0.06 0.06 0.06 0.06 0.06

Distance 4/5 axis [mm] 25 25 25 25 25Finger –Finger 

6 axis [mm] 10 10 10 10 10

4 axis [mm] 60 60 60 60 60

5 axis [mm] 25 25 25 25 25

Finger – Sideelement

6 axis [mm] 115 115 115 115 115

Technical data: Backgauge 5050 – 5170

2 Reference edge R0

Fig. 44111

Tab. 1-9

Page 40: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 40/103

 

1-32 Backgauge T488EN01.DOC  

TruBend 5170 S 5230 5230 S 5320

X1/X2 axis [mm] 600 600 600 600

R1/R2 axis3 [mm] -50+200

-50+200

-50+200

-50+200

4 axis [mm] 3393 2403 3393 3393

5 axis [mm] 3310 2320 3310 3310

Travel range

Z1/Z2 axis

6 axis [mm] 3270 2280 3270 3270

In X direction [mm] 860 860 860 860

4/5 axis [mm] 3570 2580 3570 3570

Max. stop range

InZ direction

6 axis [mm] 3460 2470 3460 3460

X1/X2 axis [mm/s] 0 - 1000 0 - 1000 0 - 1000 0 - 1000

R1/R2 axis [mm/s] 0 - 330 0 - 330 0 - 330 0 - 330

Speeds

Z1/Z2 axis [mm/s] 0 - 1000 0 - 1000 0 - 1000 0 - 1000

X1/X2 axis [mm] 0.04 0.04 0.04 0.04

R1/R2 axis [mm] 0.08 0.08 0.08 0.08

Positioning accuracy

Z1/Z2 axis [mm] 0.06 0.06 0.06 0.06

Distance 4-/5 axis [mm] 25 25 25 25Finger –Finger 

6 axis [mm] 10 10 10 10

4 axis [mm] 60 60 60 60

5 axis [mm] 25 25 25 25

Finger – Sideelement

6 axis [mm] 115 115 115 115

Technical data: Backgauge 5170 S – 5320

3 Reference edge R0

Tab. 1-10

Page 41: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 41/103

 

T488EN01.DOC  Backgauge 1-33 

4.3 Stop fingers and stop positions

Stop positions for standard stop fingers

The stop fingers of all backgauge systems have three different stoppositions:

•  Stop position 0: Workpiece is indexed at the stop finger. Atthe max. X position (X = 600), flanges 600 mm long can beindexed.

•  Stop position 30: Workpiece is placed on the lower support of the stop finger and indexed. At the max. X position (X = 600),flanges 630 mm long can be indexed.

•  Stop position 260: Workpiece is placed on the upper supportof the gauge finger and indexed. At the max. X position (X =600), flanges 860 mm long can be indexed.

•  Stop position 400: The workpiece is placed on the upper support of the gauge finger and indexed. At the max. X position(X = 600), flanges 1000 mm long can be indexed

1 1

 

1 Stop position 1000 mm

Fig. 32228

Standard

Option

Fig. 32301

Page 42: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 42/103

 

1-34 Backgauge T488EN01.DOC  

260

30

0

40

 

Stop positions Fig. 44110

Page 43: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 43/103

 

T488EN01.DOC  Backgauge 1-35 

Micrometer stop fingers (Option)

Micrometer stop fingers are available in 3 different versions:

• Micrometer stop fingers for 2-axis backgauge.

• Micrometer stop fingers for 4-axis backgauge.

• Detachable micrometer stop fingers for 4-axis backgauge.

Fig. 45307 Fig. 45305 Fig. 45306

Micrometer stop finger for 

2 axis backgauge.

Detachable

micrometer stop finger for 4-axis backgauge.

Micrometer stop finger for 

4 axis backgauge.

It is possible to use several stop fingers simultaneously.Micrometer stop fingers are ideal when processing workpieces withsteps.Travel paths are limited to ±15 mm.

Tab. 1-11

Page 44: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 44/103

 

1-36 TRUMPF BendGuard T488EN01.DOC  

5. TRUMPF BendGuard

NoteWork at a rapid speed higher than 10 mm/s is permitted only if an

opto-electronic safety device is used. The TRUMPF BendGuard issuch an opto-electronic safety device.

In practice, TruBend press brakes are normally loaded by hand. Inaccordance with the valid safety regulations, the following conceptsof operation exist to avoid accidents

• Two-hand operation at working speed. Disadvantage: the partmust be put down before approaching the bending position;longer cycle times

• Foot operation at working speed. Disadvantage: longer cycletimes.

• Operation with light curtain at rapid speed. Disadvantage: can

only be used with certain part geometries.

TRUMPF BendGuard enables you to work at rapid speed without jeopardizing the safety of the operating personnel and withoutrestrictions in parts handling. TRUMPF BendGuard monitors thearea under the upper tool by means of two laser light bands. Therapid downward motion of the ram is halted if the light beams areinterrupted.

TRUMPF BendGuard is a non-contact safety protection device(BWS) Type 4 according to EN954 with integrated tracking controlunit. A safety level in accordance with EN12622 (2001) 5.3.2(f) isachieved.

Background

TRUMPF BendGuard

Page 45: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 45/103

 

T488EN01.DOC  TRUMPF BendGuard 1-37 

Located at a distance of 4 mm (beam array A) and 14 mm (beamarray B) beneath the upper tool tip, two parallel beams of laser lightshine in front of the upper tool and provide protection for handsand fingers. The effective overall width of the laser lights is 40 mm,i.e. 20 mm in front of and 20 mm behind the upper tool tip.

   4  m  m

   1   4  m  m

20 mm 20 mm

 A

B

1 2 3

 

1A Monitoring range 1A

(in front of the upper tool tip,

laser light A)

1B Monitoring range 1B

(in front of the upper tool tip,

(laser light B)

2A Monitoring range 2A

(with circular cross-section,

laser light A)

2B Monitoring range 2B

(with circular cross-section,

laser light B)

3A Monitoring range 3A

(behind the upper tool tip,

laser light A)

3B Monitoring range 3B

(behind the upper tool tip,

(laser light B)

Laser beam and tools

With the two 40 mm wide bands of laser light, three areas aremonitored at a distance of 4 and 14 mm beneath the upper tool tip:

Monitoring range 1 20 mm in front of the upper tool tip.

Monitoring range 2 Exactly under the upper tool tip (circular cross-section).

Monitoring range 3 20 mm behind the upper tool tip.

Principle

Fig. 31003

Tab. 1-12

Page 46: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 46/103

 

1-38 TRUMPF BendGuard T488EN01.DOC  

There are 6 different BendGuard modes:

•  BendGuard Mode 1:Both laser bands as well as the point-shaped laser beamdirectly under the tool tip are active during rapid downward rammotion. If either of the two laser lines or the point-shaped beam

is interrupted, ram motion stops.

•  BendGuard Mode 2:Initially, all laser bands are active. The machine stops at thefirst interruption of laser band B (e.g. by the side wall of a box).The two laser bands front and rear of the tool tip are no longer monitored from here on. The two laser beams with circular cross-section directly under the upper tool tip may not,however, be interrupted.

•  BendGuard Mode 3:Like BendGuard mode 1, except that the ram stops at the mutepoint and has to be restarted using the foot switch.

•  BendGuard Mode 4:

Like BendGuard mode 2, except that the ram stops at the mutepoint and has to be restarted using the foot switch.

•  BendGuard Mode 5: (BendGuard not active) Downward rammotion only at working speed.

•  BendGuard Mode 6: (BendGuard not active with stop at mutepoint)Like BendGuard mode 5, except that the ram stops at the mutepoint and has to be restarted using the foot switch.

BendGuard modes

Page 47: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 47/103

 

T488EN02.DOC  Technology (Application technology) 2-1 

Chapter 2

Technology(Application technology)

1.  Bending methods: Overview ........................................ 2-3 

1.1   Air bending....................................................................... 2-3 

1.2  Coining............................................................................. 2-5 

1.3  Hemming.......................................................................... 2-7 

1.4  Flattening......................................................................... 2-8 

1.5  Sensor bending................................................................ 2-9 

Overview: Sensor bending ....................................... 2-13 

Learned bend............................................................ 2-13 

2.  Calculations ................................................................. 2-14 2.1  Press tonnage................................................................ 2-14 

2.2  Box height...................................................................... 2-17 

2.3  Inside radius .................................................................. 2-19 

2.4  Selecting the die width................................................... 2-21 

2.5  Shortest flange length.................................................... 2-23 

2.6  Flat length...................................................................... 2-26 

Calculating the flat length in case of large bend

radii ........................................................................... 2-27 

Page 48: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 48/103

 

2-2 Technology (Application technology) T488EN02.DOC  

Calculating the flat length in case of small bend

radii ........................................................................... 2-29 

Use of the compensation value in the machine

controller................................................................... 2-33 

2.7  Minimum distances and lengths .................................... 2-34 2.8  Different bending flange shapes.................................... 2-35 

Page 49: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 49/103

 

T488EN02.DOC  Bending methods: Overview 2-3 

1. Bending methods: Overview

The following bending methods can be used on machines of theTruBend Series 5000:

• Air bending

• Coining

• Hemming

• Flattening

• Air bending + ACB

1.1 Air bending

 Air bending

 Air bending is a frequently used, flexible bending method. In air bending, the workpiece is in contact with the upper and lower toolsat three different points:

• At the tip of the upper tool.

• At both working radii of the lower tool.

In air bending, the bent angle is achieved "in air", or "freely". Thebending angle is dependent on the material data (material, sheetthickness) and tool data (die widths, working radii). It is determinedby the position of the upper tool (depth by which the upper toolplunges into the lower tool).

No uniform bend radius is formed in air bending, but rather acurvature line with the smallest curvature in the bending apex.

Fig. 34902

Page 50: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 50/103

 

2-4 Bending methods: Overview T488EN02.DOC  

• Any angle between approx. 32° and 180° can be producedwithout changing tools.

• Low bending tonnage.

 Air bending is a path-dependent bending method

The ram travels to the programmed Y axis position at thecalculated pressure.

If the pressure is insufficient, the ram does not reach the lowestnominal Y axis position and stops at the point where the opposingforces are in equilibrium. This is usually the case when the tensilestrength and thickness of the material being bent differsconsiderably from the data used by the control system in itscalculations.

Advantages of air bending

Air bending

on the TruBend

Page 51: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 51/103

 

T488EN02.DOC  Bending methods: Overview 2-5 

1.2 Coining

Coining

In coining, the bend angle is produced in a form locking manner,i.e. by pressing the workpiece into a defined form (lower tool, or die). The angles of the upper and lower tools must be identical,they determine the workpiece angle.

• Coining is used:

 –   If the required inside radius of the workpiece is less thanthe sheet thickness

 –   If holes, cutouts or angled edges are located near or on the

bending line. –   Extreme contour accuracy (radius RI).

• Each specific angle and inside radius requires a dedicated toolset (upper and lower tool).

• Coining requires at least 3 times more tonnage than does air bending, depending on the material and sheet thickness.

• The cost-efficiency of coining (tool costs/tool set-up time) isoften attained only in large-series production.

• Springback can be influenced only by changing the presstonnage.

Fig. 34903

Important notes on

coining

Page 52: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 52/103

 

2-6 Bending methods: Overview T488EN02.DOC  

• The decisive parameters for coining are:

 –   Material.

 –   Sheet thickness.

 –   Inside radius.

 –   Shortest flange length. –   Bending angle.

 –    Angle accuracy.

 –   Sheet thickness tolerance.

 –   Max. tensile strength.

Coining is the pressure-dependent bending method.

The ram descends at a pre-determined pressure until this pressurehas been present for at least 0.3 s. This pressure equilibriumshould not be achieved until positive contact between upper tool,material and lower tool has been established.

For this reason, the nominal Y axis position in coining is approx.2 mm beneath the bottom of the die (positive locking).

If pressure equilibrium sets in before the positive lock is achieved,then the press tonnage has to be increased manually.This is usually the case when the tensile strength and thethickness of the material being bent differs considerably from thedata used by the control system in its calculations.

Coining on the TruBend

Page 53: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 53/103

 

T488EN02.DOC  Bending methods: Overview 2-7 

1.3 Hemming

Hemming

In hemming, a seam is produced along a sheet edge using specialtools (e.g. upper tool OW 210/S and hemming tool FWZ).

• As in air bending, hemming is a path-dependent bendingmethod.

• Hemming is used: –   If a seam does not need to be pressed completely flat.

 –   To minimize the counter-bend effect in long seam flanges.

 –   If a defined dimension needs to be produced between theflanges.

X

 

X Defined dimension between the seam flanges

Fig. 34901

Important notes on

hemming

Fig. 35066

Page 54: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 54/103

 

2-8 Bending methods: Overview T488EN02.DOC  

1.4 Flattening

Flattening

In flattening, a seam is produced along a sheet edge using specialtools (e.g. upper tool OW 210/S and hemming tool FWZ).

• Analog to coining, flattening is a pressure-dependent bendingmethod.

• Flattening is used when a seam is to be pressed completelyflat:

1

 

1 Teardrop

Completely flattened seam

Counter-bend effect in hemming

Fig. 34900

Important notes on

flattening

Fig. 51627

Fig. 35067

Page 55: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 55/103

 

T488EN02.DOC  Bending methods: Overview 2-9 

1.5 Sensor bending

Sensor bending with the ACB® angle sensor is based on air bending.

To obtain an accurate bend angle in air bending, the workpiece isover-bent by an amount equal to the elastic springback. Severaltrial bends are usually necessary to determine the exact bendingparameters. This can waste time in small lot sizes and does notguarantee that larger lot sizes will stay within the productiontolerances.

In sensor bending, it is not only the actual value of a bend anglethat is measured; different springback angles and varying materialproperties are also recorded. The nominal value of the bend angleis controlled with the aid of this information.

The advantages:

• High-precision bend angles through automatic measurementand control, regardless of the …

 –   Grain

 –   Tensile strength

 –   Sheet thickness deviations

• Complicated trial runs are no longer necessary.

• Less material is used as there are no rejects.

• Shorter machining times. The workpieces, having accurateangles, do not need to be refinished or measured for qualityassurance.

The ACB®

angle sensor includes the following:• Sensor module

• Sensor tool.

• Various accessories (not illustrated).

Page 56: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 56/103

 

2-10 Bending methods: Overview T488EN02.DOC  

1

2

 

1 Sensor module 2 Sensor tool

 Angle sensor ACB

The angle sensing system is integrated in the upper tool and isloaded with the conventional upper tools in the respective bendingstations.

Sensor tool

Fig. 36824

Angle sensing in theupper tool

Fig. 14869

Page 57: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 57/103

 

T488EN02.DOC  Bending methods: Overview 2-11 

Located in the sensor tool are two measuring or sensor disks of different diameters which center themselves in the bendingflanges. 4 contact points on the inside of the bend are measuredby the disks during the bending process at working speed. Thedistance between the center points of the disks changes with the

penetration depth of the disks. The system continuously calculatesthe actual angle based on this distance.

Four-point measurement by means of sensor disks

Disk displacement is evaluated two-dimensionally by means of intelligent signal processing. This means that the bending angle aswell as a possible tilt angle of the workpiece in X direction aremeasured. The tilt angle is eliminated as a possible source of error when the actual angle is calculated.

Four-point measurement with

sensor disks

Fig. 14755

Two-dimensional angle

sensing

Page 58: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 58/103

 

2-12 Bending methods: Overview T488EN02.DOC  

Current sensor tools  All commonstandard upper tools.(Special radii on request)

Tool width [mm] 25

Max. number of sensor tools per sensor electronic unit 1

Max. number of electronic sensor unitsper press brake

8

Max. number of sensors per bend 3

Measurement range [°](dependent on type of sensor, materialand sensor disks)

42 - 135

Angle accuracy [°]±0.3

±0,3°

α3

α1

α5

α2

α4

0

 A B C D Et

 

 A Pre-bending

B Measure springback + monitor 

the tilt angle

C Finish bend (required angle +

springback angle)

D Pressure relief + monitor the tilt

angle

E Measure final angle

t Time

Schematic sequence of a complete sensor bend

Technical data

Tab. 2-1

Fig. 32785

Page 59: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 59/103

 

T488EN02.DOC  Bending methods: Overview 2-13 

Overview: Sensor bending

TASC 6000 settings andprogramming

Function

For each bend…•  the springback is calculated•  the nominal angle regulated•  tilting is checked.

For the first bend in an active program…•  the springback is calculated•  the nominal angle regulated•  tilting is checked.Each further identical bend (with referral to a reference bend) is bent with angleregulation.

The established Y-position for an ACB bend is adopted for each further identicalbend (position regulation)

For each bend…•  the nominal angle is approached with angle regulation,•  springback and tilting are not measured.

Learned bend

In learned bends, bending is accomplished using the Y axis data of a previously completed sensor bend. In this case, the sensor toolhas neither a measuring nor a controlling function, i.e. it is notactive. It can however remain loaded in the workstation during thebending process.

If the sensor bend was performed with 2 sensors, the Y-parallelismcorrection is also applied.

If sensor bending was performed with 3 sensors, the crowningcorrection will also be applied.

Taught bending is implemented whenever the same angles in thesame grain of the material are required in one single product. Thisallows for more economical production.

 A detailed description of learned bends is found in the ACB® anglesensor manual.

Tab. 2-2

Application

Page 60: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 60/103

 

2-14 Calculations T488EN02.DOC  

2. Calculations

2.1 Press tonnage

The press tonnage for air bending can be calculated using aformula determined empirically by TRUMPF:

Press tonnage calculation for air bending

)45cos2(

33.1 2

OW 

m

r W 

 s Rl  F 

×°×−

×××=  

1.33 Frictional resistance between material and lower tool (determined

empirically)

F Press tonnage [N]

l Bend length [mm]Rm Maximum tensile strength of the material [N/mm2]

s Sheet thickness [mm]

W Die width [mm]

r OW Radius of upper tool [mm]

cos 45° ≈ 0.7

The formula value (2*cos45°*r OW) has a decisive impact only for large

upper tool radii; it can be ignored for TRUMPF standard tools where

r OW = 1 mm.

Fig. 2857

Page 61: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 61/103

 

T488EN02.DOC  Calculations 2-15 

The tonnage can also be determined using the TRUMPF bendingslide rule or with the press tonnage table:

Example: Length of bend 1 m - Sheet thickness 3 mm - Die width 24 mm - Material tensile strength 400 N/mm2 

Result: Press tonnage 200 kN

TRUMPF Bending slide rule - Front Fig. 35615

Page 62: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 62/103

 

2-16 Calculations T488EN02.DOC  

Press tonnage table (Material tensile strength 400 N/mm2)

W 6 8 10 12 16 20 24 30 40 50 60 70 80 90 100 120

b 4.5 6 7.5 9 12 15 18 22.5 30 37.5 45 52.5 60 67.5 75 90

s

Ri 1 1.3 1.6 1.9 2.6 3.2 3.8 4.8 6.4 8 9.6 11 13 14 16 19

0.75 52 39 31 26

1 93 70 56 47 35

1.25 145 109 87 73 55 44

1.5 209 157 126 105 79 63

1.75 214 171 143 107 86 71

2 223 186 140 112 93

2.5 291 218 175 145 116

3 314 251 209 168 126

3.5 428 342 285 228 171 1374 447 372 298 223 179 149

4.5 566 471 377 283 226 189 162

5 466 349 279 233 200 175

6 670 503 402 335 287 251 223

7 684 547 456 391 342 304 274

8 715 596 511 447 397 358 298

10 798 698 621 559 466

12 1005 894 804 670

W Die width [mm]

b Shortest flange length [mm]

Ri Inside radius [mm]

s Sheet thickness [mm]

Tonnage [kN/m] at optimal die width W

Sheet thickness s = 3 mm - Die width W = 24 mm

Press tonnage F = 209 kN/m

Tab. 2-3

Example:

Result:

Page 63: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 63/103

 

T488EN02.DOC  Calculations 2-17 

2.2 Box height

The maximum box height for a bend angle of 90° can be calculatedusing the following formula:

SHi

OWH

B

 

Calculating the maximum box height

95.0414.1

×−

=BOWH 

SH i

 

 BSH 

OWH i

+×= 414.195.0

 

SHi Box height (inside) [mm]

OWH Upper tool height [mm]

B Ram center to outside edge of Modufix = 24 mm

Fig. 33329

Page 64: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 64/103

 

2-18 Calculations T488EN02.DOC  

The following rounded, maximum box heights result for thestandard tool heights:

Upper tool height [mm] Maximum box height [mm]

120 65

140 78

220 131

240 145

Tab. 2-4

Page 65: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 65/103

 

T488EN02.DOC  Calculations 2-19 

2.3 Inside radius

The inside radius Ri is primarily dependent on the die width W.Given an upper tool radius of 1 mm and a 90° bend angle, this will

result in the following inside radius Ri:

Ri ≈ 0.16 x W

Ri Inside radius [mm]

W Die width [mm]

The inside radius can also be determined using the TRUMPFbending slide rule:

Example: Sheet thickness 3 mm - Die width 24 mm

Result: Inside radius (bend radius) 3.8 mm

TRUMPF Bending slide rule - Rear Fig. 34663

Page 66: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 66/103

 

2-20 Calculations T488EN02.DOC  

Press tonnage table (Material tensile strength 400 N/mm2)

W 6 8 10 12 16 20 24 30 40 50 60 70 80 90 100 120

b 4.5 6 7.5 9 12 15 18 22.5 30 37.5 45 52.5 60 67.5 75 90

s

Ri 1 1.3 1.6 1.9 2.6 3.2 3.8 4.8 6.4 8 9.6 11 13 14 16 19

0.75 52 39 31 26

1 93 70 56 47 35

1.25 145 109 87 73 55 44

1.5 209 157 126 105 79 63

1.75 214 171 143 107 86 71

2 223 186 140 112 93

2.5 291 218 175 145 116

3 314 251 209 168 126

3.5 428 342 285 228 171 1374 447 372 298 223 179 149

4.5 566 471 377 283 226 189 162

5 466 349 279 233 200 175

6 670 503 402 335 287 251 223

7 684 547 456 391 342 304 274

8 715 596 511 447 397 358 298

10 798 698 621 559 466

12 1005 894 804 670

W Die width [mm]

b Shortest flange length[mm]

Ri Inside radius [mm]

s Sheet thickness [mm]

Tonnage [kN/m] with optimal die width W

Sheet thickness s = 3 mm - Die width W = 24 mm

Inside radius Ri = 3.8 mm

Tab. 2-5

Example:

Result:

Page 67: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 67/103

 

T488EN02.DOC  Calculations 2-21 

2.4 Selecting the die width

The die width of a lower tool depends on the type of material, sheetthickness, upper tool radius, the tool load and on the tonnage

required.

In practice, die width W is calculated according to the following ruleof thumb:

W = (6 to 10) x s

Sheet thickness s [mm] Die width W [mm]

0.5 - 2.5 6*s

3.0 - 6.0 8*s

≥8.0 10*s

The optimum die width can also be determined using the TRUMPFbending slide rule or the tonnage table:

Example: Sheet thickness 3 mm

Result: Possible die widths (the ones behind which a bending radius is indicated): 16 mm, 20 mm, 24 mm, 30 mm,

40 mm

The middle value is the ideal die width (in this case: W = 24 mm).

TRUMPF Bending slide rule - Rear 

Tab. 2-6

Fig. 34663

Page 68: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 68/103

 

2-22 Calculations T488EN02.DOC  

Press tonnage table (Material tensile strength 400 N/mm2)

W 6 8 10 12 16 20 24 30 40 50 60 70 80 90 100 120

b 4.5 6 7.5 9 12 15 18 22.5 30 37.5 45 52.5 60 67.5 75 90

s

Ri 1 1.3 1.6 1.9 2.6 3.2 3.8 4.8 6.4 8 9.6 11 13 14 16 19

0.75 52 39 31 26

1 93 70 56 47 35

1.25 145 109 87 73 55 44

1.5 209 157 126 105 79 63

1.75 214 171 143 107 86 71

2 223 186 140 112 93

2.5 291 218 175 145 116

3 314 251 209 168 126

3.5 428 342 285 228 171 1374 447 372 298 223 179 149

4.5 566 471 377 283 226 189 162

5 466 349 279 233 200 175

6 670 503 402 335 287 251 223

7 684 547 456 391 342 304 274

8 715 596 511 447 397 358 298

10 798 698 621 559 466

12 1005 894 804 670

W Die width [mm]

b Shortest flange length [mm]

Ri Inside radius [mm]

s Sheet thickness [mm]

Tonnage [kN/m] with optimal die width W

Sheet thickness s = 3 mm

Possible die widths (those for which a tonnage is listed):W = 16 mm, 20 mm, 24 mm, 30 mm, 40 mm.The middle value is the ideal die width (in this case W = 24 mm).

Tab. 2-7

Example:

Result:

Page 69: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 69/103

 

T488EN02.DOC  Calculations 2-23 

2.5 Shortest flange length

Determining the shortest flange length

The following equation can be used to determine the shortestflange length b for a 90° lower tool:

W b ×=2

b Shortest flange length [mm]

W Die width [mm]

The shortest flange length can also be determined using theTRUMPF bending slide rule or the tonnage table:

Fig. 3856

Page 70: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 70/103

 

2-24 Calculations T488EN02.DOC  

Example: Sheet thickness 3 mm - Die width 24 mm

Result: Shortest flange length 18 mm

TRUMPF Bending slide rule - Rear Fig. 34663

Page 71: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 71/103

 

T488EN02.DOC  Calculations 2-25 

Press tonnage table (Material tensile strength 400 N/mm2)

W 6 8 10 12 16 20 24 30 40 50 60 70 80 90 100 120

b 4.5 6 7.5 9 12 15 18 22.5 30 37.5 45 52.5 60 67.5 75 90

s

Ri 1 1.3 1.6 1.9 2.6 3.2 3.8 4.8 6.4 8 9.6 11 13 14 16 19

0.75 52 39 31 26

1 93 70 56 47 35

1.25 145 109 87 73 55 44

1.5 209 157 126 105 79 63

1.75 214 171 143 107 86 71

2 223 186 140 112 93

2.5 291 218 175 145 116

3 314 251 209 168 126

3.5 428 342 285 228 171 1374 447 372 298 223 179 149

4.5 566 471 377 283 226 189 162

5 466 349 279 233 200 175

6 670 503 402 335 287 251 223

7 684 547 456 391 342 304 274

8 715 596 511 447 397 358 298

10 798 698 621 559 466

12 1005 894 804 670

W Die width [mm]

b Shortest flange length [mm]

Ri Inside radius [mm]

s Sheet thickness [mm]

Tonnage [kN/m] with optimum die width W

Sheet thickness s = 3 mm - Die width W = 24 mm

Shortest flange length b = 18 mm

Tab. 2-8

Example:

Result:

Page 72: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 72/103

 

2-26 Calculations T488EN02.DOC  

2.6 Flat length

The outside surface of the bend is subjected to tension, i.e. it isstretched during bending, while the inside surface (facing the upper 

tool) is compressed (inside radius Ri).

1

2

 

1 Tension (stretching) 2 Compression

Located between these two areas is the so-called "neutral axis". Ina part with small bend radii (R < 20 mm), the neutral axis migratestowards the inside radius (Ri).The run of the "neutral axis" corresponds to the length of a bendpart when it is unfolded (flat length).

The inside radius is decisive for the flat length (length of the flat

blank) of a bending part. The inside radius is dependent on thefollowing variables:• Tool parameters

 –   Die width of lower tool

 –   Radius of upper tool

• Material parameters

 –   Sheet thickness s

 –   Tensile strength Rm

 –   Grain

• Workpiece parameters

 –   Bend angle

Fig. 51629

Inside radius

Page 73: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 73/103

 

T488EN02.DOC  Calculations 2-27 

120 (A)

110 (B)

   4   0   (   A   )

   3   5   (   B

   )

179.01144.2634.750

 

 A Outside dimension B Inside dimension

S = 5 mm

Calculating the flat length in case of largebend radii

When calculating the flat length for parts with a bend radius 20 mmand greater, one can assume that the "neutral axis" runs throughthe middle of the sheet cross-section.

The flat length L can be calculated with the following formula:

L = L1 + L2 + L3 + ...

L Flat length [mm]

Lx Length of individual segments [mm]

Example

Fig. 51628

Page 74: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 74/103

 

2-28 Calculations T488EN02.DOC  

   L   1

R     4    2     L   

3    

  L  2 =  1

 4 5 °

 

Sheet thickness s = 4 mm

Calculating the flat length in case of large bend radii

L1 = 30 mm

°

°××=

°

×+×

××=

360

)145()42(2

360

)2

(2

3602

mm

 s R

d  L

π α π 

α π  

L2 = 113.62 mm

L3 = 80 mm

L = L1 + L2 + L3 

= (30 + 113.62 + 80) mm= 223.62 mm 

Example

Fig. 38662

Page 75: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 75/103

 

T488EN02.DOC  Calculations 2-29 

Calculating the flat length in case of smallbend radii

If the part has a bend radius of  ≤20 mm, the "neutral axis" nolonger runs precisely through the middle of the sheet cross-section. A compensation value therefore needs to be taken into accountwhen calculating the flat length.

b a

 

The flat length L can be calculated with the following formula:

L = a + b - v

L Flat length [mm]

a Flange length 1 [mm]

b Flange length 2 [mm]

v Compensation value [mm]

Fig. 38663

Page 76: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 76/103

 

2-30 Calculations T488EN02.DOC  

Calculating the compensation value v

  s  2

   k.

    b

   r

a

  s

  β     

 

)2

(180

180)(2 k 

 sr  sr v ×+×

°

−°×−+=

β π   

v Compensation value [mm]

r Bend radius [mm]

s Sheet thickness [mm]

ß Bend angle [°]

k Correction factor 

The correction factor k, a variable of the bend factor v, is calculated

using the following formula:

 s

r k  log5.065.0 ×+=  

k Correction factor 

r Bend radius [mm]

s Sheet thickness [mm]

Compensation value for 

opening angle 0° - 90°

Fig. 50534

Page 77: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 77/103

 

T488EN02.DOC  Calculations 2-31 

   s     2

b  

   r

a

  s

 β  

)

2

(

180

180

2

180tan)(2 k 

 sr  sr v ×+×

°

−°×−

−°×+=

β π 

 β  

v Compensation value [mm]

r Bend radius [mm]

s Sheet thickness [mm]

ß Bend angle [°]

k Correction factor 

Correction factor k indicates the deviation of the location of theneutral axis s/2 and is calculated as follows:

 s

r k  log5.065.0 ×+=  

k Correction factor 

r Bend radius [mm]

s Sheet thickness [mm]

NoteThe bend factor v can also be obtained from Supplement 2 of DIN 6935.

Compensation value for 

opening angle 90° - 165°

Fig. 50535

Page 78: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 78/103

 

2-32 Calculations T488EN02.DOC  

a

  s

b

β  

        r

 

0=v  

v Compensation value [mm]

NoteThe values here for v are minimal, the accuracy suffices inpractice.

Compensation value for 

opening angle 165° - 180°

Fig. 50536

Page 79: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 79/103

 

T488EN02.DOC  Calculations 2-33 

Use of the compensation value in themachine controller 

The TASC 6000 control accesses the TruToPsBend database for technology data. This database contains the compensation valuesfor all conventional material-tool combinations.

These values can be called up in both manual and programmingmodes.

Icon Function / Significance

Compensation value, can be overwritten.

Compensation value from TRUMPF database.

No compensation values present in the database.

¾ Double click the icon to the left of the X-correction input field.

Bend allowance / Correction value will be displayed.

Note Another double click re-enables the X correction input field.

When working with the TruToPsBend Profile Editor, the flat length

is calculated on the basis of the tool, material and product angle,and then displayed on the screen.

Icons

Tab. 2-9

Retrieving a correction

value

Page 80: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 80/103

 

2-34 Calculations T488EN02.DOC  

2.7 Minimum distances and lengths

When bending parts which in their flat state have a hole or a notchclose to the bending line, a minimum distance must be observed

between the edge of the hole or notch and the bend itself to avoiddeforming the shape of the hole or notch.

Workpieces with holes or notches

The minimum distance x1 (for holes) or x2 (for notches) iscalculated as follows:

 xW  x 75.01 =    xW  x 75.02 =  

x1, x2 Minimum distance of bend from hole or notch [mm]

W Die width

 A quick method for determining the minimum distance in theworkshop is to calculate the shortest flange length (see Page 2-23,slide rule, tonnage table). Notches and holes can be producedwithout deformation if the distance between them and the bendingline is greater than the shortest flange length.

Fig. 1411

Page 81: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 81/103

 

T488EN02.DOC  Calculations 2-35 

2.8 Different bending flange shapes

Deformation and compression in the bending zone occur duringthe bending process and need to be taken into account in the

workpiece design.

Especially in air bending, such deformation and compression canhave a negative impact on the workpiece shape.

Incorrect design: Correct design:

1

2

3

4

 

Correct and incorrect

workpiece design

Fig. 51630

Page 82: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 82/103

 

2-36 Calculations T488EN02.DOC  

Number Description Remedy

1. The bending lines should not form anyshared points of intersection in thematerial. This would otherwise hinder tension and compression in the

bending zone, resulting in cracks.

Notches measuringx = 1.5 x s

2. Avoid edges at an angle to the bendingline.

•  Vertical distance tothe bending line,measuring

lmin = 0.75 x W

•  Notch the anglededge.

3. Instead of a short bending flange y,move the edge of the other flange backby an amount equal to x.

•  xmin = (1 to 1.5) x s

•  Notch the anglededge.

4. Instead of the short bending flange y,

make the cutout around the bendingline.

xmin = (1 to 1.5) x s

Significance:•  s Sheet thickness [mm]•  W Die width [mm]

NoteIf flange shapes such as those in Nos. 2, 3 and 4 cannot beavoided because of design considerations, then a different bendingmethod should be used – change from air bending to coining.

Tab. 2-10

Page 83: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 83/103

 

T488EN03.DOC  Tool system 3-1 

Chapter 3

Tool system

1.  Terminology................................................................... 3-2 

2.  Tools from TRUMPF...................................................... 3-3 

2.1  Tool identification............................................................. 3-3 

2.2  Upper tools ...................................................................... 3-4 

2.3  Lower tools ...................................................................... 3-6 

Die width..................................................................... 3-6 

Opening angle ............................................................ 3-7 

2.4  Tools for thin sheets ...................................................... 3-11 

2.5  System segmentation of tools ....................................... 3-13 

3.  Laser hardening........................................................... 3-15 

4.  Imprint-free bending.................................................... 3-16 

5.  Special tools................................................................. 3-18 

Page 84: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 84/103

 

3-2 Terminology T488EN03.DOC  

1. Terminology

3

2

1

5

6

7

8

 

1 Upper tool (punch)

2 Workpiece

3 Inside workpiece radius (Ri)

4 Outside workpiece radius (Ra)

5 Die width (W)

6 Lower tool radius

7 Upper tool radius

8 Lower tool (die)

Fig. 12763

Page 85: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 85/103

 

T488EN03.DOC  Tool system 3-3 

2. Tools from TRUMPF

2.1 Tool identification

Identification codes provide information about the tools. The lettersidentify a certain type of tool or a important tool characteristic.

Code Upper tool (punch) Lower tool (die)

OW Upper tool

UW Lower tool

EV Single V die

KEV Plastic single-Vee die

S Shoulder-bearing tool Narrow die (30° dies are narrow onone side whereas 84° dies are narrowon both sides).

K Head-bearing tool

H Upper tool height Height of lower tool (die)If the letter H is missing, the lower toolheight is 100 mm. If only Clamp …/His specified, then the lower tool heightis 150 mm. Code H+number refers totools with defined special heights.

R Radius (punch tip) Working r adius

W Die width

ZM  Any high (>140 mm) special tool withtension spring and Multi-LEDs

MF/S Moduf ix adapter, shoulder-bearing

ZE Insert for Z bends Insert for Z bends

FWZ Hemming tool

MST Torque support

ZDL Flattening bar 

FEV Hemming bar and single-V dieCombination lower tool for hemmingwithout I-axis adjustment.

Tab. 3-1

Page 86: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 86/103

 

3-4 Tools from TRUMPF T488EN03.DOC  

2.2 Upper tools

OW200/S OW200/K

Upper tools Type OW200

NoteBoth head and shoulder bearing upper tools can be used on theTruBend Series 5000.

Standard upper tools are available in two different heights. Lower upper tools (working height ≤120 mm) are head-bearing, highupper tools (working height ≥220 mm) are shoulder-bearing.

In the case of special upper tools, it is not the tool height alone thatdetermines whether the upper tool is head-bearing or shoulder-bearing. The press tonnage exerted on the tool is also a decisivefactor, in addition to the geometric shape, which might lead to off-center loads during the bending process.

Fig. 23589; 23588

Upper tool heights

Page 87: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 87/103

 

T488EN03.DOC  Tool system 3-5 

Shoulder-bearing tool Head-bearing tool

Tool types

NoteIn upper tool type OW210/S, both punches, the higher and thelower one, are shoulder-bearing.

OW 210/S H240 OW 210/S H140

Upper tools OW 210/S

• When using head-bearing upper tools, the tool clamping canbe loaded with maximum 1350 kN/m.

• In the case of shoulder-bearing upper tools, the tool clampingcan be loaded with maximum 1870 kN/m.

• Higher loads apply for tool lengths greater than 500 mm:

 –   head-bearing upper tools: max. 1800 kN/m.

 –   shoulder-bearing upper tools max. 2500 kN/m.

Fig. 35647, 35648

Fig. 22942; 22882

Load-bearing capacity of 

upper tool clamp

Page 88: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 88/103

 

3-6 Tools from TRUMPF T488EN03.DOC  

2.3 Lower tools

EV 001 EV 001/H EV001/S KEV ...

Lower tools

Die width

Where the die width is concerned, a distinction is made betweenthe nominal width and the width which is relevant for calculatingthe penetration depth.

The nominal width is specified on the lower tool, e.g. W = 6 for EV001. The nominal width is measured at the point where theradius of the lower tool becomes the straight line of the V-opening.

This width Wt is measured at the intersecting point of the tangents.

The difference between the nominal width and the technical diewidth becomes more obvious the larger the working radii are.

NoteThe Wt value is calculated by the control based on the lower tooldata and factored in for bend sequence calculation.

⎟⎟ ⎠

 ⎞⎜⎜⎝ 

⎛ ⎟ ⎠

 ⎞⎜⎝ 

⎛ −××⎟

 ⎠

 ⎞⎜⎝ 

⎛ ×+=

2sin1

2tan2

α α 

 RW Wt   

Overview of lower tools

Fig. 31183; 31182;33330; 33331

Nominal width

Technically important width

for penetration depth

Page 89: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 89/103

 

T488EN03.DOC  Tool system 3-7 

Wt

W

R

α

 

W Specified die width

= nominal width

Wt Technically important width for 

calculating the penetration depth

Die width

Opening angle

TRUMPF lower tools come with 5 different opening angles:

• 30°

• 80°

• 84°

• 86°• 90°

The question of which opening angle needs to be used depends onthe application in question.

In air bending, a lower tool with an opening angle of 30° is usuallyutilized. Maximum bending flexibility is achieved with this kind of tool because (providing the corresponding upper tool is available)any angle between 180° and almost 30° can be bent.

30° lower tools are available in widths W = 4 mm to 24 mm. Thetools with die widths W = 4 mm and 5 mm are thin sheet tools

designed for sheet thickness s ≤1 mm, see page 3-11.

Fig. 33333

30° lower tool

Page 90: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 90/103

 

3-8 Tools from TRUMPF T488EN03.DOC  

Lower tool Die width W [mm]

EV/S-W4/30° 4

EV/S-W5/30° 5

EV001 6

EV002 8

EV003 10

EV004 12

EV005 16

EV006 20

EV007 24

Lower tools with an opening angle of 80° are used for thick sheets,allowing angles ≥90° to be bent. When bending thick material, the

springback can be so great that coining would result if a 84° lower tool were used for producing 90° angles.

This can cause two problems:

• The required Y axis position is not attained after an anglecorrection is made while air bending.

• The ACB® angle sensor cannot be used.

80° lower tools are available in die widths W = 24 mm to 100 mm.

Lower tool Die width W [mm]

EV W24/80° 24

EV W30/80° 30

EV W40/80° 40

EV W50/80° 50

EV W60/80° 60

EV W70/80° 70

EV W80/80° 80

EV W90/80° 90

EV W100/80° 100

Tab. 3-2

80° lower tool

Tab. 3-3

Page 91: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 91/103

 

T488EN03.DOC  Tool system 3-9 

Lower tools with an opening angle of 84° are used to bendworkpieces containing holes or cutouts near the bending line,(distance ≤ shortest flange length). The holes/cutouts are notdeformed in the process (see Chapter 2).

Only ≥90° angles can be bent with 84° lower tools.

The 84° lower tool is suitable for use with the ACB® sensor in allconventional materials (mild steel, stainless steel, aluminum).

84° lower tools are available in die widths W = 4 mm to 20 mm.The lower tools with die widths W = 4 mm and 5 mm are thin sheettools for sheet thicknesses s ≤1 mm, see page 3-11.

Lower tool Die width W [mm]

EV/S-W4/84° 4

EV/S-W5/84° 5

EV W8/84° 8

EV W10/84° 10

EV W12/84° 12

EV W16/84° 16

EV W20/84° 20

Lower tools with an opening angle of 86° are the predecessors of the 84° lower tools.

However, as the springback is so great when bending stainlesssteel and various aluminum alloys, coining is performed with an86° lower tool to produce a 90° angle. The ACB® angle sensor cannot be utilized in such cases.

86° lower tools are available in die widths of W = 6 mm to 50 mm.

Note: A coining effect is achieved when 80°, 84° and 86° lower tools areused for bending 90° angles.

84° lower tool

Tab. 3-4

86° lower tool

Page 92: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 92/103

 

3-10 Tools from TRUMPF T488EN03.DOC  

Lower tool Die width W [mm]

EV020 6

EV021 8

EV022 10

EV023 12

EV024 16

EV025 20

EV026 24

EV027 30

EV028 40

EV029 50

Note86° lower tools should now be purchased only in order tosupplement an existing set of tools. When purchasing new tools,preference should instead be given to 84° lower tools.

Lower tools with an opening angle of 90° are used for coining.

90° lower tools are available in die widths W = 4 mm to 16 mm.The lower tools with die widths W = 4 mm and 5 mm are thin sheettools for sheet thickness s ≤1 mm, see page 3-11.

Lower tool Die width W [mm]

EV/S-W4/90° 4

EV/S-W5/90° 5

EV040 6

EV041 8

EV042 10

EV043 12

EV044 16

Tab. 3-5

90° lower tool

Tab. 3-6

Page 93: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 93/103

 

T488EN03.DOC  Tool system 3-11 

2.4 Tools for thin sheets

Tools for thin sheets offer the highest precision in conjunction withnarrow die widths in sheet thickness ≤1 mm.

• The small upper tool radii and small die widths make thesmallest bending radii possible.

• Thanks to the slim tool geometry, short flange lengths can alsobe achieved.

Bending with thin sheet tools

Advantages

Fig. 31178

Page 94: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 94/103

 

3-12 Tools from TRUMPF T488EN03.DOC  

There are 3 upper tools for thin sheets, 2 of which are upper toolinserts for tool holders OW/K 80 and OW/K 130:

• OW280/K (complete tool).

• OW390 (upper tool insert).

• OW391 (upper tool insert).

 All thin sheet tools are head-bearing, regardless of the workingheight.

Upper tool Working height [mm]

OW280/K 140

OW390 170 (with OW/K 80)220 (with OW/K130)

OW391 170 (with OW/K 80)220 (with OW/K130)

For thin materials, lower tools are offered with die widths of W =4 mm and 5 mm and opening angles of 30°, 84° and 90°.

These lower tools come only in a narrow version (see Page 3-6) inorder to produce narrow Z bends.

Upper tool

Tab. 3-7

Lower tool

Page 95: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 95/103

 

T488EN03.DOC  Tool system 3-13 

2.5 System segmentation of tools

Tools are available in different segmentations and lengths.

With the system segmentations A and B offered, any bendinglength, from 25 mm all the way to the bending length of themachine, can be produced in 5 mm increments.

In addition to this, upper tools are also available in left gooseneckand right gooseneck versions. Gooseneck tools are 100 mm long.

Segment, standard dimension:Length [mm]

Tool sets:Length [mm],variant

25 30 35 40 45 50 100 H100L1 H100R 2002 3002 5002 

Basic division250

2 1 1 1 1 1 1 - - - - -

1250, A 2 1 1 1 1 1 8 1 1 - - -

1250, B 2 1 1 1 1 1 1 1 1 2 1 -

2050, A 2 1 1 1 1 1 16 1 1 - - -

2050, B 2 1 1 1 1 1 1 1 1 1 1 2

2550, A 2 1 1 1 1 1 21 1 1 - - -

2550, B 2 1 1 1 1 1 1 1 1 1 1 3

3050, A 2 1 1 1 1 1 26 1 1 - - -

3050, B 2 1 1 1 1 1 1 1 1 1 1 4

4050, A 2 1 1 1 1 1 36 1 1 - - -

4050, B 2 1 1 1 1 1 1 1 1 1 1 6

1 Gooseneck tools (H100L, H100R) are available only in upper tool sets. Inlower tool sets, gooseneck tools are substituted by 2 lower tools, each100 mm in length.

2 The max. weight of the segments is limited to 25 kg. If this weight isexceeded, the respective tools are replaced by shorter (=lighter) segments.

Tab. 3-8

Page 96: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 96/103

 

3-14 Tools from TRUMPF T488EN03.DOC  

 All tools can be ordered either as complete tool sets or as singletools.

The following tool set versions are possible:

• Basic segmentation 250 mm.

• Tool sets 1250 mm, 2050 mm, 2550 mm, 3050 mm or 4050 mm:

 –   System segmentation version A:Longest tool 100 mm (see Tab. 3-8, Page 3-13).

 –   System segmentation B:Longest tool max. 500 mm (see Tab. 3-8, Page 3-13).

 All upper tools up to 100 mm in length are equipped with "Safety-Click". "Safety-Click" is a safety locking mechanism integrated inthe tool to prevent it from falling out of the tool holder. The lock canbe released by pressing a button.

• The upper tool can be exchanged vertically - quickly but stillsafely.

• Shorter tool set-up times as the tools no longer have to beremoved sideways out of the upper tool holder.

System segmentation

versions

Locking element

"Safety-Click"

Page 97: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 97/103

 

T488EN03.DOC  Tool system 3-15 

3. Laser hardening

TRUMPF tools are laser-hardened. Thanks to the use of aTRUMPF TruFlow high-powered laser with innovative special

hardening optics, a greater hardening depth and a wider hardenedzone are achieved as compared to earlier laser hardeningmethods:

• Degree of hardness 63-64 HRC.

• Hardening depth 3-4 mm.

Hardened work zones

Only the surface of the tool is hardened in laser hardening; theinterior of the tool remains "soft".

The tool does not splinter under excessive load; instead, either thetool splits or the hard layer is pressed into the soft core.

Fig. 33334

Safety of laser-hardened

tools

Page 98: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 98/103

 

3-16 Imprint-free bending T488EN03.DOC  

4. Imprint-free bending

During bending, imprints and abrasion result on the workpiece atthe support points of the lower tool.

In order to avoid marks and abrasion on high-quality or paintedsheets and on visible parts, one can choose among the followingstandardized technologies:

• Use a KEV die.

• Use bending foil.

• Use lower tools with radius R = 3 mm (e.g. with foil-coatedsheets).

KEV die Bending foil

In the case of KEV dies, a plastic strip is inserted in the area of theradius so that the workpiece lies on the plastic strip and not onmetal. This prevents marks on the workpiece due to frictionbetween metal (die) and metal (workpiece).

Die Die width W [mm]

KEV W8/30° 8

KEV W10/30° 10

KEV W12/30° 12

KEV W16/30° 16

KEV W20/30° 20

KEV W24/30° 24

Note As a general rule, the service life of the plastic strips isconsiderably greater if calculations are made with the formula W =≥8*s when selecting the die width.

Fig. 33340; 33338

KEV die

Tab. 3-9

Page 99: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 99/103

 

T488EN03.DOC  Tool system 3-17 

The bending foil is made of plastic, 0.4 mm thick and 100 mmwide. It is laid loosely over the lower tool and for that reason is ableto prevent marks on the workpiece which could arise from therubbing of metal against metal.

Bending with bending foil

Note As a rule, the bending foil lasts much longer if calculations aremade with the formula W = ≥8*s when selecting the die width.

Lower tools with standard radii are of limited suitability for bendingfilm-coated sheets without bending marks being visible on theworkpiece surface after the foil has been removed. The danger when using lower tools with standard radii is that the foil may becut through, leaving imprints on the workpiece.

 A lower tool with a radius of R = 3 mm can be used in such cases.Thanks to the large radius, the foil on the workpiece will not bedestroyed.

NoteThe shortest flange length that can be bent increases if a lower toolwith a larger radius is used (see Chapter 2).

Bending foil

Fig. 33339

Lower tool with

Radius R = 3 mm

Page 100: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 100/103

 

3-18 Special tools T488EN03.DOC  

5. Special tools

Customized special tools can be designed in collaboration withTRUMPF at any time. A wide array of special tool solutions are

listed and illustrated in the "TruBend - Working examples for bending tools" technical information brochure.

Page 101: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 101/103

 

T488EN04.DOC  Index 0-1 

Index

2 2-axis backgauge ...................................... 1-26

3 30°lower tool................................................ 3-7

4 4-axis backgauge ...................................... 1-26

5 5-axis backgauge ...................................... 1-27

6 6-axis backgauge ...................................... 1-28

8 80°lower tool................................................ 3-884°lower tool................................................ 3-986°lower tool................................................ 3-9

9 90° lower tool............................................. 3-10

A  Air bending...................................................2-3•  Press tonnage ..................................... 2-14

B Backgauge................................................. 1-26•  2-axis backgauge................................ 1-26•  4-axis backgauge................................ 1-26•  5-axis backgauge................................ 1-27•  6-axis backgauge................................ 1-28BendGuard.................................................1-36•  Mode....................................................1-38•  Safety concept..................................... 1-36Bending•  imprint-free ..........................................3-16Bending aid ................................................1-19•  Options................................................1-20Bending flange shapes .............................. 2-35Bending foil ................................................3-17Bending method•  0.............................................................2-3•  1.............................................................2-5•  11...........................................................2-8•  3.............................................................2-9•  4...........................................................2-13•   Air bending ............................................2-3•  Coining ..................................................2-5•  Flattening with coining........................... 2-8•  Learned bend ...................................... 2-13•  Sensor bending ..................................... 2-9Bending slide rule .......... 2-15, 2-19, 2-21, 2-24Box height..................................................2-17•  maximum............................................. 2-17

C Coining......................................................... 2-5•  Press tonnage ....................................... 2-5Crowning.................................................... 1-12

Page 102: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 102/103

 

0-2 T488EN04.DOC  

D Die ............................................................... 3-2Die width......................................2-23, 3-2, 3-6•  Selection ............................................. 2-21

Downstroking drive.................................... 1-10

F Flange length.................................... 2-23, 3-17Flat length.................................................. 2-26•  Calculation by the control.................... 2-33•  Large bend radii .................................. 2-27•  Small bend radii .................................. 2-29Flattening

•  Flattening front .................................... 1-16•  Flattening rear..................................... 1-17Flattening with coining................................. 2-8

G Gooseneck tools........................................ 3-13

H Height•  Upper tool.............................................. 3-4

I I axis .......................................................... 1-14Identification ................................................ 2-9

Imprint-free bending .................................. 3-16Inside radius .............................................. 2-19

K KEV die...................................................... 3-16

L Laser hardening .........................................3-15•  Degree of hardness............................. 3-15•  Hardening depth.................................. 3-15

Learned bend.............................................2-13Load-bearing capacity..................................3-5Lower tool .............................................3-2, 3-6•  Coining ................................................3-10•  Designation............................................3-6•  Die width................................................ 3-6•  Opening angle.......................................3-7•  Radius ...................................................3-2•  Radius 3 ..............................................3-17•  Thick sheet ............................................3-8•  Thin sheet............................................ 3-12Lower tool adjustment................................ 1-14

M Machine•  Speeds ...........................................1-4, 1-5Machine bed ..............................................1-12Machine dimensions.............................1-4, 1-5Machine frame .............................................1-8

O Operating station........................................1-24

P Press tonnage............................................ 2-14Press tonnage table....... 2-16, 2-20, 2-22, 2-25Punch........................................................... 3-2

R R axis .........................................................1-29Ram............................................................ 1-10Regulation....................................................2-9

Page 103: Library Bending Technology

7/14/2019 Library Bending Technology

http://slidepdf.com/reader/full/library-bending-technology 103/103

 

S Safety concept........................................... 1-36Safety element "Safety-Click".................... 3-14Sensor bending ........................................... 2-9

Sensor tool................................................... 2-9Special tools .............................................. 3-18Speeds.................................................. 1-4, 1-5•  Press speed ................................... 1-4, 1-5•  Rapid speed................................... 1-4, 1-5•  Rapid up speed.............................. 1-4, 1-5Support brackets ....................................... 1-21

T Technical data•  Bending aid ......................................... 1-19Thin sheet tool•  Lower tool............................................ 3-12•  Upper tool............................................ 3-12Tool.............................................................. 3-2•  Length ................................................. 3-13•  Locking element.................................. 3-14•  Lower tool....................................... 3-2, 3-6•  System segmentation ......................... 3-13•  Tools for thin sheets............................ 3-11•  Upper .................................................... 3-4•  Upper tool.............................................. 3-2

Tool holder................................................. 1-13Tool lengths ............................................... 3-13Tool:........................................................... 3-13Tools for thin sheets .................................. 3-11

U Upper tool .............................................3-2, 3-4•  Height ....................................................3-4•  Load-bearing capacity........................... 3-5

•  Radius ...................................................3-2•  Thin sheet............................................ 3-12Upper tool height........................................2-17

W Working height......................................1-4, 1-5Workpiece.................................................... 3-2•  Minimum distance ............................... 2-34•  Minimum length................................... 2-34

Workpiece radius.........................................3-2

X X axis .........................................................1-29

Z Z axis..........................................................1-30