30
[email protected] Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

[email protected] Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Embed Size (px)

Citation preview

Page 1: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

[email protected]

Lecture 1-5

Power Law Structure

Weili Wu Ding-Zhu DuUniv of Texas at Dallas

Page 2: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

2

is a type of mathematical graph in which most nodes are not neighbors of one another, but most nodes can be reached from every other by a small number of hops or steps.”

“The small world network

Why small distance and large size can stay together?

Page 3: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

• During the evolution and growth of a network, the great majority of new edges are to nodes with an already high degree.

Power Law

3

Page 4: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Power law distribution:f(x) ~ x–α

Log-log scale:log f(x) ~ –αlog x

Power-law distribution

4

Page 5: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

• Nodes with high degrees may have “butterfly effect”.

• Small number• Big influence

Power Law

5

Page 6: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Important Facts on Power-law

• Many NP-hard network problems are still NP-hard in power-law graphs.

• While they have no good approximation in general, they have constant-approximation in power-law graphs.

Page 7: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

What is Power Law Graph?

Page 8: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

8

),( PG

k

ekvGVvPG |})deg(|)({| means ),(

1 if 1

1 if

1 if )(

nodes#

)( . is degreemax The

/1

/

/

ee

e

k

e n

kee

e

k

Page 9: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Warning In study on Power-law Graph, a

lot of real numbers are treated as integers!!!

9

Page 10: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

10

2 if 22

1

2 if 4

1

2 if )1(2

1

2

1 edges#

. is degreemax The

/21

/

/

e

e

e

k

ek m

e

e

k

1

1)( where

i i

Page 11: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

11

.48.2 level,domain -intra androuter at Internet

).(outdegree 2.45 ,(indegree) 1.2 Web, WideWorld

.45.21.2 networks,ion collaborat Scientific

A.L. Barabasi, et al., Evolution of the social network of scientific collaborations, Physica A, vol. 311, 2002.

R. Albert, et al., Erro and attack tolerance of complex networks,Nature, vol. 406,

M. Faloutsos, et al., On power-law relationship of the internet topology, SIGCOMM’99,

Page 12: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Why still NP-hard in Power-law?

12

Page 13: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Proof Techniques

• NP-hard in graph with constant degree, e.g., the Vertex-Cover is NP-hard in cubic graphs.

• Embedding a constant-degree graph into a power-law graph.

13

Page 14: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

14

graphs law-powerin graph cubicin

Cover-Vertex Cover -Vertex pm

3/ nodes #

graph cubic

e

cover.-min vertexknown -easilyan with and

/ nodes # graph with acostruct ,3any for kek

Page 15: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Why approximate easily in Power-law?

15

Page 16: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

• More nodes with low degree• Less nodes with high degree• Size of opt solution is often determined by #

of nodes with low degree.

16

e

k

ek

)( nodes of # total

: degree with nodes #

,1for

Page 17: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Modularity Maximization

17

random.at ddistribute wereedges iffraction such

ofnumber expected theminuscommunity awithin

edges theoffraction theof difference total theis This

.),( where

),(

),(),(

),(

),(

define , of ),...,,(partition aGiven

).(matrixadjacency with ),(graph aConsider

,

1

2

21

WjUiij

k

s

ssssss

k

ij

aWUL

VVL

VVLVVL

VVL

VVLQ

VVVV

aEVG

Modularity Function (Newman 2006)

Page 18: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Modularity Maximization

18

1),(

),(

),(

),(),(

),(

),(

1

1

2

VVL

VVL

VVL

VVLVVL

VVL

VVLQ

k

sss

k

s

ssssss

Page 19: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

• Lower-degree nodes follow higher-degree nodes.

Idea

19

Page 20: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Low-Degree Following Algorithm

20

orbiters ofset :

members ofset :

leaders ofset :

.},{

set and )(selet else

},{ },{let

and \)(select then

)( if then

)(&))(deg( if

do each for

;..1 0,,,

0

O

M

L

tpiOO

iNt

jpjLLiMM

MiNj

MiN

MLidi

Vi

nipOML

i

i

i

|} degree with nodes{|5.0|| 0dOM

ii j

ii t

T.N. Dinh & M.T. Thai, 2013

Page 21: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Low-Degree Following Algorithm

21

.)(:

.: .:

." follows "

.},{

set and )(selet else

},{ },{

let and \)(select then )( if then

)(&))(deg( if

do each for

;..1 0,,,

0

MiNOi

MpOiLpMi

pi

tpiOO

iNt

jpjLLiMM

MiNjMiN

MLidi

Vi

nipOML

ii

i

i

i

i

Page 22: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Low-Degree Following Algorithm

22

}|{}|{}{)(

)}(|)({

ipOtipMjiiC

OMViiC

tpj

.modularitymaximun reach partition

community abovesuch that .., 1,2, from Choose 0 nd

Choice of d0

Page 23: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Low-Degree Following Algorithm

23

}|{}|{}{)(

)}(|)({

tpOtipMjiiC

OMViiC

ipj

1)-(

)(

least at modularity

with partition community generates which algorithm

time-polynomial aconstruct can wealgorithm, LDFwith

,0any for and 2 graph with law-powerFor

A

Theorem

m

n

)1(

)(

Page 24: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Idea of Proof

24

}|{}|{}{)(

},...,,{)}(|)({ 21

ipOtipMjiiC

VVVOMViiC

tpj

h

.- 1)-(

)(

leastat modularitywith partition community a give

can which a exists e that thershow weproof, In the

.modularitylargest reach to a choose wealgorithm,In

0

0

d

d

Page 25: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Lower bound for positive part

25

}|{}|{}{)(

},...,,{)}(|)({ 21

ipOtipMjiiC

VVVOMViiC

tpj

h

).)(:note(

. fromt independen , largely sufficientfor

))((

||2),( Hence,

community. same in the are and :

1

0

11

0

k

d

k

k

sss

i

k

d

e

keOMVVL

piOMi

Page 26: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Upper bound for negative part

26

}|{}|{}{)(

},...,,{)}(|)({ 21

ipOtipMjiiC

VVVOMViiC

tpj

h

/

1

220

/220

2

1 )(

20

2

20

200

)2()2(

)2)(deg()),(),((

2)deg(

)deg()deg()deg(),(),(

:)( with

e

k

h

s OMVissss

ssss

s

deekdk

e

diVVLVVL

di

didiiVVLVVL

iCVLi

Page 27: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

27

/

1

220

/220

2

1

20

2

)2()2(

)2)(deg()),(),((

e

k

h

s Lissss

deekdk

e

diVVLVVL

.) fromt independen is ,on depends :(note

. largely sufficientfor

)1(

)(

)1(

)2(

)1(

)(

),(

),(),(

),(

),(

0

)/11(

220

1

2

d

e

d

VVL

VVLVVL

VVL

VVLQ

h

s

ssssss

))((||2),(1

eOMVVLh

sss

Page 28: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

Warning In study on Power-law Graph, a

lot of real numbers are treated as integers!!!

28

Can we get same results if not do so?

Page 29: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

References

29

(2013) 1006-997 :31(6)

,modularity maximizing

for algorithmsion approximat :networks free-scalein

detection Community :Thai T.My Dinh, N. Thang .1

onsommunicatiAreas in C

ctedal on SeleIEEE Journ

Page 30: Lidong.wu@utdallas.edu Lecture 1-5 Power Law Structure Weili Wu Ding-Zhu Du Univ of Texas at Dallas

THANK YOU!