112
Lie Pseudo–Groups Peter J. Olver University of Minnesota http://www.math.umn.edu/ olver Paris, December, 2009

LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Lie Pseudo–Groups

Peter J. Olver

University of Minnesota

http://www.math.umn.edu/! olver

Paris, December, 2009

Page 2: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Sur la theorie, si importante sans doute, mais

pour nous si obscure, des "groupes de Lie infinis#,

nous ne savons rien que ce qui se trouve dans les

memoires de Cartan, premiere exploration a travers

une jungle presque impenetrable; mais cell-ci menace

de se refermer sur les sentiers deja traces, si l’on

ne procede bientot a un indispensable travail de

defrichement.

— Andre Weil, 1947

Page 3: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

What’s the Di!culty with Infinite–Dimensional Groups?

• Lie invented Lie groups to study symmetry and solution ofdi!erential equations.

$ In Lie’s time, there were no abstract Lie groups. All groupswere realized by their action on a space.

% Therefore, Lie saw no essential distinction between finite-dimensional and infinite-dimensional group actions.

However, with the advent of abstract Lie groups, the twosubjects have gone in radically di!erent directions.

& The general theory of finite-dimensional Lie groups has beenrigorously formalized and applied.

' But there is still no generally accepted abstract object thatrepresents an infinite-dimensional Lie pseudo-group!

Page 4: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Ehresmann’s Trinity

1953:

• Lie Pseudo-groups

• Jets

• Groupoids

Page 5: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Ehresmann’s Trinity

1953:

• Lie pseudo-groups

• Jets

• Groupoids

Page 6: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Ehresmann’s Trinity

1953:

• Lie pseudo-groups

• Jets

• Groupoids

Page 7: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Ehresmann’s Trinity

1953:

• Lie pseudo-groups

• Jets

• Groupoids

Page 8: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Lie Pseudo-groups — History

• Lie, Medolaghi, Vessiot

• E. Cartan

• Ehresmann, Libermann

• Kuranishi, Spencer, Singer, Sternberg, Guillemin,Kumpera, . . .

Page 9: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Lie Pseudo-groups — Applications

• Relativity

• Noether’s (Second) Theorem

• Gauge theory and field theories:Maxwell, Yang–Mills, conformal, string, . . .

• Fluid mechanics, metereology:Navier–Stokes, Euler, boundary layer, quasi-geostropic, . . .

• Linear and linearizable PDEs

• Solitons (in 2 + 1 dimensions): K–P, Davey-Stewartson, . . .

• Kac–Moody

• Morphology and shape recognition

• Control theory

• Geometric numerical integration

• Lie groups !

Page 10: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Lie Pseudo-groups — Moving Frames

$ Motivation: To develop an algorithmic invariant calculus for Lie group andpseudo-group actions. Classify and construct di!erential invariants— including their generators and syzygies — invariant di!erentialforms, invariant di!erential operators, invariant di!erential equa-tions, invariant variational problems, etc.

% Tools: The equivariant approach to moving frames — which can beimplemented for arbitrary Lie group and most Lie pseudo-groupactions — along with the induced invariant variational bicomplex.

& Additional benefits: A new, elementary approach to the structure theoryfor Lie pseudo-groups, including explicit construction of Maurer–Cartan forms and direct, elementary determination of structureequations from the infinitesimal generators.

=( PJO, Fels, Pohjanpelto, Cheh, Itskov, Valiquette

Page 11: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Lie Pseudo-groups—Further applications

• Symmetry groups of di!erential equations

• Vessiot group splitting; explicit solutions

• Gauge theories

• Calculus of variations

• Invariant geometric flows

• Computer vision and mathematical morphology

• Geometric numerical integration

Page 12: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Pseudo-groupsM — analytic (smooth) manifold

Definition. A pseudo-group is a collection of local analytic

di!eomorphisms ! : dom! ) M * M such that

• Identity : 1M + G

• Inverses : !!1 + G

• Restriction: U ) dom! =( ! | U + G

• Continuation: dom! =!

U! and ! | U! + G =( ! + G

• Composition: im! ) dom" =( " "! + G

Page 13: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The Di"eomorphism Pseudo-group

M — m-dimensional manifold

D = D(M) — pseudo-group ofall local analytic di!eomorphisms

Z = !(z)

!"

#

z = (z1, . . . , zm) — source coordinates

Z = (Z1, . . . , Zm) — target coordinates

!"

#

L"(!) = " "! — left action

R"(!) = ! ""!1 — right action

Page 14: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Jets

For 0 , n , -:

Given a smooth map ! : M * M , written in local coordinates as

Z = !(z), let jn!|z denote its n–jet at z + M , i.e., its nth

order Taylor polynomial or series based at z.

Jn(M,M) is the nth order jet bundle, whose points are the jets.

Local coordinates on Jn(M,M):

(z, Z(n)) = ( . . . za . . . Zb . . . ZbA . . . ), Zb

A =#kZb

#za1 · · · #zak

Page 15: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Di"eomorphism Jets

The nth order di!eomorphism jet bundle is the subbundle

D(n) = D(n)(M) ) Jn(M,M)

consisting of nth order jets of local di!eomorphisms ! : M * M .

The Inverse Function Theorem tells us that D(n) is definedby the non-vanishing of the Jacobian determinant:

det(Zab ) = det( #Za/#zb ) .= 0

$ D(n) forms a groupoid undercomposition of Taylor polynomials/series.

Page 16: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Groupoid StructureDouble fibration:

D(n)

!!

"!(n) #

#$" (n)

M M

!(n)(z, Z(n)) = z — source map

" (n)(z, Z(n)) = Z — target map

You are only allowed to multiply h(n) · g(n) if

!(n)(h(n)) = " (n)(g(n))

$ Composition of Taylor polynomials/series is well-definedonly when the source of the second matches the target ofthe first.

Page 17: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

One-dimensional case: M = R

Source coordinate: x Target coordinate: X

Local coordinates on D(n)(R)

g(n) = (x,X,Xx, Xxx, Xxxx, . . . , Xn)

Di!eomorphism jet:

X[[h ]] = X +Xx h+ 12 Xxx h

2 + 16 Xxxx h

3 + · · ·

=( Taylor polynomial/series at a source point x

Page 18: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Groupoid multiplication of di!eomorphism jets:

(X,X,XX,XXX, . . . ) · (x,X,Xx, Xxx, . . . )

= (x,X,XX Xx,XX Xxx +XXX X2x, . . . )

=( Composition of Taylor polynomials/series

• The groupoid multiplication (or Taylor composition) is onlydefined when the source coordinate X of the first multipli-cand matches the target coordinate X of the second.

• The higher order terms are expressed in terms of Bell polyno-mials according to the general Faa–di–Bruno formula.

Page 19: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Pseudo-group Jets

Any pseudo-group G ) D defines

a Lie sub-groupoid G(n) ) D(n).

Definition. G is regular if, for n # 0, its jets ! : G(n) * M

form an embedded subbundle of ! : D(n) * M and the

projection %n+1n : G(n+1) * G(n) is a fibration.

Definition. A regular, analytic pseudo-group G is called a

Lie pseudo-group of order n# / 1 if every local di!eomor-

phism ! + D satisfying jn!! ) G(n!) belongs it: ! + G.

Page 20: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

In local coordinates, G(n!) ) D(n!) forms a system ofdi!erential equations

F (n!)(z, Z(n!)) = 0

called the determining system of the pseudo-group. The Liecondition requires that every local solution to the determiningsystem belongs to the pseudo-group.

What about integrability/involutivity?

Lemma. In the analytic category, for su"ciently large n # 0the determining system G(n) ) D(n) of a regular pseudo-group is an involutive system of partial di!erential equations.

Proof : Cartan–Kuranishi + local solvability.

Page 21: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

In local coordinates, G(n!) ) D(n!) forms a system ofdi!erential equations

F (n!)(z, Z(n!)) = 0

called the determining system of the pseudo-group. The Liecondition requires that every local solution to the determiningsystem belongs to the pseudo-group.

What about integrability/involutivity?

Lemma. In the analytic category, for su"ciently large n # 0the determining system G(n) ) D(n) of a regular pseudo-group is an involutive system of partial di!erential equations.

Proof : Cartan–Kuranishi + local solvability.

Page 22: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

In local coordinates, G(n!) ) D(n!) forms a system ofdi!erential equations

F (n!)(z, Z(n!)) = 0

called the determining system of the pseudo-group. The Liecondition requires that every local solution to the determiningsystem belongs to the pseudo-group.

What about integrability/involutivity?

Lemma. In the analytic category, for su"ciently large n # 0the determining system G(n) ) D(n) of a regular pseudo-group is an involutive system of partial di!erential equations.

Proof : regularity + Cartan–Kuranishi + local solvability.

Page 23: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Lie Completion of a Pseudo-group

Definition. The Lie completion G 0 G of a regular pseudo-group is defined as the space of all analytic di!eomorphisms! that solve the determining system G(n!).

Theorem. G and G have the same di!erential invariants, thesame invariant di!erential forms, etc.

$ Thus, for local geometry, there is no loss in generality assum-ing all (regular) pseudo-groups are Lie pseudo-groups!

Page 24: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Lie Completion of a Pseudo-group

Definition. The Lie completion G 0 G of a regular pseudo-group is defined as the space of all analytic di!eomorphisms! that solve the determining system G(n!).

Theorem. G and G have the same di!erential invariants, thesame invariant di!erential forms, etc.

$ Thus, for local geometry, there is no loss in generality assum-ing all (regular) pseudo-groups are Lie pseudo-groups!

Page 25: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

A Non-Lie Pseudo-group

X = !(x) Y = !(y) where ! + D(R)

On the o!-diagonal set M = { (x, y) |x .= y }, the pseudo-group G is regular of order 1, and G(1) ) D(1) is defined by thefirst order determining system

Xy = Yx = 0 Xx, Yy .= 0

The general solution to the determining system G(1) formsthe Lie completion G:

X = !(x) Y = "(y) where !," + D(R)

Page 26: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Structure of Lie Pseudo-groups

Recall:

The structure of a finite-dimensional Lie groupG is specified by its Maurer–Cartan forms — a basisµ1, . . . , µr for the right-invariant one-forms:

dµk =$

i<j

Ckij µ

i 1 µj

Page 27: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

What should be the Maurer–Cartan forms of aLie pseudo-group?

Cartan: Use exterior di!erential systems andprolongation to determine the structure equations.

I propose a direct approach based on the followingobservation:

The Maurer–Cartan forms for a Lie group and henceLie pseudo-group can be identified with the right-invariant one-forms on the jet groupoid G(#).

The structure equations can be determined immedi-ately from the infinitesimal determining equations.

Page 28: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

What should be the Maurer–Cartan forms of aLie pseudo-group?

Cartan: Use exterior di!erential systems andprolongation to determine the structure equations.

I propose a direct approach based on the followingobservation:

The Maurer–Cartan forms for a Lie group and henceLie pseudo-group can be identified with the right-invariant one-forms on the jet groupoid G(#).

The structure equations can be determined immedi-ately from the infinitesimal determining equations.

Page 29: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

What should be the Maurer–Cartan forms of aLie pseudo-group?

Cartan: Use exterior di!erential systems andprolongation to determine the structure equations.

I propose a direct approach based on the followingobservation:

The Maurer–Cartan forms for a Lie group and henceLie pseudo-group can be identified with the right-invariant one-forms on the jet groupoid G(#).

The structure equations can be determined immedi-ately from the infinitesimal determining equations.

Page 30: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

What should be the Maurer–Cartan forms of aLie pseudo-group?

Cartan: Use exterior di!erential systems andprolongation to determine the structure equations.

I propose a direct approach based on the followingobservation:

The Maurer–Cartan forms for a Lie group and henceLie pseudo-group can be identified with the right-invariant one-forms on the jet groupoid G(#).

The structure equations can be determined immediatelyfrom the infinitesimal determining equations.

Page 31: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

What should be the Maurer–Cartan forms of aLie pseudo-group?

Cartan: Use exterior di!erential systems andprolongation to determine the structure equations.

I propose a direct approach based on the followingobservation:

The Maurer–Cartan forms for a Lie group and henceLie pseudo-group can be identified with the right-invariant one-forms on the jet groupoid G(#).

The structure equations can be determined immediatelyfrom the infinitesimal determining equations.

Page 32: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The Variational Bicomplex

The di!erential one-forms on an infinite jet bundle split intotwo types:

• horizontal forms

• contact forms

Consequently, the exterior derivative on D(#) splits

d = dM + dG

into horizontal (manifold) and contact (group) compo-nents, leading to the variational bicomplex structure onthe algebra of di!erential forms on D(#).

Page 33: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

For the di!eomorphism jet bundle

D(#) ) J#(M,M)

Local coordinates:

z1, . . . zm

% &' (, Z1, . . . Zm

% &' (, . . . Zb

A, . . .% &' (

source target jet

Horizontal forms:dz1, . . . , dzm

Basis contact forms:

#bA = dGZb

A = dZbA 2

m$

a=1

ZaA,a dz

a

Page 34: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

One-dimensional case: M = R

Local coordinates on D(#)(R)

(x,X,Xx, Xxx, Xxxx, . . . , Xn, . . . )

Horizontal form:dx

Contact forms:# = dX 2Xx dx

#x = dXx 2Xxx dx

#xx = dXxx 2Xxxx dx

...

Page 35: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Maurer–Cartan Forms

Definition. The Maurer–Cartan forms for the di!eomorphismpseudo-group are the right-invariant one-forms on thedi!eomorphism jet groupoid D(#).

Key observation: Since the right action only a!ects sourcecoordinates, the target coordinate functions Za

are right-invariant.

Thus, when we decompose

dZa = &a + µa

horizontal contact

both components &a, µa are right-invariant one forms.

Page 36: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Maurer–Cartan Forms

Definition. The Maurer–Cartan forms for the di!eomorphismpseudo-group are the right-invariant one-forms on thedi!eomorphism jet groupoid D(#).

Key observation: Since the right action only a!ects sourcecoordinates, the target coordinate functions Za

are right-invariant.

Thus, when we decompose

dZa = &a + µa

horizontal contact

both components &a, µa are right-invariant one forms.

Page 37: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Maurer–Cartan Forms

Definition. The Maurer–Cartan forms for the di!eomorphismpseudo-group are the right-invariant one-forms on thedi!eomorphism jet groupoid D(#).

Key observation: Since the right action only a!ects sourcecoordinates, the target coordinate functions Za

are right-invariant.

Thus, when we decompose

dZa = &a + µa

horizontal contact

both components &a, µa are right-invariant one forms.

Page 38: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Invariant horizontal forms:

&a = dM Za =m$

b=1

Zab dz

b

Dual invariant total di!erentiation operators:

DZa =m$

b=1

(Zab )

!1Dzb

Thus, the invariant contact forms µbA are obtained by invariant

di!erentiation of the order zero contact forms:

µb = dGZb = #b = dZb 2m$

a=1

Zba dz

a

µbA = D

AZµ

b = DZa1 · · · DZanµb b = 1, . . . ,m, #A / 0

Page 39: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

One-dimensional case: M = R

Contact forms:

# = dX 2Xx dx

#x = Dx# = dXx 2Xxx dx

#xx = D2x# = dXxx 2Xxxx dx

Right-invariant horizontal form:

& = dM X = Xx dx

Invariant di!erentiation:

DX =1

Xx

Dx

Page 40: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Invariant contact forms:

µ = # = dX 2Xx dx

µX = DXµ =#x

Xx

=dXx 2Xxx dx

Xx

µXX = D2Xµ =

Xx#xx 2Xxx#x

X3x

=Xx dXxx 2Xxx dXx + (X2

xx 2XxXxxx) dx

X3x

...

µn = DnXµ

Page 41: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The Structure Equations for

the Di"eomorphism Pseudo–group

dµbA =

)Cb,B,C

A,c,d µcB 1 µd

C

Formal Maurer–Cartan series:

µb[[H ]] =$

A

1

A!µbAHA

H = (H1, . . . , Hm) — formal parameters

dµ[[H ]] = 3µ[[H ]] 1 (µ[[H ]]2 dZ )

d& = 2 dµ[[ 0 ]] = 3µ[[ 0 ]] 1 &

Page 42: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The Structure Equations for

the Di"eomorphism Pseudo–group

dµbA =

)Cb,B,C

A,c,d µcB 1 µd

C

Formal Maurer–Cartan series:

µb[[H ]] =$

A

1

A!µbAHA

H = (H1, . . . , Hm) — formal parameters

dµ[[H ]] = 3µ[[H ]] 1 (µ[[H ]]2 dZ )

d& = 2 dµ[[ 0 ]] = 3µ[[ 0 ]] 1 &

Page 43: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

One-dimensional case: M = R

Structure equations:

d& = µX 1 & dµ[[H ]] =dµ

dH[[H ]] 1 (µ[[H ]]2 dZ)

where

& = Xx dx = dX 2 µ

µ[[H ]] = µ+ µX H + 12 µXX H2 + · · ·

µ[[H ]]2 dZ = 2& + µX H + 12 µXX H2 + · · ·

dH[[H ]] = µX + µXX H + 1

2 µXXX H2 + · · ·

Page 44: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

In components:

d& = µ1 1 &

dµn = 2µn+1 1 & +n!1$

i=0

*n

i

+

µi+1 1 µn!i

= & 1 µn+1 2[ n+1

2 ]$

j=1

n2 2j + 1

n+ 1

*n+ 1

j

+

µj 1 µn+1!j.

=( Cartan

Page 45: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The Maurer–Cartan Forms

for a Lie Pseudo-group

The Maurer–Cartan forms for a pseudo-group G ) Dare obtained by restricting the di!eomorphismMaurer–Cartan forms &a, µb

A to G(#) ) D(#).

$ $ The resulting one-forms are no longer linearlyindependent, but the dependencies can bedetermined directly from the infinitesimalgenerators of G.

Page 46: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The Maurer–Cartan Forms

for a Lie Pseudo-group

The Maurer–Cartan forms for a pseudo-group G ) Dare obtained by restricting the di!eomorphismMaurer–Cartan forms &a, µb

A to G(#) ) D(#).

$ $ The resulting one-forms are no longer linearlyindependent, but the dependencies can bedetermined directly from the infinitesimalgenerators of G.

Page 47: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Infinitesimal Generators

g — Lie algebra of infinitesimal generators ofthe pseudo-group G

z = (x, u) — local coordinates on M

Vector field:

v =m$

a=1

'a(z)#

#za=

p$

i=1

(i#

#xi+

q$

$=1

)$#

#u$

Vector field jet:jnv 42* '(n) = ( . . . 'bA . . . )

'bA =##A'b

#zA=

#k'b

#za1 · · · #zak

Page 48: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The infinitesimal generators of G are the solutions to theinfinitesimal determining equations

L(z, '(n)) = 0 (5)

obtained by linearizing the nonlinear determining equations atthe identity.

• If G is the symmetry group of a system of di!erential equa-tions, then (5) is the (involutive completion of) the usualLie determining equations for the symmetry group.

Page 49: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The infinitesimal generators of G are the solutions to theinfinitesimal determining equations

L(z, '(n)) = 0 (5)

obtained by linearizing the nonlinear determining equations atthe identity.

• If G is the symmetry group of a system of di!erential equa-tions, then (5) is the (involutive completion of) the usualLie determining equations for the symmetry group.

Page 50: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Theorem. The Maurer–Cartan forms on G(#) satisfy theinvariantized infinitesimal determining equations

L( . . . Za . . . µbA . . . ) = 0 ($ $)

obtained from the infinitesimal determining equations

L( . . . za . . . 'bA . . . ) = 0 ($)

by replacing

• source variables za by target variables Za

• derivatives of vector field coe"cients 'bA byright-invariant Maurer–Cartan forms µb

A

Page 51: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The Structure Equationsfor a Lie Pseudo-group

Theorem. The structure equations for the pseudo-group

G are obtained by restricting the universal di!eomorphism

structure equations

dµ[[H ]] = 3µ[[H ]] 1 (µ[[H ]]2 dZ )

to the solution space of the linear algebraic system

L( . . . Za, . . . µbA, . . . ) = 0.

Page 52: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Comparison of StructureEquations

If the action is transitive, then our structure equations are isomorphicto Cartan’s. However, this is not true for intransitive pseudo-groups.Whose structure equations are “correct”?

• To find the Cartan structure equations, one first needs to work in anadapted coordinate chart, which requires identification of the invariantson M . Ours can be found in any system of local coordinates.

• Cartan’s procedure for identifying the invariant forms is recursive, and noteasy to implement. Ours follow immediately from the structure equationsfor the di!eomorphism pseudo-group using merely linear algebra.

• For finite-dimensional intransitive Lie group actions, Cartan’s pseudo-group structure equations do not coincide with the standard Maurer–Cartan equations. Ours do (upon restriction to a source fiber).

• Cartan’s structure equations for isomorphic pseudo-groups can be non-isomorphic. Ours are always isomorphic.

Page 53: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Comparison of StructureEquations

If the action is transitive, then our structure equations are isomorphicto Cartan’s. However, this is not true for intransitive pseudo-groups.Whose structure equations are “correct”?

• To find the Cartan structure equations, one first needs to work in anadapted coordinate chart, which requires identification of the invariantson M . Ours can be found in any system of local coordinates.

• Cartan’s procedure for identifying the invariant forms is recursive, and noteasy to implement. Ours follow immediately from the structure equationsfor the di!eomorphism pseudo-group using merely linear algebra.

• For finite-dimensional intransitive Lie group actions, Cartan’s pseudo-group structure equations do not coincide with the standard Maurer–Cartan equations. Ours do (upon restriction to a source fiber).

• Cartan’s structure equations for isomorphic pseudo-groups can be non-isomorphic. Ours are always isomorphic.

Page 54: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Comparison of StructureEquations

If the action is transitive, then our structure equations are isomorphicto Cartan’s. However, this is not true for intransitive pseudo-groups.Whose structure equations are “correct”?

• To find the Cartan structure equations, one first needs to work in anadapted coordinate chart, which requires identification of the invariantson M . Ours can be found in any system of local coordinates.

• Cartan’s procedure for identifying the invariant forms is recursive, and noteasy to implement. Ours follow immediately from the structure equationsfor the di!eomorphism pseudo-group using merely linear algebra.

• For finite-dimensional intransitive Lie group actions, Cartan’s pseudo-group structure equations do not coincide with the standard Maurer–Cartan equations. Ours do (upon restriction to a source fiber).

• Cartan’s structure equations for isomorphic pseudo-groups can be non-isomorphic. Ours are always isomorphic.

Page 55: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Comparison of StructureEquations

If the action is transitive, then our structure equations are isomorphicto Cartan’s. However, this is not true for intransitive pseudo-groups.Whose structure equations are “correct”?

• To find the Cartan structure equations, one first needs to work in anadapted coordinate chart, which requires identification of the invariantson M . Ours can be found in any system of local coordinates.

• Cartan’s procedure for identifying the invariant forms is recursive, and noteasy to implement. Ours follow immediately from the structure equationsfor the di!eomorphism pseudo-group using merely linear algebra.

• For finite-dimensional intransitive Lie group actions, Cartan’s pseudo-group structure equations do not coincide with the standard Maurer–Cartan equations. Ours do (upon restriction to a source fiber).

• Cartan’s structure equations for isomorphic pseudo-groups can be non-isomorphic. Ours are always isomorphic.

Page 56: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Comparison of StructureEquations

If the action is transitive, then our structure equations are isomorphicto Cartan’s. However, this is not true for intransitive pseudo-groups.Whose structure equations are “correct”?

• To find the Cartan structure equations, one first needs to work in anadapted coordinate chart, which requires identification of the invariantson M . Ours can be found in any system of local coordinates.

• Cartan’s procedure for identifying the invariant forms is recursive, and noteasy to implement. Ours follow immediately from the structure equationsfor the di!eomorphism pseudo-group using merely linear algebra.

• For finite-dimensional intransitive Lie group actions, Cartan’s pseudo-group structure equations do not coincide with the standard Maurer–Cartan equations. Ours do (upon restriction to a source fiber).

• Cartan’s structure equations for isomorphic pseudo-groups can be non-isomorphic. Ours are always isomorphic.

Page 57: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Lie–Kumpera Example

X = f(x) U =u

f $(x)

Infinitesimal generators:

v = (#

#x+ )

#

#u= ((x)

#

#x2 ($(x)u

#

#u

Linearized determining system

(x = 2)

u(u = 0 )u =

)

u

Page 58: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Maurer–Cartan forms:

& =u

Udx = fx dx, * = Ux dx+

U

udu =

2u fxx dx+ fx du

fx2

µ = dX 2U

udx = df 2 fx dx, + = dU 2 Ux dx2

U

udu = 2

u

fx2( dfx 2 fxx dx )

µX =du

u2

dU 2 Ux dx

U=

dfx 2 fxx dx

fx, µU = 0

+X =U

u(dUx 2 Uxx dx)2

Ux

u(dU 2 Ux dx)

= 2u

fx3( dfxx 2 fxxx dx ) +

u fxxfx

4( dfx 2 fxx dx )

+U = 2du

u+

dU 2 Ux dx

U= 2

dfx 2 fxx dx

fx

Page 59: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

First order linearized determining system:

(x = 2)

u(u = 0 )u =

)

u

First order Maurer–Cartan determining system:

µX = 2+

UµU = 0 +U =

+

U

Substituting into the full di!eomorphism structure equationsyields the (first order) structure equations:

dµ = 2 d& =+ 1 &

U, d+ = 2 +X 1 & 2

+ 1 *

U

d+X = 2 +XX 1 & 2+X 1 (* + 2 +)

U

Page 60: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Symmetry Groups—Review

System of di!erential equations:

$%(x, u(n)) = 0, + = 1, 2, . . . , k

By a symmetry, we mean a transformation that maps solutionsto solutions.

Lie: To find the symmetry group of the di!erential equations,work infinitesimally.

The vector field

v =p$

i=1

(i(x, u)#

#xi+

q$

$=1

)$(x, u)#

#u$

is an infinitesimal symmetry if its flow exp(tv) is a one-parameter symmetry group of the di!erential equation.

Page 61: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

We prolong v to the jet space whose coordinates are thederivatives appearing in the di!erential equation:

v(n) =p$

i=1

(i#

#xi+

q$

$=1

n$

#J=0

)J$

#

#u$J

where

)J$ = DJ

*

)$ 2p$

i=1

u$i (i

+

+p$

i=1

u$J,i (i

DJ — total derivativesInfinitesimal invariance criterion:

v(n)($%) = 0 whenever $ = 0.

Infinitesimal determining equations:

L(x, u; ((n),)(n)) = 0

$ $ We can determine the structure of the symmetry groupwithout solving the determining equations!

Page 62: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The Korteweg–deVries equation

ut + uxxx + uux = 0

Symmetry generator:

v = *(t, x, u)#

#t+ ((t, x, u)

#

#x+ )(t, x, u)

#

#uProlongation:

v(3) = v + )t #

#ut

+ )x #

#ux

+ · · · + )xxx #

#uxxx

where)t = )t + ut)u 2 ut*t 2 u2

t*u 2 ux(t 2 utux(u

)x = )x + ux)u 2 ut*x 2 utux*u 2 ux(x 2 u2x(u

)xxx = )xxx + 3ux)u + · · ·

Page 63: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Infinitesimal invariance:

v(3)(ut + uxxx + uux) = )t + )xxx + u)x + ux ) = 0

on solutions

Infinitesimal determining equations:

*x = *u = (u = )t = )x = 0

) = (t 223 u*t )u = 2 2

3 *t = 2 2 (x

*tt = *tx = *xx = · · · = )uu = 0

General solution:

* = c1 + 3c4t, ( = c2 + c3t+ c4x, ) = c3 2 2c4u.

Page 64: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Basis for symmetry algebra gKdV :

v1 = #t,

v2 = #x,

v3 = t #x + #u,

v4 = 3 t #t + x #x 2 2u#u.

The symmetry group GKdV is four-dimensional

(x, t, u) 42* (,3 t+ a,,x+ c t+ b,,!2 u+ c)

Page 65: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

v1 = #t, v2 = #x,

v3 = t #x + #u, v4 = 3 t#t + x #x 2 2u #u.

Commutator table:

v1 v2 v3 v4

v1 0 0 0 v1

v2 0 0 v1 3v2

v3 0 2v1 0 22v3

v4 2v1 23v2 2v3 0

Entries: [vi,vj] =$

k

Ckijvk. Ck

ij — structure constants of g

Page 66: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Di!eomorphism Maurer–Cartan forms:

µt, µx, µu, µtT , µt

X , µtU , µx

T , . . . , µuU , µt

TT , µTTX, . . .

Infinitesimal determining equations:*x = *u = (u = )t = )x = 0

) = (t 223 u *t )u = 2 2

3 *t = 2 2 (x

*tt = *tx = *xx = · · · = )uu = 0

Maurer–Cartan determining equations:

µtX = µt

U = µxU = µu

T = µuX = 0,

µu = µxT 2 2

3 UµtT , µu

U = 2 23 µ

tT = 2 2µx

X,

µtTT = µt

TX = µtXX = · · · = µu

UU = . . . = 0.

Page 67: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Basis (dimGKdV = 4):

µ1 = µt, µ2 = µx, µ3 = µu, µ4 = µtT .

Substituting into the full di!eomorphism structure equationsyields the structure equations for gKdV :

dµ1 = 2µ1 1 µ4,

dµ2 = 2µ1 1 µ3 2 23 U µ1 1 µ4 2 1

3 µ2 1 µ4,

dµ3 = 23 µ

3 1 µ4,

dµ4 = 0.

dµi = Cijk µ

j 1 µk

Page 68: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Basis (dimGKdV = 4):

µ1 = µt, µ2 = µx, µ3 = µu, µ4 = µtT .

Substituting into the full di!eomorphism structure equationsyields the structure equations for gKdV :

dµ1 = 2µ1 1 µ4,

dµ2 = 2µ1 1 µ3 2 23 U µ1 1 µ4 2 1

3 µ2 1 µ4,

dµ3 = 23 µ

3 1 µ4,

dµ4 = 0.

dµi = Cijk(Z)µj 1 µk

Page 69: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Essential Invariants

• The pseudo-group structure equations live on the bundle" : G(#) * M , and the structure coe"cients Ci

jk con-structed above may vary from point to point.

& In the case of a finite-dimensional Lie group action,G(#) 6 G 7M , and this means the basis of Maurer–Cartanforms on each fiber of G(#) is varying with the target pointZ + M . However, we can always make a Z–dependentchange of basis to make the structure coe"cients constant.

$ However, for infinite-dimensional pseudo-groups, it may notbe possible to find such a change of Maurer–Cartan basis,leading to the concept of essential invariants.

Page 70: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Kadomtsev–Petviashvili

(KP) Equation

(ut +32 uux +

14 uxxx )x ±

34 uyy = 0

Symmetry generators:

vf = f(t) #t +23 y f

$(t) #y +,

13 x f

$(t)8 29 y

2f $$(t)-#x

+,2 2

3 u f$(t) + 2

9 x f$$(t)8 4

27 y2f $$$(t)

-#u,

wg = g(t) #y 823 y g

$(t) #x 849 y g

$$(t) #u,

zh = h(t) #x +23 h

$(t) #u.

=( Kac–Moody loop algebra A(1)4

Page 71: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Navier–Stokes Equations

#u

#t+ u ·3u = 23p+ +$u, 3 · u = 0.

Symmetry generators:

v# = #(t) · #x+#$(t) · #

u2#$$(t) · x #p

v0 = #t

s = x · #x+ 2 t #t 2 u · #

u2 2 p #p

r = x 1 #x+ u 1 #

u

wh = h(t) #p

Page 72: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Action of Pseudo-groups on Submanifolds

a.k.a. Solutions of Di"erential Equations

G — Lie pseudo-group acting on p-dimensional submanifolds:

N = {u = f(x)} ) M

For example, G may be the symmetry group of asystem of di!erential equations

$(x, u(n)) = 0

and the submanifolds are the graphs of solutions u = f(x).

Goal: Understand G–invariant objects (moduli spaces)

Page 73: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Prolongation

Jn = Jn(M,p) — nth order submanifold jet bundle

Local coordinates :

z(n) = (x, u(n)) = ( . . . xi . . . u$J . . . )

Prolonged action of G(n) on submanifolds:

(x, u(n)) 42* (X, .U (n))

Coordinate formulae:

.U$J = F$

J (x, u(n), g(n))

=( Implicit di!erentiation.

Page 74: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Di"erential Invariants

A di!erential invariant is an invariant function I : Jn * R

for the prolonged pseudo-group action

I(g(n) · (x, u(n))) = I(x, u(n))

=( curvature, torsion, . . .

Invariant di!erential operators:

D1, . . . ,Dp =( arc length derivative

• If I is a di!erential invariant, so is DjI.

I(G) — the algebra of di!erential invariants

Page 75: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The Basis Theorem

Theorem. The di!erential invariant algebra I(G) is locallygenerated by a finite number of di!erential invariants

I1, . . . , I&and p = dimS invariant di!erential operators

D1, . . . ,Dp

meaning that every di!erential invariant can be locallyexpressed as a function of the generating invariants andtheir invariant derivatives:

DJI! = Dj1Dj2

· · · DjnI!.

=( Lie groups: Lie, Ovsiannikov

=( Lie pseudo-groups: Tresse, Kumpera, Kruglikov–Lychagin,Munoz–Muriel–Rodrıguez, Pohjanpelto–O

Page 76: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Key Issues

• Minimal basis of generating invariants: I1, . . . , I&

• Commutation formulae for

the invariant di!erential operators:

[Dj,Dk ] =p$

i=1

Y ijk Di

=( Non-commutative di!erential algebra

• Syzygies (functional relations) among

the di!erentiated invariants:

%( . . . DJI! . . . ) 9 0

=( Codazzi relations

Page 77: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Computing Di"erential Invariants

% The infinitesimal method:

v(I) = 0 for every infinitesimal generator v + g

=( Requires solving di!erential equations.

& Moving frames.

• Completely algebraic.

• Can be adapted to arbitrary group and pseudo-group actions.

• Describes the complete structure of the di!erential invariantalgebra I(G) — using only linear algebra & di!erentiation!

• Prescribes di!erential invariant signatures for equivalence andsymmetry detection.

Page 78: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Moving Frames

In the finite-dimensional Lie group case, a moving frame is

defined as an equivariant map

-(n) : Jn 2* G

Page 79: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

However, we do not have an appropriate abstract object to

represent our pseudo-group G.

Consequently, the moving frame will be an equivariant section

-(n) : Jn 2* H(n)

of the pulled-back pseudo-group jet groupoid:

G(n) H(n)

% %M & Jn.

Page 80: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Moving Frames for Pseudo–Groups

Definition. A (right) moving frame of order n is a right-

equivariant section -(n) : V n * H(n) defined on an open

subset V n ) Jn.

=( Groupoid action.

Proposition. A moving frame of order n exists if and only if

G(n) acts freely and regularly.

Page 81: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Moving Frames for Pseudo–Groups

Definition. A (right) moving frame of order n is a right-

equivariant section -(n) : V n * H(n) defined on an open

subset V n ) Jn.

=( Groupoid action.

Proposition. A moving frame of order n exists if and only if

G(n) acts freely and regularly.

Page 82: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

FreenessFor Lie group actions, freeness means trivial isotropy:

Gz = { g + G | g · z = z } = {e}.

For infinite-dimensional pseudo-groups, this definition cannot work, and onemust restrict to the transformation jets of order n, using the nth orderisotropy subgroup:

G(n)z(n) =

/g(n) + G(n)

z

000 g(n) · z(n) = z(n)1

Definition. At a jet z(n) + Jn, the pseudo-group G acts

• freely if G(n)z(n) = {1(n)

z }

• locally freely if• G(n)

z(n) is a discrete subgroup of G(n)z

• the orbits have dimension rn = dimG(n)z

=( Kumpera’s growth bounds on Spencer cohomology.

Page 83: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Persistence of Freeness

Theorem. If n / 1 and G(n) acts (locally) freely

at z(n) + Jn, then it acts (locally) freely at any

z(k) + Jk with 2%kn(z

(k)) = z(n) for all k > n.

Page 84: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

TheNormalization Algorithm

To construct a moving frame :I. Compute the prolonged pseudo-group action

u$K 42* U$K = F$

K(x, u(n), g(n))

by implicit di!erentiation.

II. Choose a cross-section to the pseudo-group orbits:

u$"

J"= c!, . = 1, . . . , rn = fiber dim G(n)

Page 85: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

III. Solve the normalization equations

U$"

J"= F$"

J"(x, u(n), g(n)) = c!

for the nth order pseudo-group parameters

g(n) = -(n)(x, u(n))

IV. Substitute the moving frame formulas into the un-

normalized jet coordinates u$K = F$K(x, u(n), g(n)).

The resulting functions form a complete system of nth order

di!erential invariants

I$K(x, u(n)) = F$K(x, u(n), -(n)(x, u(n)))

Page 86: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Invariantization

A moving frame induces an invariantization process, denoted /,

that projects functions to invariants, di!erential operators

to invariant di!erential operators; di!erential forms to

invariant di!erential forms, etc.

Geometrically, the invariantization of an object is the unique

invariant version that has the same cross-section values.

Algebraically, invariantization amounts to replacing the group

parameters in the transformed object by their moving frame

formulas.

Page 87: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Invariantization

In particular, invariantization of the jet coordinates leads to a

complete system of functionally independent di!erential

invariants: /(xi) = Hi /(u$J) = I$J

• Phantom di!erential invariants: I$"

J"= c!

• The non-constant invariants form a complete system of

functionally independent di!erential invariants

• Replacement Theorem

I( . . . xi . . . u$J . . . ) = /( I( . . . xi . . . u$J . . . ) )

= I( . . . Hi . . . I$J . . . )

Page 88: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The Invariant Variational Bicomplex

$ Di!erential functions =( di!erential invariants

/(xi) = Hi /(u$J) = I$J

$ Di!erential forms =( invariant di!erential forms

/( dxi) = 0i /(1$K) = 2$K

$ Di!erential operators =( invariant di!erential operators

/ (Dxi ) = Di

Page 89: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Recurrence Formulae

$ $ Invariantization and di!erentiation

do not commute$ $

The recurrence formulae connect the di!erentiated invariants

with their invariantized counterparts:

DiI$J = I$J,i +M$

J,i

=( M$J,i — correction terms

Page 90: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

& Once established, the recurrence formulae completely

prescribe the structure of the di!erential invariant

algebra I(G) — thanks to the functional independence

of the non-phantom normalized di!erential invariants.

$ $ The recurrence formulae can be explicitly determined

using only the infinitesimal generators and linear

di!erential algebra!

Page 91: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Lie–Tresse–Kumpera Example

X = f(x), Y = y, U =u

f $(x)

Horizontal coframe

dH X = fx dx, dH Y = dy,

Implicit di!erentiations

DX =1

fxDx, DY = Dy.

Page 92: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Prolonged pseudo-group transformations on surfaces S ) R3:

X = f Y = y U =u

fx

UX =ux

f 2x

2u fxxf 3x

UY =uy

fx

UXX =uxx

f 3x

23ux fxxf 4x

2u fxxxf 4x

+3u f 2

xx

f 5x

UXY =uxy

f 2x

2uy fxxf 3x

UY Y =uyy

fx

f, fx, fxx, fxxx, . . . — pseudo-group parameters

=( action is free at every order.

Page 93: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Coordinate cross-section

X = f = 0, U =u

fx= 1, UX =

ux

f 2x

2u fxxf 3x

= 0, UXX = · · · = 0.

Moving frame

f = 0, fx = u, fxx = ux, fxxx = uxx.

Di!erential invariants

UY =uy

fx42* J = /(uy) =

uy

u

UXY = · · · 42* J1 = /(uxy) =uuxy 2 uxuy

u3

UY Y = · · · 42* J2 = /(uxy) =uyy

uUXXY 42* J3 = /(uxxy) UXY Y 42* J4 = /(uxyy) UY Y Y 42* J5 = /(uyyy)

Page 94: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Invariant horizontal forms

dH X = fx dx 42* u dx, dH Y = dy 42* dy,

Invariant di!erentiations

D1 =1

uDx D2 = Dy

Higher order di!erential invariants: Dm1 Dn

2 J

J,1 = D1J =uuxy 2 uxuy

u3= J1,

J,2 = D2J =uuyy 2 u2

y

u2= J2 2 J2.

Recurrence formulae:D1J = J1, D2J = J2 2 J2,

D1J1 = J3, D2J1 = J4 2 3J J1,

D1J2 = J4, D2J2 = J5 2 J J2,

Page 95: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Korteweg–deVries Equation

Prolonged Symmetry Group Action:

T = e3'4(t+ ,1)

X = e'4(,3t+ x+ ,1,3 + ,2)

U = e!2'4(u+ ,3)

UT = e!5'4(ut 2 ,3ux)

UX = e!3'4ux

UTT = e!8'4(utt 2 2,3utx + ,32uxx)

UTX = DXDTU = e!6'4(utx 2 ,3uxx)

UXX = e!4'4uxx

...

Page 96: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Cross Section:

T = e3'4(t+ ,1) = 0

X = e'4(,3t+ x+ ,1,3 + ,2) = 0

U = e!2'4(u+ ,3) = 0

UT = e!5'4(ut 2 ,3ux) = 1

Moving Frame:

,1 = 2t, ,2 = 2x, ,3 = 2u, ,4 =15 log(ut + uux)

Page 97: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Normalized di!erential invariants:

I01 = /(ux) =ux

(ut + uux)3/5

I20 = /(utt) =utt + 2uutx + u2uxx

(ut + uux)8/5

I11 = /(utx) =utx + uuxx

(ut + uux)6/5

I02 = /(uxx) =uxx

(ut + uux)4/5

...

Invariant di!erential operators:

D1 = /(Dt) = (ut + uux)!3/5Dt + u(ut + uux)

!3/5Dx,

D2 = /(Dx) = (ut + uux)!1/5Dx.

Page 98: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Commutation formula:

[D1,D2 ] = I01 D1

Recurrence formulae:

D1I01 = I11 235 I

201 2

35 I01I20, D2I01 = I02 2

35 I

301 2

35 I01I11,

D1I20 = I30 + 2I11 285 I01I20 2

85 I

220, D2I20 = I21 + 2I01I11 2

85 I

201I20 2

85 I11I20,

D1I11 = I21 + I02 265 I01I11 2

65 I11I20, D2I11 = I12 + I01I02 2

65 I

201I11 2

65 I

211,

D1I02 = I12 245 I01I02 2

45 I02I20, D2I02 = I03 2

45 I

201I02 2

45 I02I11,

......

Page 99: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Generating di!erential invariants:

I01 = /(ux) =ux

(ut + uux)3/5

, I20 = /(utt) =utt + 2uutx + u2uxx

(ut + uux)8/5

.

Fundamental syzygy:

D21I01 +

35 I01D1I20 2D2I20 +

,15 I20 +

195 I01

-D1I01

2D2I01 2625 I01I

220 2

725 I

201I20 +

2425 I

301 = 0.

Page 100: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The Master Recurrence Formula

dH I$J =p$

i=1

(DiI$J )3i =

p$

i=1

I$J,i 3i + ." $

J

where." $

J = /( .) $J ) = %$J( . . . Hi . . . I$J . . . ; . . . 4bA . . . )

are the invariantized prolonged vector field coe"cients, whichare particular linear combinations of

4bA = /('bA) — invariantized Maurer–Cartan formsprescribed by the invariantized prolongation map.

• The invariantized Maurer–Cartan forms are subject to theinvariantized determining equations :

L(H1, . . . , Hp, I1, . . . , Iq, . . . , 4bA, . . . ) = 0

Page 101: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

dH I$J =p$

i=1

I$J,i 3i + ." $

J( . . . 4bA . . . )

Step 1: Solve the phantom recurrence formulas

0 = dH I$J =p$

i=1

I$J,i 3i + ." $

J( . . . 4bA . . . )

for the invariantized Maurer–Cartan forms:

4bA =p$

i=1

JbA,i 3

i (5)

Step 2: Substitute (5) into the non-phantom recurrenceformulae to obtain the explicit correction terms.

Page 102: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

$ Only uses linear di!erential algebra based on the specifica-tion of cross-section.

& Does not require explicit formulas for the moving frame, thedi!erential invariants, the invariant di!erential operators, oreven the Maurer–Cartan forms!

Page 103: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Lie–Tresse–Kumpera Example (continued)

X = f(x), Y = y, U =u

f $(x)

Phantom recurrence formulae:

0 = dH = 01 + 4, 0 = dI10 = J102 + 21 2 42,

0 = dI00 = J 02 + 22 41, 0 = dI20 = J302 + 23 2 43,

Solve for pulled-back Maurer–Cartan forms:

4 = 201, 42 = J102 + 21,

41 = J 02 + 2, 43 = J302 + 23,

Page 104: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Recurrence formulae: dy = 02

dJ = J101 + (J2 2 J2)02 + 22 2 J 2,

dJ1 = J301 + (J4 2 3J J1)0

2 + 24 2 J 21 2 J1 2,

dJ2 = J401 + (J5 2 J J2)0

2 + 25 2 J2 2,

Page 105: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The Korteweg–deVries Equation (continued)

Recurrence formula:

dIjk = Ij+1,k31 + Ij,k+13

2 + /()jk)

Invariantized Maurer–Cartan forms:

/(*) = ,, /(() = µ, /()) = " = +, /(*t) = "t = ,t, . . .

Invariantized determining equations:

,x = ,u = µu = +t = +x = 0

+ = µt +u = 2 2µx = 2 23 ,t

,tt = ,tx = ,xx = · · · = +uu = · · · = 0

Invariantizations of prolonged vector field coe"cients:

/(*) = ,, /(() = µ, /()) = +, /()t) = 2I01+ 253 ,t,

/()x) = 2I01,t, /()tt) = 22I11+ 283I20,t, . . .

Page 106: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Phantom recurrence formulae:0 = dH H1 = 31 + ,,

0 = dH H2 = 32 + µ,

0 = dH I00 = I1031 + I013

2 + " = 31 + I0132 + +,

0 = dH I10 = I2031 + I113

2 + "t = I2031 + I113

2 2 I01+ 253 ,t,

=( Solve for , = 231, µ = 232, + = 231 2 I0132,

,t =35 (I20 + I01)3

1 + 35 (I11 + I201)3

2.

Non-phantom recurrence formulae:

dH I01 = I1131 + I023

2 2 I01,t,

dH I20 = I3031 + I213

2 2 2I11+ 283I20,t,

dH I11 = I2131 + I123

2 2 I02+ 2 2I11,t,

dH I02 = I1231 + I033

2 2 43I02,t,

...

Page 107: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

D1I01 = I11 235I

201 2

35I01I20, D2I01 = I02 2

35 I

301 2

35 I01I11,

D1I20 = I30 + 2I11 285I01I20 2

85I

220, D2I20 = I21 + 2I01I11 2

85I

201I20 2

85I11I20,

D1I11 = I21 + I02 265I01I11 2

65I11I20, D2I11 = I12 + I01I02 2

65I

201I11 2

65I

211,

D1I02 = I12 245I01I02 2

45I02I20, D2I02 = I03 2

45I

201I02 2

45I02I11,

......

Page 108: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

GrobnerBasisApproach

Suppose G acts freely at order n#.

The di!erential invariants of order > n# arenaturally identified with polynomials belonging to acertain algebraic module J , called the invariantizedprolonged symbol module which is defined as theinvariantized pull-back of the symbol module for theinfinitesimal determining equations under a certainexplicit linear map.

Page 109: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Constructive Basis Theorem

Theorem. A system of generating di!erential in-variants in one-to-one correspondence with theGrobner basis elements of the invariantized pro-longed symbol module J>n!

plus, possibly, afinite number of di!erential invariants of order, n#.

Page 110: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

Syzygy Theorem

Theorem. Every di!erential syzygy among the gen-erating di!erential invariants is either a syzygyamong those of order , n#, or arises from an alge-braic syzygy among the Grobner basis polynomi-als in J>n!

, or comes from a commutator syzygyamong the invariant di!erential operators.

Page 111: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The Symbol Module

Linearized determining equations

L(z, '(n)) = 0

t = (t1, . . . , tm), T = (T1, . . . , Tm)

T =

3

P (t, T ) =m$

a=1

Pa(t)Ta

4

6 R[ t ]!Rm ) R[ t, T ]

Symbol module:I ) T

Page 112: LiePseudo–Groups olver/t_/psgparis.pdf · une jungle presque imp´en´etrable; mais cell-ci menace de se refermer sur les sentiers d´eja trac´es, si l’on ne proc`ede bientot

The Prolonged Symbol Module

s = (s1, . . . , sp), S = (S1, . . . , Sq),

.S =

3

T (s, S) =q$

$=1

T$(s)S$

4

6 R[s]!Rq ) R[s, S]

Define the linear map

si = 5i(t) = ti +q$

$=1

u$i tp+$, i = 1, . . . , p,

S$ = B$(T ) = Tp+$ 2p$

i=1

u$i Ti, 6 = 1, . . . , q.

=( “symbol”” of the vector field prolongation operation

Prolonged symbol module:

J = ($5)!1(I)