28
A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2 nd year Sustainability for Engineering and Energy Systems Engineering Doctorate student between the National Physical Laboratory and the University of Surrey Department of Environmental Strategy. The title of her doctorate project is ‘Life Cycle Thinking for Emerging Technology’ which is looking at the role of life cycle approaches in supporting policy making.

Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

  • Upload
    voduong

  • View
    219

  • Download
    2

Embed Size (px)

Citation preview

Page 1: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

A Review of Life Cycle Analysis (LCA) Modelling in the 

Development of RoHS and WEEESophie Parsons

Is a 2nd year Sustainability  for Engineering and Energy Systems Engineering Doctorate student 

between the National Physical Laboratory and the University of Surrey Department of Environmental Strategy. The title of her doctorate project is ‘Life Cycle Thinking  for Emerging Technology’ which is 

looking at the role of life cycle approaches  in supporting policy making. 

Page 2: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Presentation Overview

1. RoHS and WEEE Directives2. Introduction to LCA3. Review of life cycle literature relating to lead‐free 

solders4. Conclusions

Page 3: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

WEEE and RoHS Directives

Page 4: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

• Waste Electrical and Electronic Equipment (2002/96/EC) 

• Producer responsibility legislation 

• Designed to:→ increase recycling rates and reuse → improve management of electronic goods at end‐of‐life 

The WEEE Directive

Page 5: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

The RoHS Directive

• Affects the whole of the production process through to importing

• Designed to reduce hazardous substances in EEE

Substance Maximum% wt allowedPb 0.10

Hg 0.10

Cr (VI) 0.10

Cd 0.01

PBB 0.10PBDE 0.10

Table 1: Maximum allowable percentages of substances regulated under RoHS

Page 6: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

• WEEE recast achieved in 2011, final directive came into force in July this year 

• Transition to open scope• Changes to collection targets

• RoHS 2 introduced in 2011 to be transposed into law by 2013• Brought in to afford greater clarity and integration with EuP and REACH

• Intended to extend scope to all EEE by 2019• Review and inclusion of further substances performed in accordance with the precautionary principle

WEEE and RoHS Directives

Page 7: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

• Leachate tests in the environment have found levels of lead higher than EPA recommended values

• Unregulated processing of lead can cause harm to human health and the environment 

• Fear over the increase in unregulated processing of electronic equipment

• Precedence set by the regulation of lead from petrol and paint

Reasoning behind the presence of lead in the RoHS directive

Page 8: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Global Lead Consumption

Storage batteries 87%

Electronic Solder 0.3%Ammunition  3.6%

Paints, ceramics, pigments and chemicals 3%

Misc. 6.1%

Page 9: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Life Cycle Assessment 

Page 10: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Life Cycle Assessment

Goal and Scope Definition

Inventory Analysis

Impact Assessment

Interpretation

Page 11: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Life Cycle Assessment

• Software and databases available – SimaPro most popular• ISO Standard ISO 14040• Weighting and normalisation can vary• Different units of measurement for midpoint impacts• Not all impact assessment tools are the same

Page 12: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

LCI Inventory

Materials extraction

Human toxicity

Respiratory effects

Ionising radiation

Ozone  layer depletion

Photochemical oxidation

Aquatic toxicity

Terrestrial ecotoxicity

Aquatic acidification

Aquatic eutrophication

Terrestrial acid rain

Non‐renewable energy

Global warming

Human Health

Ecosystem Quality

Climate Change

Resources

Page 13: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Life Cycle Assessment of Lead Solder versus Alternatives

Page 14: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Life Cycle Assessment of Lead Solder versus Alternatives

•A number of different life‐cycle assessment (LCA) studies have been carried out over the past ten years•Many leachate studies on lead have been carried out• Studies performed assessing the environmental performance of alloys Sn/Ag/Cu, Sn/Ag/Bi, and Sn/Cu 

Page 15: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Case study 1: Metal Ecology Approach

Page 16: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

→ Each metal cycle is linked with many others→ The effect of banning particular metals for certain uses should 

be considered→Models produced show that bismuth production is reliant on 

the production of lead → They also show that bismuth causes issues with copper 

processing

Life Cycle Assessment of Lead Solder versus Alternatives

METAL ECOLOGY APPROACH

(Reuter and Verhoef, 2004; Reuter 2005)

Page 17: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

→ A decrease in lead production could mean other intermediates from tin production need to be used to meet demand for bismuth

→ Silver is obtained from by‐products of gold and lead production

→ Potential growth by 140% cannot be met by gold alone→ Greater reliance on lead intermediates for silver→ Legislation should take the issues surrounding metal cycles 

into account

Life Cycle Assessment of Lead Solder versus Alternatives

(Reuter and Verhoef, 2004; Reuter 2005)

Page 18: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Case study 2: Midpoint LCA

Page 19: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

→ Study conducted in 2005→ Study showed for both bar and paste solder Sn/Ag/Cu scored 

higher environmental impacts for more categories than Sn/Pb solder

→ SnCu scored the lowest impacts for all the solders tested→ Lead free solder scored higher that lead solder for energy use, 

landfill space, global warming, and acidification 

Life Cycle Assessment of Lead Solder versus Alternatives

US EPA STUDY

(Geibig and Socolof, 2005)

Page 20: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Life Cycle Assessment of Lead Solder versus Alternatives

EPA, Solders in Electronics: A Life Cycle Assessment (2005)

Total energy use impact over the solders life cycle from cradle to grave

Page 21: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Case study 3: Endpoint LCA

Page 22: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Life Cycle Assessment of Lead Solder versus Alternatives

Recent Study (2010)

→LIME end point impact modelling used→Indicated increase in global warming potential of 10% on the transition from lead solder to lead‐free

→Air toxicity found to decrease on the shift to lead free→Water toxicity also shown to decrease on shift to lead free →Overall, shift likely to contribute to higher environmental impacts than for lead free

(Andrae, 2010)

Page 23: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Other studies performed:→ 1996 study found silver conductive adhesive to be more 

impacting than Sn‐Pb (Segerberg and Hedemalm)→ 2001 study found no clear environmental advantage to lead 

free solders (Turbini)→ Inconclusive studies on landfill leaching → Hazard values and toxicity potentials shown to have greater 

impacts for some lead‐free solders than Sn‐Pb (Socolof et al, 2003)

Life Cycle Assessment of Lead Solder versus Alternatives

Page 24: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Conclusions

Page 25: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

• There is inconclusive evidence over the actual risks associated with lead leaching into the environment from landfilling of WEEE

• There is no evidence to suggest lead solder interconnectors have been a hazard to human health during their use phase

• Life cycle assessment has shown lead‐free alternatives to be as impacting as lead solders, with greater impacts seen in terms of global warming potential, ozone depletion and energy use

Is the Electronics Sector any Greener Since Lead Substitution?

Page 26: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Requirements for future legislation

• Regulating future substances or making additions to RoHS (as has been provided for in RoHS 2) must include life cycle elements

• Standards such as BS 8905• Issues for future regulation – LCA value uncertainty versus 

requirements for a precautionary principled approach• Improved understanding of end‐of‐life issues should be 

sought• Context material is used in must be a major consideration 

when reviewing its potential risks

Page 27: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Many thanks for listening

Page 28: Life Cycle Analysis Webinar presentation · A Review of Life Cycle Analysis (LCA) Modelling in the Development of RoHS and WEEE Sophie Parsons Is a 2nd year Sustainability for Engineering

Andrae A. (2010). Global Life Cycle Impact Assessment of Materials Shifts, Springer

Geibig J. R. and Socolof M. L. (2005). Solders in Electronics: A Life‐Cycle Assessment

Kjeldsen P., Barlaz M. A., Rooker A. P., Baun A., Ledin A. and Christensen T. H. (2002). "Present and Long‐Term Composition of MSW Landfill Leachate: A Review." Critical Reviews in Environmental Science and Technology 32(4): 297‐336

Masanet E. R. (2002). "Assessing Public Exposure to Silver‐Contaminated Groundwater from Lead‐Free Solder: An Upper Bound, Risk‐Based Approach." IEEE

Reuter M. A. (2005). Chapter 3: A description of metal cycles, The  Metrics of Material and Metal Ecology, U Boin, A Schaik and E Verhoef, Elevesier 

Reuter M. A. (2005). Chapter 5: Electronics Recycling: Lead‐free Solder, 16, The  Metrics of Material and Metal Ecology, Developments in Mineral Processing, 

Reuter M. A. and Verhoef E. (2004). "A Dynamic Model for the Assessment of the Replacement of Lead in Solder." Journal of Electronic Materials 33(12)

Segerberg T. and Hedemalm (1996). "Li fe  Cycle  Assessment of Tin‐Lead Solder and Silver‐Epoxy Conductive Adhesive." IEEE

Socolof M., Geibig J. and Swanson M. (2003). "Cradle to gate toxic impacts of solders: a  comparison of impact assessment methods." IEEE

Turbini  L. (2001). "Examining the Environmental Impact of Lead‐Free Soldering Alternatives“, IEEE TRANSACTIONS ON ELECTRONICS PACKAGING MANUFACTURING 24(1)

Williams E. (2011). "Environmental effects of information and communication technologies." Nature 479: 354‐358

References