62
LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL

LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

  • View
    216

  • Download
    0

Embed Size (px)

Citation preview

Page 1: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

LiHoxY1-xF4: The road between solid state ion trap and quantum critical ferromagnet

Gabriel AeppliLondon Centre for Nanotechnology & UCL

Page 2: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Collaborators

Andrew Fisher, Ché Gannarelli, Stephen Lynch, Edward Gryspeerdt, Marc Warner, Des McMorrow

UCL Physics & Astronomy and London Centre for Nanotechnology

Tom Rosenbaum, Dan Silevitch

James Franck Institute and Dept of Physics, University of Chicago

Sai Ghosh

University of California at Merced

Jens Jensen

University of Copenhagen

Henrik Ronnow

EPFL

Page 3: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Outline

• Context• Introducing LiHoF4:

– Structure, magnetism and single-ion physics

• The new experiment:– Low-frequency dynamics while rotating the Ising moment out of the

plane to create superpositions– Test of the adequacy of ion-pair models to describe these

properties

• Outlook and conclusions

Page 4: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Can be made manifest by ramping longitudinal (Ising) field in a very dilute system, and watching frequency-dependent tunnelling of magnetization mediated by nuclear spins (and residual dipolar interactions)

Nuclear couplings produce line of avoided crossings in combined level scheme

Giraud et al PRL 87 057203 (2001) and PRL 91 257204 (2003); x=0.1%

Sharp nuclear levels at microwave frequencies (~10GHz)

Hyperfine interaction with nuclear spins (I=7/2)

A=0.039 K

Page 5: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Coupling, disorder and transverse fieldsExchange is negligible because of the extreme localization of the electrons

Ions coupled instead by pure magnetic dipole interaction (weak but precisely known):

In low-energy, 2-state limit for ordered material this becomes

H e®dipolar = 1

2

Pi j Ve®

i j _zi _z

j

Hdipolar =_ 04_

(gL _ B )2

2

Pi j

P_ º L

_ ºi j J

_i ^J º

j

In pure material (x=1) mean fields lie along z, material behaves as a classical Ising magnet: FM couplings along c-axis, AFM in ab plane

L_ ºi j ´

±_ º

jr i j j2¡ 3r

_i j r

ºi j

jr i j j5 / 1¡ 3cosµi µj

r i j

Ion i

Ion j

µiµj

Note anisotropy of interaction

Magnitude of interaction is 0.214 K for r=a

But…we expect non-classical behaviour to be obtained by introduction of transverse fields or by disorder

Page 6: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

A three-dimensional quantum magnet - with decoherence due to spectators

Realizing the transverse field Ising model, where can vary – LiHoF4

A three-dimensional quantum magnet - with decoherence due to spectators

Realizing the transverse field Ising model, where can vary – LiHoF4

c

a

b

Ho

Li

F

•g=14 doublet•9K gap to next state•dipolar coupled

Page 7: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

c

a

b

Ho

Li

F

Realizing the transverse field Ising model, where can vary – LiHoF4

•g=14 doublet•9K gap to next state•dipolar coupled

Page 8: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

vs T for Ht=0 vs T for Ht=0

•D. Bitko, T. F. Rosenbaum, G. Aeppli, Phys. Rev. Lett.77(5), pp. 940-943, (1996)

Page 9: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Now impose transverse field …Now impose transverse field …

Page 10: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Page 11: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Page 12: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

165Ho3+ J=8 and I=7/2 A=3.36eV

Page 13: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

W=A<J>I ~ 140eV

Page 14: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Diverging Diverging

Page 15: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

• The Ising term energy gap 2J

• The term does not commute with

Need traveling wave solution:

• Total energy of flip

∑∑ −−=N

i

xi

zj

zi

N

jijiJ σσσ

,,H

DWΨ

DWΨ =

∗= mkk 222hε222 kaJE +=

2

2

2 am

=∗ h

a

DynamicsDynamics

Page 16: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

• The Ising term energy gap 2J

• The term does not commute with

Need traveling wave solution:

• Total energy of flip

∑∑ −−=N

i

xi

zj

zi

N

jijiJ σσσ

,,H

DWΨ

DWΨ =

∗= mkk 222hε222 kaJE +=

2

2

2 am

=∗ h

a

Page 17: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

• The Ising term energy gap 2J

• The term does not commute with

Need traveling wave solution:

• Total energy of flip

∑∑ −−=N

i

xi

zj

zi

N

jijiJ σσσ

,,H

DWΨ

DWΨ =

∗= mkk 222hε222 kaJE +=

2

2

2 am

=∗ h

a

Page 18: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

• The Ising term energy gap 2J

• The term does not commute with

Need traveling wave solution:

• Total energy of flip

∑∑ −−=N

i

xi

zj

zi

N

jijiJ σσσ

,,H

DWΨ

DWΨ =

∗= mkk 222hε222 kaJE +=

2

2

2 am

=∗ h

a

Page 19: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

• The Ising term energy gap 2J

• The term does not commute with

Need traveling wave solution:

• Total energy of flip

∑∑ −−=N

i

xi

zj

zi

N

jijiJ σσσ

,,H

DWΨ

DWΨ =

∗= mkk 222hε222 kaJE +=

2

2

2 am

=∗ h

a

Page 20: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

1 1.5 2

Ene

rgy

Tra

nsfe

r (m

eV)

Spin Wave excitations inthe FM LiHoF4

Spin Wave excitations inthe FM LiHoF4

⎟⎠

⎞⎜⎝

⎛0,0,

ahπ

Page 21: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

1 1.5 2

Ene

rgy

Tra

nsfe

r (m

eV)

Spin Wave excitations inthe FM LiHoF4

Spin Wave excitations inthe FM LiHoF4

⎟⎠

⎞⎜⎝

⎛0,0,

ahπ

Page 22: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

What happens near QPT?

Page 23: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

•H. Ronnow et al. Science (2005)

Page 24: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

W=A<J>I ~ 140eV

Page 25: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

wider significancewider significance

• Connection to ‘decoherence’ problem in mesoscopic systems

‘best’ Electronic-TFI

Page 26: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

=f|<f|S(Q)+|0>|2-E0+Ef) where

S(Q)+ =mSm+expiq.rm

Page 27: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Where does spectral weight go & diverging correlation length appear?

Where does spectral weight go & diverging correlation length appear?

Ronnow et al, unpub (2006)

Page 28: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

dipolar interaction between randomly placed spins leads to frustration

E=S1S2g2MB2[1-3(rz/r)2]/r3

ferro for (rz/r)2 >1/3antiferro for (rz/r)2 <1/3

Introducing complexity via randomness& dipolar interaction …

Page 29: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

c

a

b

Ho

Li

F

Experimental realization of Ising model in transverse field

LiHoF4

•g=14 doublet•9K gap to next state•dipolar coupled

Page 30: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

c

a

b

Ho

Li

F

Experimental realization of Ising model in transverse field

LiHoF4

•g=14 doublet•9K gap to next state•dipolar coupled

Y

Page 31: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

c

a

b

Ho

Li

F

Experimental realization of Ising model in transverse field

LiHoF4

•g=14 doublet•9K gap to next state•dipolar coupled

Y

Page 32: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

What happens first?What happens first?

Tc=xTc(x=1)

x=0.67

stillferromagnetic

Page 33: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

x=0.44

also stillferromagnetic

Page 34: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Two effects: quantum mechanics + classical random fields

Two effects: quantum mechanics + classical random fields

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 35: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Strong random field effects near Ht=0 and T=TCMFStrong random field effects near Ht=0 and T=TCMF

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Thermal T-TC

Transverse field

Page 36: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Griffiths singularities at T=0.673K>TC+4mKGriffiths singularities at T=0.673K>TC+4mK

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

All data collapse assuming

Page 37: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Random-field dominatedQuantum dominated

Page 38: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Domain wall state pinned by random configurations of Y not much different from that at 300K in PdCo-

What about domainwall dynamics?

Y-A. Soh and G.A.,unpublished

Page 39: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

How to see?How to see?

• Measure small signal response

M(t)=’()hcos(t)+”hsin(t)

where • =’+i” is complex susceptibility• hcos(t) is excitation

Page 40: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Experimental SetupExperimental Setup

~ Ht2

Page 41: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

The Spectral ResponseThe Spectral Response

Four parameters:1. (f)

2. fo3. log slope4. frolloff

J.Brooke, T.F.Rosenbaum & G.A, Nature 413,610(2001)

Page 42: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Page 43: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Domain Wall TunnelingDomain Wall Tunneling

w

⎟⎟⎠

⎞⎜⎜⎝

⎛− BE

Mw

2

2exp~

h

Page 44: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Evolution of themost mobile

Domain Walls

Evolution of themost mobile

Domain Walls

( )⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

⎟⎟⎠

⎞⎜⎜⎝

⎛−+−=

2

22expexp

hm

wTFf oo

thermal hopping

quantum tunneling

Page 45: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Domain Wall ParametersDomain Wall Parameters

( )iaN

Γ+Γ⋅=

⋅=

2

2

spinDW

2

mNm

h

N 10

Page 46: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

What happens next?What happens next?

?

Page 47: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

0.2 0.4 0.6T(K)

x=0.167Spin glass

Page 48: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Page 49: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

f Re / Im ~ "~f-

Glass transition when =0

f Re / Im ~ "~f-

Glass transition when =0

Page 50: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Revisited more recently (2008) with x=0.198% Ho Revisited more recently (2008) with x=0.198% Ho

Page 51: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Consistent with non-linear susceptibilityConsistent with non-linear susceptibility

Page 52: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Page 53: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Page 54: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

?

Page 55: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Toronto 2008

Page 56: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Dynamic properties (I): the anti-glass and its relaxation

Contrast behaviour of conventional glasses, where longer and longer tail of slow reponse develops below glass transition

X=4.5%; Reichl et al PRL 59 1969 (1987), Ghosh et al Nature 425 48 (2003)

Dilute system shows loss of low-frequency tail in dissipative (imaginary) part of response.

Inference: fewer slow relaxations as temperature is lowered

Page 57: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Dynamic properties (II): hole-burning and addressing of excitations

Cannot address individual ions spatially, but can excite in very narrow low-frequency windows.

Absorption spectrum after “hole burning” Decay of oscillation amplitude with time

Suggests low-frequency continuum is of oscillators, not just relaxation

Ghost et al Science 216 2195 (2002)

Page 58: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

AntiglassAn RVB-like

state analagous to Si:P (Bhatt-Lee)

Page 59: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint
Page 60: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

But experiment seems to favour in-plane (AFM) pairs

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and aTIFF (Uncompressed) decompressor

are needed to see this picture.

Page 61: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Conclusions

• LiHoF4 is just about the best imaginable solid-state ion trap• Like its free-space counterparts, it has already enabled important

demonstration experiments (though it lags behind in terms of level of control)

• Spectator degrees of freedom (nuclear spins) matter for quantum phase transitions

• Disordered ferromagnet displays both classical random field (at high T) and tuneable quantum tunneling effects (at low T and high Ht )

• Quantum glass phase• Antiglass, entangled state • Shape control of disordered ground state?

Page 62: LiHo x Y 1-x F 4 : The road between solid state ion trap and quantum critical ferromagnet Gabriel Aeppli London Centre for Nanotechnology & UCL TexPoint

Post-2000 references

• H. M. Ronnow et al. Science 308, 392-395 (2005)• D.M.Ancona-Torres et al. Phys. Rev. Lett. 101 057201

(2008) • D. M. Silevitch et al. Phys. Rev. Lett. 99, 057203 (2007)• D.M. Silevitch 448, p. 567-570 (2007)• S.Ghosh et al. Nature 425, 48-51,(2003) & Science

296, pp. 2195-2198, (2002)• J. Brooke et al., Nature 413, pp. 610 - 613 (2001)