lin1975.pdf

Embed Size (px)

Citation preview

  • 7/24/2019 lin1975.pdf

    1/4

    V O L U M E

    35, NUMBER 17

    PH Y SICA L

    REVIEW LETTERS

    27 OCTOBER 1975

    publ ished) .

    13

    This

    number and its associated error are taken to

    span

    all modern experimental results with which the

    a u th o r s are familiar

    14

    Y

    0

    K Kim and M. Inokuti, Phys

    0

    Rev

    0

    j ^65 , 39 (1968).

    15

    A.J

    0

    Rabheru, M. M

    0

    Islam, and M

    0

    R

    0

    Co McDowell,

    to

    be published

    0

    16

    A

    0

    L

    0

    Sinfailam and R. K Nesbet, Phys. Rev. A_6,

    2118

    (1972).

    Various elaborate methods have been employed

    to obtain accurate positions and decay widths of

    resonances in electron-hydrogen-atom collisions.

    1

    The most careful and thorough study of this sys

    tem is the close-coupling calculations by Burke

    and co-workers.

    2

    Besides the numerous Fe sh-

    bach resonances below the n-2 threshold of H,

    they predicted the existence of a narrow shape

    resonance of

    X

    P symmetry, with energy only 18

    meV above the n = 2threshold. This shape re so

    nance greatly influences the Is

    2s and Is -

    2p

    excitation cross sections in electron-hydrogen

    scattering

    2

    and also the photodetachment cr os s

    section of H nea r the

    n = 2

    threshold.

    3

    As is well known, a shape resonance can be

    produced from potential scattering if the poten

    tial possesses a barrier at large distances

    R

    from the force center and is attractive enough at

    smallR. In electron-hydr ogen scat terin g, the ex

    istence of potential barriers at large

    R

    in certain

    channels has been known for many years.

    4

    Be

    cause of the complicated interactions at small R,

    however, it has not been possible to get an est i

    mate of the strengths of the potential wells, if

    any, at small R, so as to connect the two regi ons .

    In this note, we will show that, by using hyper-

    spherical coordinates, it is possible to approxi

    mate the electron-hydrogen scattering by one-di-

    17

    F

    Q

    Jo de Heer and R H. J. Jansen, Fundamenteel

    Onderzoek

    der Materie Report No.37173 , 1975 (un

    published).

    18

    D .

    Andrick and A. Bitsch, J. Phys

    0

    B: At. Mol.

    P h y s .8, 393 (1975).

    19

    The

    derivation given in Refs. 3 and 4 takes this

    point

    of view in that it essentially obtains a dispersion

    r e l a t i o nfor /( E) =/ (E )- \f

    Bi

    d

    E)

    - ^ ( E ) ] ,

    using prop

    e r t i e s of the full Green's function.,

    mensional (ID) potential scatt ering . In par ticu lar,

    for

    l

    P states, three potential curves associated

    1

    with the n = 2 state of H ar e obtained, one being

    completely repulsive at all

    R

    , one having the

    property that it can produce a shape resonance,

    and one having the ability to support an infinite

    number of Feshbach resonances.

    In a recent paper

    5

    (to be called I), I have used

    hyperspherical coordinates to study the proper

    tie s of doubly excited sta tes of helium. In this co

    ordinate system, the distances of the two elec

    trons from the nucleus

    r

    x

    and r

    2

    are replaced by

    a hyperradius R = r

    x

    2

    +r

    2

    2

    )

    1/ 2

    and a hyperangle a

    =

    arctan(r

    2

    /r

    1

    ). The angle a, together with the

    usual polar coordinates

    d

    19

    cp^)

    and

    6

    2

    ,cp

    2

    )

    of the

    two electrons r epresented collectively as 2= { ,

    0

    19

    cp,0

    2

    , p

    2

    }, identify the orienta tion of the elec

    tron pair on a 5D spherical sur face, whereas the

    coordinateR measures the size of the system.

    An interchange of the positions of elec trons 1 and

    2 amounts to changing

    a

    into

    \n

    -

    a

    and inter

    changing (flu^x) and 0

    2

    ,

  • 7/24/2019 lin1975.pdf

    2/4

    VOLUME 35, NUMBER 17 P H Y S I C A L R E V I E W L E T T E R S 27 OCTOBER1975

    t wo -e l ec t ro n s ys t em t o

    [ d V d R

    2

    - F

    p

    ( R ) + W ^ ( R ) + ^ ( 2 )

    Equat ion (2) has a s t ru ctu re s im i lar to that of molecu lar -w ave-fun ct ion expans ion for d ia tomic mo l

    e c u l e s , w h e r e V^iR) is the poten t ial cur ve and W^^ifJR) i s the coup l ing te rm between channel s fia nd \i

    f

    .

    If the coupl ing term W^^t can be neglected in the f i rs t app rox ima t ion , as i s indeed the case in the c al

    cu la t ion of he l ium potent i a l curves

    6

    and in the present calculat ion, Eq. (2) reduces to a family of ordi

    nary d i f feren t i a l equat ions s im i lar to the s ing le- par t i c l e rad ia l Schrbd inger equat ion wi th poten t i a l

    U

    ll

    R)

    =V

    ll

    R)

    - Wj^CR). The e lect ron -hyd rogen sc at te r ing i s thereby redu ced to poten t i a l sca t t e r in g

    with potent ial U fo r each channel / i, and the p ro per t i es of bound s ta te s or sc at te r in g s ta te s for each

    channel

    \i

    ar e r e la te d d i re ct ly to the shape of the poten t i a l

    U^fjl)

    and the behavior of the channel func

    t ion $

    M

    (R; ft).

    In con t ras t to the c lose-coupl ing form ulat ion , the poten t i a l U^R) i s local . The sym me try condit ion

    on the two-e lect ron wave funct ion

    ip(Jl,Sl)

    imposed by the Pau l i exclus ion p r incip le i s exp l i c i t ly includ

    ed in the channel function ^ ( R j t t ) and the poten t i a l curve U^R). In the actual calcu la t ion , for s ta tes

    wi th to ta l o rb i ta l angu lar momentum L and total spin S, I expanded

    S

    gl

    1

    l

    2{

    l iR ^-0l

    C

    \i l

    2

    l

    1

    LM

    i

    ri^2 \

    3)

    w h e r e l

    1

    and l

    2

    a re t h e an g u l a r -m o m en t u m q u an

    tum numbers of the two e lect rons and y

    t t L M

    r

    1 9

    r

    2

    ) i s the to ta l o rb i ta l angu la r -m ome ntum wave

    funct ion. The sum ma tion over [Z ^ J in (3) is not

    ord ere d ; i . e . , [ ^ Z j i s no t d i s t ingu i shed f rom

    [Z

    2

    Zj. In the calc ulat ion for

    X

    P s t a t e s , t h e s u m

    mat ion was t runcated to include only [l

    x

    l

    2

    ] =[1 ,0 ]

    and [ 2 , 1 ] , cons i s ten t wi th the t e rms cons idered

    i n t h e t h re e - s t a t e c l o s e -co u p l i n g ca l cu l a t i o n s .

    Wi th th i s expans ion , the am pl i tude s g

    l l l 2 } 1

    (R; a )

    at each

    R

    sat isfy a system of coupled differen

    t ia l equat io ns , in which the num ber of equat ions

    equal s the num ber of t e rm s re ta ined in the ex

    pansion in (3). The eigen value s F

    M

    (# ) and ampl i

    tudesg

    tl

    i

    2ll

    (ft;a) a re solved mo st convenient ly by

    f in i t e -d i f ference m ethods . At l arg e R r

    x

    (#-

  • 7/24/2019 lin1975.pdf

    3/4

    V O L U M E 35 , N U M B E R 17

    P H Y S I C A L R E V I E W L E T T E R S

    27 OCTOBER 1975

    The values agree wel l wi th the var ia t ional re

    s u l t s ,

    - 0 . 2 5 1 9 3 an d -0 . 2 5 0 03 R y , of O 'Mal ley

    and Gel tman ,

    7

    ind icat ing that for Feshbach reso

    nances the neglect of the coupl ing term is a good

    f i rs t appro x imat ion . The curve denoted by "+"

    i s m o re a t t r ac t i v e a t s m a l l R than the - cur ve ,

    bu t i t has a poten t i a l barr i e r wi th he igh t 4 .8x 10"

    3

    Ry and behaves asymptot i cal ly as

    2/R

    2

    above the

    n= 2 th resho ld . The potent i a l wel l i s no t a t t ra c

    t ive enough to support a bound s tate below the n

    = 2

    thre sho ld but may be s tron g enough to sup port

    a shape resonance above the n= 2 th resh old . To

    see that th i s i s indeed so , one can in tegrate the

    equat ion inR num erical ly wi th the + poten t i a l to

    find the pha se shifts . The se pha se shifts a re

    p lo t ted versus energy above the n= 2 th resho ld

    in Fig. 2(a) w he re a fast var iat io n of pha se shifts

    wi th energy can be obse rved . These re sona nce s

    features can also be ident i fied in Fig. 2(b) where

    plots of 2* (ft) show local ize d re son anc e be hav ior

    n e a r R = 12 as reson anc e energy i s approach ed .

    From the computed phase sh i f t s , the resonance

    posi t ionE

    r

    and width r a r e found to be 32 and

    2 8 m eV , r e s p ec t i v e l y . Th es e v a l u es a re g re a t e r

    than the values E

    r

    = 18 meV and r = 15 meV ob

    t a i ned by th e t h ree - s t a t e c l o s e -co u p l i n g ca l cu l a

    t i o n wi t h t went y co r re l a t i o n t e rm s , b u t a r e m o re

    accu ra t e t h an t h e t h ree - s t a t e c l o s e -co u p l i n g ca l

    cu la t ions wi thou t corre la t ion .

    2

    The third curve denoted by pd i s comple te ly

    repu l s iv e and behave s asymptot i cal ly as 9 .71 / ft

    2

    .

    The channel funct ion for this curve has a large

    component of [Z

    X

    ,Z

    2

    ] = [2 , l ] , and may be denoted

    a s pd. This channel has the mos t repu l s ive po

    ten t i a l among the th ree curves and wi l l no t con

    t r ibu te s ign i f i cant ly to any exci ta t ion p rocesses

    near the n= 2 th reshold .

    Since the exci ta t ion p rocesses occur a t smal l

    R (R 4 ), fr om Fig. 1 i t i s evident that the ma in

    cont r ibu t ion to the exci ta t ion cross sect ions

    com es f rom the + channe l , w i th l i t t l e f rom the

    other two. However , bec ause of the p re sen ce of

    the poten t i a l ba rr i e r , the + channel i s not open

    unt i l the ba rr i e r can be pen et ra te d . In th i s n ar

    row energy reg ion , only the - c hanne l is open,

    i .e . , the one which can support an infini te num

    be r of bound s ta te s . I t has been shown that suc h

    a channel wi l l have f in i t e exci ta t ion cross sec

    t ions (Is - 2s and Is - 2p ) at the threshold.

    41 3

    In

    t h e \ P s t a t e s s t u d i ed h e re , h o wev e r , t h i s t h re s h

    old law only has a very l imited range of appl ica

    b i l i ty bec ause the + channel wi l l dominate the ex -

    2 . O h

    P

    H L

    I

    [

    CO

    UJ

    1.0 k

    co

    < I

    I

    a. h

    0 I 2 3 4 5 6 7 8

    ENERGY ABOVE THRESHOLD l6

    3

    Ry )

    R b o h r )

    FIG. 2. (a) Computed ph ase shifts for the + channe l .

    (b) Radial wave functions F(R) at various energies in

    units of 10"

    3

    Ry , showing the behavior of reso nan ce .

    These cont inuum wave funct ions are norm al ized pe r

    uni t energy , wi th energies expressed in a tomic uni t s .

    ci ta t ion p rocesses wi th in a few meV.

    The cross ing be tween the two curves in F ig . 1

    can also be expected in terms of the independent

    par t i c l e m odel . I have denoted these two cur ves

    b y " + " an d " - , " i m p ly i n g a c l o s e r e s em b l an ce t o

    the + and - se r i e s c lass i f i cat ion in t roduced by

    C o o p e r , F an o , an d P r a t s

    8

    in the in terpre ta t ion

    of the photoionizat ion data of hel ium doubly ex

    c i t ed s t a t e s .

    9

    They show that the obse rved b roa d

    s e r i e s co r re s p o n d s t o t h e i n -p h as e co h e ren t o s

    ci l lat ion of the radial motion of the two electrons

    which can be denoted s imply as

    2svp+2pns

    and

    the narrow ser i es which can be denoted as 2snp

    - 2pns. The cros s ing be tween the + and - cur ves

    res u l t s f rom the d i f ference in the types of c or re

    lat ion effect implied in the combinat ions 2swp

    2pns in the region of small R and of large R.

    Let 2snp*

    3

    P denote a s ing le Sla ter de terminant

    as co n s t ru c t ed f ro m s i n g l e -p a r t i c l e o rb i t a l s ;

    1152

  • 7/24/2019 lin1975.pdf

    4/4

    V O L U M E 3 5 , N U M B E R 17 PHYSIC L REVIEW LETTERS 27 O C T O B E R 1 9 7 5

    then

    (2snp+2pns)

    1

    *

    3

    P=[2s(rMP(r

    2

    )y

    0110

    + (-l)

    s

    2s(r^(r

    1

    )y

    l010

    \

    +[2/>(r>s(r

    2

    )< y

    1010

    +( - l ^ W f w f r J ^ o i J

    = [ 2 s ( r > / > ( r

    2

    ) + ( - l )

    s

    ^ ( r

    2

    ) s ( r

    1

    ) ] ^

    0 1 1 0

    wh ere S i s 0 and 1 for s ing le t and t r ip le t , re sp ec

    t ive ly , and n / ( r

    2

    ) denotes the rad ia l wave func

    t ions . As emphas ize d above , the + or

    -

    ser i es of

    Ref. 8 implies the s ign within each of the square

    bra ck et s of Eq . (4) . The refo re ,

    2snp+2pns

    i sa

    + s e r i e s an d

    2snp

    -

    2pns

    i s a-s e r i e s f o r

    l

    P

    a t

    s m a l l

    R

    . The potent i a l cur ve asso cia te d wi th

    (2snp

    -

    2pns)

    1

    P l i es h igher than that asso cia ted

    with {2swp +2pns)

    1

    P as a resul t of the exis tence

    of an extra node near

    a

    =45 . On the o ther hand ,

    a t l a rg e

    R

    (or l arge r

    2

    ) , the exchange effect is

    not importan t and the t e rms wi th the factor ( - l )

    s

    in Eq. (4) can be neglecte d. I t can be shown that

    in the asym ptot i c reg ion , the poten t i a l as so cia t

    ed with 2snp + 2pns l i es h igher than that associa t

    ed with

    2snp

    -

    2pns

    , independ ent of

    l

    P

    o r

    3

    P .

    Thus , for

    1

    P

    9

    the + curv e l i es lower a t smal l

    R

    but h igher a t l arge

    R

    as compared wi th the-

    cu rve , resu l t ing in a cros s ing be tween the + and

    - cu rve s . On the o ther hand , s inc e (2snp +2pns)

    3

    P

    i s

    a -

    s e r i e s a t s m a l l R [because of the factor

    ( - l )

    s

    , S=1] , i t l i es ab ove the

    (2snp

    -

    2pnsfP

    s e r i e s ( th e + s e r i e s ) a t a l l

    R

    an d n o cu rv e c ro s s

    ing i s expected be tween them, as ev idenced by

    actual calcu la t ion .

    1 0

    I t i s in teres t ing to note that the lowes t Fesh-

    bach resonance of

    l

    P

    symmetry in H" cannot be

    des ignated as

    2s2p

    X

    P,

    so that the lowest doubly

    exci ted s ta tes cannot a lways be cons t ructed f rom

    the a l lowed lowes t combinat ions of s ing le-par t i

    c le s ta te s . Th i s a l so exp lains why the 2s2p

    X

    P

    state of H" was not found in the accurate

    1/Z

    e x

    pans ion calcu la t ion of Drake and Dalgarno

    1 1

    ; in

    o ther i soe lect r i c sequences of he l ium the

    2s2p

    X

    P

    i s the lowes t Feshbach resonance , bu t in H" th i s

    s ta t e beco me s a shape reso nan ce . The lowes t

    F es h b ach r e s o n an ce i n t h i s cas e s h o u l d b e d e s

    ignated as

    (2s2p -2p3s)

    1

    P.

    I t s rad iu s i s peaked

    a t

    R

    30 , in cont ra s t to the shape reson anc e in

    Fig . 2 (b ) which i s peaked near

    R

    12.

    +[ 2 ( r > s ( r

    2

    ) +( -

    l)

    s

    2s(r

    2

    )np(ri)]yioio>

    4)

    I would l ike to thank Pr ofe sso r A . Da lgarno ,

    Pro fes sor U . Fan o , and Dr . G. Victor for th e i r

    c r i t i ca l co m m en t s o n t h e m an u s c r i p t .

    F o r

    a

    r e c e n t r e v i e w , s e e R . J . R i s l e y , A . K . E d

    w a r d s , a n d R . G e b a l l e , P h y s . R e v . A 9 , 1 1 1 5 ( 1 9 7 4 ) .

    2

    A

    0

    Jo T a y l o r a n d P . G , B u r k e , P r o c . P h y s . S o c ,

    L o n d o n S2, 3 3 6 ( 1 9 6 7 ) ; P . G . B u r k e , A . J . T a y l o r , a n d

    S . O r m o n d e ,

    ibid.

    92 , 3 4 5 ( 1 9 6 7 ) ; J . M a c e k a n d P

    0

    G .

    B u r k e ibid. 9 2 , 3 5 1 ( 1 9 6 7 ) .

    3

    Se e J

    0

    M a ce k , P r o c . P h y s . S o c , L o n d o n ^ 2 , 3 6 5

    ( 1 9 6 7 ) . A n i n i t i a l a t t e m p t t o o b s e r v e t h i s r e s o n a n c e b y

    p h o t o d e t a c h m e n t o f H " w a s no t s u c c e s s f u l ( J . C o o p e r

    o f J o i n t I n s t i t u t e f o r L a b o r a t o r y A s t r o p h y s i c s , p r i v a t e

    c o m m u n i c a t i o n ) .

    4 a

    M

    0

    J . Se a to n an d I . C

    0

    P e r c i v a l , P r o c . C a m b .

    P h i l o s

    0

    So c . J 53 , 654 (1 9 57 ) .

    4 b

    M

    0

    G a i l i t i s a n d R . D a m b u r g , P r o c . R o y . S o c . 8 2 ,

    1 9 2 (1 9 63 ) .

    5

    C . D . L i n , P h y s . R e v . A 1 , 1 9 8 6 ( 1 9 7 4 ). F o r e a r

    l i e r w o r k , s e e J . M a c e k , J . P h y s . B : A t . M o l . P h y s .

    1 . , 8 3 1 (1 9 68 ) ; U. Fan o , in Atomic Physics:

    Proceed

    ings, e d i t e d b y B . B e d e r s o n , V . W . C o h e n , a n d F . M .

    P i c h a n i c k ( P l e n u m , N e w Y o r k , 1 9 6 9 ) , V o l . I , p . 2 0 9 .

    T h e a c t u a l m e t h o d of c a l c u l a t i o n u s e d h e r e i s d i f f e r e n t

    f r o m t h a t e m p l o y e d b y M a c e k a n d F a n o ;ac o m p l e t e d i s

    c u s s i o n w i t h c o m p a r i s o n s w i l l b e r e p o r t e d e l s e w h e r e .

    6

    M a c e k , R e f . 5 .

    7

    T , F

    0

    O ' M a l l e y a n d S . G e l t m a n , P h y s . R e v . 1 3 7 ,

    A1 3 44 (1 9 65 ) .

    8

    J . W . C o o p e r , U . F a n o , a n d F . P r a t s , P h y s . R e v .

    L e t t . 1 0 , 51 8 (1 9 63 ) .

    9

    R . P . M a d d e n a n d K . C o d l i n g , P h y s . R e v . L e t t . 1 ,

    51 6 (1 9 63 ) .

    10

    F o r

    3

    P o f H " , c a l c u l a t i o n s s h o w t h a t t h e c u r v e l a

    b e l e d " " i s c o m p l e t e l y r e p u l s i v e . T h e r e s u l t s a r e t o

    b e r e p o r t e d e l s e w h e r e . F o r

    3

    P o f H e , t h e c o m p u t e d

    c u r v e s d o n o t h a v e a n y c r o s s i n g ; s e e M a c e k , R e f . 5 .

    1

    G . W . F . D r a k e a n d A . D a l g a r n o , P r o c . R o y . S o c ,

    L o n d o n , S e r . A 3 2 , 5 4 9 ( 1 9 7 1 ). S e e a l s o , D . R . H e r -

    r i c k a n d O . S i n g a n o g l u , P h y s . R e v . A 1 1 , 9 7 ( 1 9 7 5 ) .

    1153