44
 Power Man ag em en t &Su p p l y Version 1.2 , February 2002  A p p lication Note   AN-SMPS-ICE2x XXX-1 Cool SET ICE2xXXX fo r OFF – Line Swit ch Mod e Pow er Suppl y (SMPS)  Au t hor s : Har ald Zöllin g er  Rainer K lin g Published by Infineon Technologies AG http://www.infineon.com Never stop thinking

Line Switch Mode Power Supply (SMPS)

Embed Size (px)

DESCRIPTION

SMPS Application Note

Citation preview

  • Power Management & Supply

    Version 1.2 , February 2002

    Application Note AN-SMPS-ICE2xXXX-1

    CoolSET

    ICE2xXXX for OFF Line Switch Mode Power Supply (SMPS)

    Authors: Harald Zllinger

    Rainer Kling

    Published by Infineon Technologies AG

    http://www.infineon.com

    N e v e r s t o p t h i n k i n g

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 2 of 44 Version 1.2

    Contents:OPERATING PRINCIPLES ...................................................................................................................................... 3

    PROTECTION FUNCTIONS..................................................................................................................................... 9

    OVERLOAD AND OPEN-LOOP PROTECTION (FIG. 6)........................................................................................... 11

    OVERVOLTAGE PROTECTION DURING SOFT START (FIG. 7).............................................................................. 12

    FREQUENCY REDUCTION................................................................................................................................... 13

    DESIGN PROCEDURE.......................................................................................................................................... 14

    Input Diode Bridge (BR1):........................................................................................................................... 15

    Determine Input Capacitor (C3): ................................................................................................................ 15

    Transformer Design (TR1): ......................................................................................................................... 17

    SENSE RESISTOR ................................................................................................................................................ 18

    Winding Design: .......................................................................................................................................... 19

    Output Rectifier (D1):.................................................................................................................................. 21

    Output Capacitors (C5, C9): ....................................................................................................................... 22

    Output Filter (L3, C23): .............................................................................................................................. 23

    RC-Filter at Feedback Pin........................................................................................................................... 23

    Soft-start capacitor ...................................................................................................................................... 24

    VCC Capacitor: ........................................................................................................................................... 25

    Start-up Resistor (R6, R7): .......................................................................................................................... 25

    CLAMPING NETWORK:....................................................................................................................................... 26

    CALCULATION OF LOSSES: ................................................................................................................................ 27

    Switching losses:.......................................................................................................................................... 28

    Conduction losses: ....................................................................................................................................... 28

    REGULATION LOOP: .......................................................................................................................................... 29

    Regulation Loop Elements:.......................................................................................................................... 30

    Zeros and Poles of transfer characteristics: ............................................................................................... 31

    Calculation of transient impedance ZPWM of ICE2AXXX............................................................................. 32

    Transfer characteristics:.............................................................................................................................. 33

    CONTINUOUS CONDUCTION MODE (CCM) ....................................................................................................... 36

    TRANSFORMER CALCULATION:.......................................................................................................................... 36

    SLOPE COMPENSATION...................................................................................................................................... 37

    TRANSFORMER CONSTRUCTION ........................................................................................................................ 38

    LAYOUT RECOMMENDATION:............................................................................................................................ 39

    OUTPUT POWER TABLE ..................................................................................................................................... 40

    SUMMARY OF USED NOMENCLATURE................................................................................................................ 41

    REFERENCES...................................................................................................................................................... 42

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 3 of 44 Version 1.2

    Operating Principles

    The ICE2AXXX is designed for a current-mode flyback configuration in discontinous (DCM) orcontinous conduction (CCM) mode.

    The control circuit has a fixed frequency. The duty cycle (D) of the integrated CoolMOS Transistor is

    controlled to maintain a constant output voltage (VOUT).

    Fig. 1 shows the input voltage (VDC IN), the primary current(ILPK), and the secondary (ISEC) transformer

    currentof the flyback converter depicted on p. 3

    When the CoolMOS Transistor is swiched on, the initial state of all windings on the transformer is at

    positive potential.

    The rectifier diode (D1) on the secondary side is reverse biased and therefore does not conduct.

    Consequently no current flows in the secondary winding. During this phase, energy is stored in the

    inductance of the primary winding and the transformer can be treated as a simple series inductor.

    Fig. 1 shows that there is a linear increase of the primary current (IPRI) while the CoolMOS Transistor

    is on.

    When the CoolMOS Transistor is swiched off, the voltage reverses on all transformer windings

    (flyback action) until it is clamped by rectifier diode on the secondary side. Now the secondary rectifier

    diode (D1) is conducting, and the magnetizing energy stored in the transformer core is transferred to

    the secondary side during the reset interval.

    In the discontinous conduction mode DCM the secondary current (ISEC) decreases from its peakvalue to zero (Fig. 1). During this period the whole energy stored in the primary inductance is

    transferred to the secondary side (neglecting losses and energy stored in the primary leakage

    inductance), then the next storage cycle starts. Taking into account the transformer turns ratio, the

    secondary voltage (VSEC) is reflected back (VR) to the primary winding and adds to the input voltage

    (VDC IN + VR). An additional transient voltage may appear on the primary winding due to energy stored

    in the uncoupled leakage inductance in the primary winding. This voltage is not clamped by the

    secondary side winding. If the flyback current (ILPK and ISEC) does not reach zero before the next on

    cycle the converter is operating in continous conduction mode (Fig. 2).Note:

    When the system shifts to continous conduction operation, its transfer function is changed to a two

    pole system with low output impedance. In this case additional design rules have to be taken intoaccount including different loop compensation and slope compensation on the primary side.

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 4 of 44 Version 1.2

    Voltage and current waveforms in discontinous conduction mode (DCM)operation:

    VDC IN min + VR

    VDC IN min

    0 T

    IPEAK ILPK

    VIN + VR

    VDC IN

    0

    IPEAK ILPK

    ISECIPEAK

    ISECIPEAK

    Light load

    tOFF tON tOFF T tON

    Full load

    Duty Cycle: D = 0,5 Duty Cycle: D < 0,5

    Voltage

    Current

    Fig. 1

    Duty Cycle:

    TtD ON=

    VDC IN > VDC IN minVDC IN = VDC IN min

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 5 of 44 Version 1.2

    Comparison of continous conduction (CCM) and discontinous conduction (DCM)mode.

    VDC IN + VR

    VDC IN

    0 T

    IPEAKILPK

    VDC IN + VR

    VDC IN

    0

    IPEAKILPK

    ISEC

    IPEAK

    ISECIPEAK

    tOFF tON tOFF T tON

    CCM DCM

    IPri0

    ISec0

    Fig. 2

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 6 of 44 Version 1.2

    Input stageAs shown in Fig. 3 the AC input power is rectified and filtered by the bridge rectifier (BR1) and the bulk

    capacitor C3. This create a DC high voltage bus which is connected to the primary winding of the

    transformer (TR1). The transformer is driven by the CoolSET integrated high voltage, avalanche

    rugged CoolMOS transistor, with an external sense resistor (R17) for precision current mesurement.

    Output stageThe secondary winding power is rectified and filtered by a diode (D1), capacitors (C5, C9 and C20).

    The output LC-filter (L3, C23) reduces the output voltage ripple.

    Other output voltagesOther output voltages can be realized by adjusting the transformer turn ratio and the output stage.

    Chip supplyThe current in the bias winding is rectified and filtered by a diode (D2) and a resistor (R8) in order to

    charge the the supply capacitor (C4). This creates a bias voltage that powers the CoolSET ICE

    2AXXX. The resistors R6 and R7 charge the VCC Cap and supply the chip during startup. The Zener

    diode (D4) clamps the chip supply voltage (Vcc) in order to protect the chip in case of an over-voltage

    condition. Capacitor C13 filters high frequency ripples on the chip supply voltage (Vcc).

    Soft-StartA soft-start function is activated during start-up, and can be adjusted by capacitor C14. In addition to

    start-up, soft-start is activated at each restart attempt during auto-restart and when restarting after one

    of the several protection functions are activated. This effectively minimizes current and voltage

    stresses on the CoolMOS MOSFET, the snubber network, and the output rectifier during start-up.

    The soft-start feature further helps to minimize output overshoot and prevents saturation of the

    transformer during start-up.

    Clamping networkThe clamping network which consists of a diode (D3), a resistor (R10) and a capacitor (C12) clamps

    the voltage spike caused by the transformer leakage inductance to a safe value this limits the

    avalanche losses of the CoolMOS transistor.

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 7 of 44 Version 1.2

    Control LoopThe resistors R1 and R2 represent the voltage divider for the reference diode TL431CLP (IC2). R4

    supplies the TL431CLP reference diode with a minimum current and R3 the LED of the optocoupler.

    The network which consists of capacitors C1 and C2 determines the corner frequencies fg1 and fg2.

    R5 sets the gain of the control loop.

    Slope CompensationThe current mode controller becomes unstable whenever the steady state duty cycle D is larger than

    0.5. In order to realize a design with a duty cycle greater 0.5, the slope of the current needs to be

    compensated. The slope compensation is realized by the network consisting of capacitor C17, C18

    and the resistor R19.

    Ripple ReductionInductor L5 and capacitor C23 attenuate the differential mode emission currents caused by the

    fundamental and harmonic frequencies of the primary current waveform.

    SMPS Calculation Software FLYCALFLYCAL is an EXCEL spread sheet with all Equations needed for the easy calculaton of your SMPS.

    FLYCAL corresponds with the calculaton example in this application note. You only have to enter the

    main parameters of your application in FLYCAL and to follow step by step the principle outlined in the

    calculation example. FLYCAL contains all equations used in the example with the same consecutive

    numbering.

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 8 of 44 Version 1.2

    Circuit Diagram:

    Fig. 3

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 9 of 44 Version 1.2

    Protection FunctionsThe block diagram displayed in Fig. 4 shows the interal functions of the protection unit. The

    comparators C1, C2, C3 and C4 compare the soft-start and feedback-pin voltages. Logic gates

    connected to the comparator outputs ensure the combination of the signals and enables the setting of

    the Error-Latch.

    Fig. 4

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 10 of 44 Version 1.2

    Fig. 5 shows the relation between the voltages at the soft start (Vss) and the feedback pins (VFB) of

    ICE2AXXX, as a function of the supply voltage (Vcc) during an overvoltage condition at CoolSET softstart.

    Depending on the voltage levels at the inputs, the overvoltage and (Vcc PIN 7) and overload (VFB

    PIN 2) protection functions are activated.

    Fig. 5

    FeedbackVoltage

    6.5V

    5.3V

    4.0V

    0.8V4.8V6.5V

    Overload &open loopDetection

    Soft startVoltage

    Overvoltageshutdownwhen Vccexceeds

    16,5V

    NormalOperation

    Soft-start

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 11 of 44 Version 1.2

    Overload and Open-Loop Protection Feedback voltage (VFB) exceeds 4.8V and soft start voltage (VSS) is above 5.3V (soft start is completed) (t1)

    After a 5s delay the CoolMOS is switched off (t2)

    Voltage at Vcc Pin (VCC) decreases to 8.5V (t2)

    Control logic is switched off (t3)

    Start-up resistor charges Vcc capacitor (t3)

    Operation starts again with soft start after Vcc voltage has exceeded 13.5V (t4)

    Fig. 6

    Fig. 7

    Fig. 8

    t1 t2 t3 t4

    VCC

    VFB

    VSS

    t1, t2

    t1, t2

    t3t4

    VCC

    VFB

    VSS

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 12 of 44 Version 1.2

    Overvoltage Protection During Soft Start Feedback voltage (VFB) exceeds 4.8V and soft-start voltage (VSS) is below 4.0V (soft start phase) (t1)

    Voltage at Vcc pin (VCC) exceeds 16.5V (t2)

    CoolMOS transistor is immediately switched off (t2)

    Voltage at VCC pin decreases to 8.5V (t3)

    Control logic is switched off (t3)

    Start-up resistor charges VCC capacitor (t4)

    Operation starts again with soft start after VCC

    voltage has exceeded 13.5V (t5)

    Fig. 9

    Fig. 10

    Fig. 11

    t1 t2 t3 t4 t5

    t2

    t3VCC

    VFB

    VSS

    VCC

    VFB

    VSS

    t1, t2

    t3

    t4t5

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 13 of 44 Version 1.2

    Frequency ReductionThe frequency of the oscillator depends on the voltage at pin FB.

    Below a voltage of typ. 1.75V the frequency decreases down to 21.5 kHz.

    Due to this frequency reduction the power losses in low load condition can be reduced very effectively.

    This dependency is shown in Fig. 12

    Fig. 12

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 14 of 44 Version 1.2

    Design Procedurefor fixed frequency Flyback Converter with ICE2AXXX operating in discontinuous current mode.

    Procedure Example

    Define input Parameters:

    Minimal AC input voltage: VAC minMaximal AC input voltage: VAC maxLine frequency: fACMax. output power: POUT maxNom. output power: POUT nomMin. output power: POUT minOutput voltage: VOUTOutput ripple voltage: VOUT RippleReflection voltage: VRmaxEstimated efficiency: DC ripple voltage: VDC IN RippleAuxiliary voltage: VAuxOptocoupler gain: GCUsed CoolSET

    90V

    264V

    50Hz

    50W

    40W

    0,5W

    16V

    0,05V

    120V

    0,85

    30V

    12V

    1

    ICE2A365

    There are no special requirements imposed on

    the input rectifier and storage capacitor in the

    flyback converter. The components will be

    selected to meet the power rating and hold-up

    requirements.

    Maximum input power:

    max

    max OUT

    INPP = (Eq 1) WWPIN 5985,0

    50max ==

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 15 of 44 Version 1.2

    Input Diode Bridge (BR1):

    cosmin

    =

    AC

    MAXINACRMS V

    PI (Eq 2)

    Maximum DC IN voltage

    2maxmax = ACPKDC VV (Eq 3)

    Determine Input Capacitor (C3):

    Minimum peak input voltage at no load condition

    2minmin = ACPKDC VV (Eq 4)

    RipplePKDCDC VVV = minmin (Eq 5)

    Calculation of discharging time at each half-line

    cycle:

    +=90

    arcsin15 min

    min

    PKDC

    DC

    DV

    V

    msT (Eq 6)

    Required energy at discharging time of C3:

    DININ TPW = max (Eq 7)

    Calculation of input capacitor value CIN:

    2min

    2min

    2

    DCPKDC

    ININVV

    WC

    = (Eq 8)

    AV

    WI ACRMS 09,16,09059

    =

    =

    VVV PKDC 3732264max ==

    VVV PKDC 127290min ==

    we choose a ripple voltage of 30V

    VVVVDC 9730127min ==

    msVV

    msTD 7,79012797arcsin

    15 =

    +=

    WsmsWWIN 46,07,759 ==

    FVV

    WsCIN 9,136940916129

    46,0222=

    =

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 16 of 44 Version 1.2

    Alternatively a rule of thumb for choosing CIN can

    be applied:

    Input voltage CIN115V 2F/W

    230V 1F/W

    85V ...270V 2 ...3F/W....................

    Recalculation of input Capacitor:

    Select a capacitor from the Epcos Databook

    of Aluminium Electrolytic Capacitors.

    The following types are preferred:

    For 85C Applications:

    Series B43303-........ 2000h life time

    B43501-........ 10000h life time

    For 105C Applications:

    Series B43504-........ 3000h life time B43505-........ 5000h life time

    IN

    INPKDCDC C

    WVV

    =

    22minmin (Eq 9)

    Note that special requirements for hold uptime, including cycle skip/dropout, or otherfactors which affect the resulting minimum DCinput voltage and capacitor time should beconsidered at this point also.

    FWFW 177359 =

    We choose 150F 400V (based on Eq 8)

    VFWsVVDC 100150

    46,0216129 2min =

    =

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 17 of 44 Version 1.2

    Transformer Design (TR1):

    Calculation of peak current of primary inductance:

    minmax

    maxmax

    DCR

    R

    VVVD+

    = (Eq 10a)

    maxmin

    2DV

    PI

    DC

    MAXINLPK

    = (Eq 10b)

    3maxDII LPKLRMS = (Eq 11)

    Calculation of primary inductance within the limit

    of maximum Duty-Cycle :

    fIVD

    LLPK

    DCP

    =minmax (Eq 12)

    Select core type and inductance factor (AL) from EpcosFerrite Databook or CD-ROMPassive Components.Fix maximum flux density:

    Bmax 0,2T ...0,3T for ferrite cores depending on core material.

    We choose 0,2T for material N27

    The number of primary turns can be calculated as:

    L

    PP A

    LN = (Eq 13)

    The number of secondary turns can be calculated

    as:

    ( )maxR

    FDIODEOUTP

    VVVN

    Ns+

    = (Eq 14)

    The number of auxiliary turns can be calculated

    as:

    ( )maxR

    FDIODEAuxAux V

    VVNsN

    += (Eq 15)

    55,0100120

    120max =

    +=

    VVVD

    AV

    WI LPK 16,255,0100592

    =

    =

    AAI LRMS 92,0355,016,2 ==

    HHzA

    VLP 25310*10016,2

    10055,03

    =

    =

    Selected core: E 25/13/7Material = N27

    AL = 111 nH

    s = 0,75 mmAe = 52 mm2

    AN = 61 mm2

    lN = 57,5 mm

    7,47111253

    ==

    nHHN P turns

    we choose Np = 46 turns

    ( ) 46,6120

    8,01646=

    +=

    VVVNs

    we choose NS = 7 turns

    ( ) 6,5120

    7,01246=

    +=

    VVVNs

    we choose NAux = 5 turns

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 18 of 44 Version 1.2

    Verification of primary inductance, primary peakcurrent, max. duty cycle, flux density and gap:

    lPP ANL =2 (Eq 16)

    fLpP

    I INLPK

    =

    5,0max (Eq 17)

    NsNVV

    V PFDIODEOUTR+

    =

    )( (Eq 18)

    minmax

    DC

    LPKP

    VfIL

    D

    = (Eq 19)

    R

    LPKP

    VfIL

    D

    =max' (Eq 20)

    eP

    LPKP

    ANIL

    B

    =max (Eq 21)

    P

    eP

    LAN

    s

    =

    27104 (Eq 22)

    Sense resistorThe sense resistance RSense can be used to

    individually define the maximum peak current and

    thus the maximum power transmitted.

    Caution:When calculating the maximum peak current,

    short term peaks in output-power must also be

    taken into consideration.

    LPK

    csthSense I

    VR = (Eq23)

    HnHLP 235111462 ==

    AHzH

    WI LPK 24,210*1002355,0

    593

    =

    =

    VVVVR 110746)8,016(

    =

    +=

    53,0100

    10024,2235max =

    =

    VkHzAHD

    47,0110

    10024,2235'max =

    =

    VkHzAHD

    mTmm

    AHB 2105246

    24,22352max

    =

    =

    mmH

    mms 588,0235

    5246104 227=

    =

    Vcsth = 1.0V typ. (taken from data sheet)

    == 45,024,20,1

    AVRSense

    we select 0,43 ILPK = 2,33A

    POUTmax = 54W

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 19 of 44 Version 1.2

    Winding Design:

    see also page 38Transformer Construction

    The primary winding of 46 turns has to be divided

    into 23+23 turns in order to get the best coupling

    between primary and secondary winding.

    The effective bobbin width and winding cross

    section can be calculated as:

    MBWBWe = 2 (Eq 24)

    BWBWA

    A eNNe

    = (Eq 25)

    Calculate copper section for primary andsecondary winding:

    The winding cross section AN has to be

    subdivided according to the number of windings.

    Primary winding 0,5Secondary winding 0,45Auxiliary winding 0,05

    Copper space factor fCu :0,2 ....0,4

    BWNBWfA

    AP

    eCuNP

    =

    5,0 (Eq 26)

    ( )( )( )dAWG log28277,197,9 = (Eq 27)

    From bobbin datasheet E25/13/7: BW = 15,6mm

    Margin determined: M = 0mm

    we use triple insulated wire for secondarywinding

    mmBWe 6,15=

    261mmANe =

    We calculate the available area for each winding:Used for calculation: fCu =0,3

    22

    2,046

    3,0615,0 mmmmAP =

    =

    diameter dp 0,5mm 25 AWG

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 20 of 44 Version 1.2

    BWNBWfA

    As

    eCuNs

    =

    45,0 (Eq 28)

    BWNBWfA

    Aaux

    eCuNaux

    =

    05,0 (Eq 29)

    With the effective bobbin width we check the

    number of turns per layer:

    PP d

    BWeN = (Eq 30)

    22

    18,17

    3,06145,0 mmmmAs =

    =

    diameter ds 2 x 0,8mm 2 x 20 AWG

    22

    18,05

    3,06105,0 mmmmAaux =

    =

    diameter da 0,5mm 25 AWG

    Primary:

    3146,06,15

    ==

    mmmmN P turns per layer

    2 layer needed

    Secondary:

    621,126,15

    =

    =

    mmmmN S turns per layer

    2 layer needed

    Auxiliary: 1 layer !

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 21 of 44 Version 1.2

    Output Rectifier (D1):

    The output rectifier diodes in flyback converters

    are subjected to a large PEAK and RMS current

    stress. The values depend on the load and

    operating mode. The voltage requirements

    depend on the output voltage and the transformer

    winding ratio.

    Calculation of the maximum reverse voltage:

    +=

    P

    SPKDCOUTRDiode N

    NVVV max (Eq 31)

    Calculation of the maximum current on secondary

    side:

    S

    PLPKSPK N

    NII = (Eq 32)

    max'31 DII SPKSRMS = (Eq 33)

    VVVVRDiode 8,7246737316 =

    +=

    AAI SPK 3,1574633,2 ==

    AAI SRMS 9,547,0313,15 ==

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 22 of 44 Version 1.2

    Output Capacitors (C5, C9):

    Output capacitors are highly stressed in flyback

    converters. Normally the capacitor will be selected

    for 3 major parameters: capacitance value, lowESR and ripple current rating.

    Max. voltage overshoot: VOUT

    Number of clock periods: nCP

    fVI

    COUT

    OUTOUT

    =CPmax n (Eq 34)

    OUT

    OUTOUT V

    PI max= (Eq 34a)

    22OUTSRMSRipple III = (Eq 34b)

    Select a capacitor out of Epcos Databookfor Aluminium Electrolytic Capacitors.

    The following types are preferred:

    For 105C Applications low impedance:

    Series B41856-........ 4000h life time

    For 105C Applications lowest impedance:

    Series B41859-........ 4000h life time

    To calculate the output capacitor, it is necessary

    to set the maximum voltage overshoot in case of

    switching off @ maximum load condition.

    After switching off the load, the control loop

    needs about 10...20 internal clock periods to

    reduce the duty cycle.

    VVOUT 5,0=

    nCP = 20

    FHzV

    ACOUT 125010*1005,0201,3

    3=

    =

    AVWIOUT 1,316

    50==

    AAAI Ripple 0,51,39,522==

    We select 1000F 35V (based on Eq 34):

    B41859-F7108-M

    ESR Zmax = 0,034 @ 100kHz

    IacR = 1,94A

    we need 2 capacitors in parallel

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 23 of 44 Version 1.2

    Output Filter (L3, C23):

    The output filter consists of one capacitor (C23)

    and one inductor (L3) in a L-C filter topology.

    Zero frequency of output capacitor (C5,C9, C20)

    and associated ESR:

    OUTESRZCOUT CR

    f

    =

    21 (Eq 35)

    Calculation of the inductance (L3) needed for the

    substitution of the zero caused by the output

    capacitors:

    ( )LC

    ESROUTOUT C

    RCL

    2

    = (Eq 36)

    RC-Filter at Feedback Pin

    (C6, R9)

    The RC Filter at the Feedback pin is designed to

    supress any noise which may be coupled in on

    this track.

    Typical values:

    C6 : 1...4,7nF

    R9 : 22 Ohm

    Note that the value of C6 interacts with theinternal pullup (3,7k typical) to create a filter.

    kHzF

    f ZCOUT 7,41000034,021

    =

    =

    We use CLC (C23) 470uF

    uHuF

    uFLOUT 5,2470)034,01000( 2

    =

    =

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 24 of 44 Version 1.2

    Soft-start capacitor

    (C14)

    The voltage at the soft-start pin together with

    feedback voltage controls the overvoltage, open

    loop and overcurrent protection functions.

    The softstart capacitor must be calculated in such

    a way that the output voltage and thus the

    feedback voltage is within the working range (VFB< 4.8V) before the over-current threshold (typ.

    5.3V) is reached.

    OUTnomOUT

    outSstart PP

    CVot

    =

    max

    2 (Eq37)

    )1ln(

    11

    REF

    StartSoftStartSoft

    SstartSS

    VV

    RtC

    = (Eq38)

    Rsoft start = 50k typ (from datasheet).

    msWW

    uFVtSstart 454054247016 2 =

    =

    nF

    VVk

    msC SS 586)

    5,61,51ln(50

    145 =

    =

    choose 560nF

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 25 of 44 Version 1.2

    VCC Capacitor:

    (C4, C13)

    The VCC capacitor needs to ensure the power

    supply of the IC until the power can be provided

    by the auxiliary winding.

    In parallel with the VCC Capacitor it is

    recommended to use a 100nF ceramic capacitor

    very close between pin 7 & 8. Alternatively, an HF

    type electrolytic with low ESR and ESL may be

    used.

    32*3

    CCHY

    softstartVCCVCC V

    tIC

    = (Eq 39)

    Start-up Resistor (R6, R7):

    IVCC1 = max. quiescent current (Control IC)

    ILoadC = VCC-Capacitor load-current (C4)

    CVCC = Value of VCC-capacitor (C4)

    LoadCVCC

    DCStart II

    VR+

    =

    1

    min (Eq 40)

    Start up Time tStart:

    LoadC

    CConVCCStart I

    VCt = (Eq 41)

    uFV

    msmACVCC 4932*

    5452,8

    =

    =

    we choose 47uF

    ICCLmax = 55A

    ILoadC = 70A

    =+

    = kA

    VRStart 801)7055(100

    R6 = R7 =1/2 RStart = 400k

    Choose 2 with value: 390k

    sA

    VFtStart 7,8735,1347

    =

    =

    Note:Before the IC can be plugged into the applicationboard, the VCC capacitor must be alwaysdischarged!

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 26 of 44 Version 1.2

    Clamping Network:(R10/C12/D3)

    RDCDSSBRClamp VVVV = max)( (Eq 42)

    For calculating the clamping network it is

    necessary to know the leakage inductance. The

    most common way is to have the value of the

    leakage inductance (LLK) given in percentage of

    the primary inductance (Lp). If it is known that the

    transformer construction is very consistent,

    measuring the primary leakage inductance by

    shorting the secondary windings will give an exact

    number (assuming the availability of a good LCR

    analyser).

    %xLpLLK =

    ( ) ClampClampRLKLPK

    Clamp VVVLI

    C+

    =

    2

    (Eq 43)

    ( )fIL

    VVVR

    LPKLK

    RRClampClamp

    +=

    2

    22

    5,0 (Eq 44)

    VVVVVClamp 166110373650 ==

    In our example we choose 5% of the primary

    inductance for leakage inductance.

    HHLLK 8,11%5235 ==

    ( ) nFVVVHACClamp 2,1166166110

    8,11)24,2( 2=

    +

    =

    we choose 1,5nF

    ( ) =

    += k

    HzAHVVVRClamp 9,2310*100)24,2(8,115,0

    11011016632

    22

    we choose 22k

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 27 of 44 Version 1.2

    Calculation of Losses:

    Input diode bridge (BR1):

    2= FACRMSDIN VIP (Eq 45)

    Calculation of copper resistance RCu:

    P

    PNPCu A

    pNlR 100

    = (Eq 46)

    Calculation of copper losses (TR1):

    PCuMAXLPKPCu RDIP = 312 (Eq 47)

    SCuMAXSPKSCu RDIP = 31'2

    Output rectifier diode (D1):

    FDIODESPKDDIODE VD

    IP =3'max (Eq 48)

    WVAPDIN 2,2211,1 ==

    Copper resistivity p100 @ 100C = 0,0172mm2/m

    == mmm

    mmmmmRPCu 1,27746,0

    /2,17460644,02

    2

    == mmm

    mmmmmRSCu 6,610,2/2,1770644,0

    2

    2

    mWmAPPCu 7,2251,2773153,0)33,2( 2 ==

    mWmAPSCu 4,22701,23147,0)3,15( 2 ==

    =+= mWmWmWPCu 1,4534,2277,225

    WVAPDDIODE 58,0347,03,15 ==

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 28 of 44 Version 1.2

    COOLMOS TRANSISTOR:ICE2A365 Co(er) = 30pFCalculated @ VDCmin = 100V

    CO 80pF (CO = CO(er) + CExtern)

    RDSON = 1,1 (@ 125C)

    Switching losses:

    fVCP DCOSON =2

    min21 (Eq 49)

    Conduction losses:

    max2

    31 DIRP LPKDSOND = (Eq 50)

    Summary of Losses:

    DSONLosses PPP += (Eq 51)

    Thermal Calculation:

    Table of typical thermal Resistance [WK

    ]:

    Heatsink DIP8 DIP7 TO220No 90 96 74

    3 cm 64 726 cm 56 65

    thLosses RPdT *= (Eq 52)

    TadTTj += (Eq 53)

    (see also ICE2AXXX Data Sheet)

    mWHzVpFPSON 4010*1001008021 32 ==

    WAPD 95,053,0)33,2(131 2 ==

    WmWmWPLosses 99,095040 =+=

    KWKWdT 4,5556*99,0 ==

    CCKTj =+= 4,115504,55

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 29 of 44 Version 1.2

    Regulation Loop:Reference: TL431 (IC2)

    VREF =2,5V

    IKAmin=1mA

    Optocoupler: SFH617-3 (IC1)

    Gc = 1 ...2 CTR 100% ...200%

    VFD = 1,2V

    IFmax =20mA (maximum current limit)

    Primary side:Feedback voltage:

    Values from ICE2AXXX datasheetVRef int = 6,5V typ.

    VFBmax = 4,5V

    Av = 3,65

    RFB = 3,7k typ.

    FB

    fFB R

    VI intRemax = (Eq 54)

    FB

    FBfFB R

    VVI maxintRemin

    = (Eq 55)

    Secondary side:

    = 121

    REF

    OUT

    VV

    RR (Eq 56)

    the value of R2 can be fixed at 4,3k

    ( )max

    3)(

    F

    REFFDOUT

    IVVV

    R+

    (Eq 57)

    min

    min3

    4KA

    FBFD

    IGc

    IRV

    R

    +

    (Eq 58)

    Fig. 13

    Fig. 14

    mAkVI FB 76,17,3

    5,6max =

    =

    mAk

    VVI FB 5,07,36,45,6

    min =

    =

    kVVkR 22,231

    5,2163,41 =

    =

    ( ) kmA

    VVVR 74,020

    )5,22,1(163 =

    + 0,75k

    kmA

    mAkVR 58,1

    11

    5,075,02,1

    4 =

    +

    1,5k

    FB3,76,5

    VFB

    R3 R1R4

    R5

    R2

    C2C1

    TL431

    Vout

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 30 of 44 Version 1.2

    Regulation Loop Elements:

    Fig. 15

    Transfer Characteristics of Regulation Loop Elements:

    3

    73R

    kGK CFB

    = (Eq 59) Feedback

    OUT

    REFVD V

    VRR

    RK =+

    =

    212 (Eq 60) VoltageDivider

    ( )

    ++

    +

    =

    5

    5

    21

    12

    1)(CR

    Rp

    CRpfLRZ

    pF

    ESRL

    ESRPL

    PWMPWR

    (Eq 61) Powerstage

    ZPWM = Transimpedance VFB/ID

    9

    29

    9

    11

    )(CLpCRp

    CRppF

    ESR

    ESRLC

    ++

    += (Eq 62) Output filter

    ( ))251(1

    2121

    2151)(

    CRpCRRRRp

    CCRppFr+

    +

    ++= (Eq 63) Regulator

    +

    KFB KVD

    FPWR(p) FLC(p)

    Fr(p)

    Vo

    Vref

    VIN

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 31 of 44 Version 1.2

    Zeros and Poles of transfer characteristics:

    Poles of powerstage @ min. and max. load:

    === 9,45416 2

    max

    2

    WV

    PV

    ROUT

    OUTLH (Eq 64) === 5125,0

    16 2

    min

    2

    WV

    PV

    ROUT

    OUTLL (Eq 65)

    5

    1CR

    fLH

    OH

    =

    Hz

    FfOH 1,3120009,4

    1=

    =

    (Eq 66)

    5

    1CR

    fLL

    OL

    =

    Hz

    FfOL 31,02000512

    1=

    =

    (Eq 67)

    We use the gain (Gc) of the optocoupler stage KFB and the voltage divider KVD as a constant.

    373

    RkG

    K CFB

    = KFB = 4,9 GFB = 13,9db

    OUT

    REFVD V

    VRR

    RK =+

    =

    212 KVD = 0,15 GVD = -16,4db

    With adjustment of the transfer characteristics of the regulator we want to reach equal gain within theoperating range and to compensate the pole fo of the powerstage FPWR().

    Because of the compensation of the output capacitors zero (see page 22 Eq35, Eq36) we neglect itas well as the LC-Filter pole.

    Consequently the transfer characteristic of the power stage is reduced to a single-pole response.

    In order to calculate the gain of the open loop we have to select the cross-over frequency.

    We calculate the gain of the Power-Stage with max. output power at the selected cross-overfrequencyfg = 3kHz:

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 32 of 44 Version 1.2

    Calculation of transient impedance ZPWM of ICE2AXXX

    The transient impedance defines the direct relationship between the level of the peak current and the

    feedback pin voltage. It is required for the calculation of the power stage amplification.

    PWM-Op gain -Av = 3,65 (according to datasheet)

    csth

    sensev

    pk

    FBPWM V

    RAIVZ =

    = (Eq 68)

    AV

    VIV

    Zpk

    FBPWM 57,100,1

    43,065,3 ==

    =

    Gain @ crossover frequency:

    +

    =

    2

    1

    12

    1)(

    fofg

    fLRZ

    fgF pLPWM

    PWR

    (Eq 69)

    05,0

    1,3130001

    12

    8,01002351,57,1

    1)3(2

    =

    +

    =

    kHzHRkHzFPWR

    GPWR(3kHz) = -26,2db

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 33 of 44 Version 1.2

    Transfer characteristics:

    Fig. 16

    At the crossover frequency (fg) we calculate the open loop gain:

    Gol() = Gs () + Gr () = 0.

    With the equations for the transfer characteristics we calculate the gain of the regulation loop @ fg.

    For the gain of the regulation loop we calculate:

    Gs = GFB + GPWR + GVD = 13,9db 26,2db 16,4db

    Gs = -28,7db

    We calculate the separate components of the regulator:

    Gs () + Gr () = 0 Gr = 0 (-28,7db) = 28,7db

    KFB

    KVD

    GLC()

    GPWR()

    Full-load1 10 100 1 103 1 104 1 105

    50

    0

    50

    Gr()

    GPWR()

    Low-load

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 34 of 44 Version 1.2

    ( ))251(1

    2121

    )2151)(CRpC

    RRRRp

    CCRppFr+

    +

    ++=

    ( )21

    215log20RR

    RRRGr

    +=

    2121105 20

    RRRRR

    Gr

    +

    =

    kkR 15,9965,3105 202,32

    == 100k (Eq 70)

    252

    1CR

    fp

    =

    fgRC

    =

    5212

    pFkHzk

    C 53031002

    12 =

    =

    560pF (Eq 71)

    In order to have enough phase margin @ low load condition we select the zero frequency of the

    compensation network to be at the middle between the min. and max. load poles of the power stage.

    oh

    ol

    ff

    ohom fflog5,0

    10

    = HzHzf om 2,3101,31 1,3115,0log5,0==

    ( )21521

    CCRfz

    +=

    2

    5211 C

    fomRC

    =

    nFpFHzk

    C 4925602,31002

    11 =

    =

    470nF (Eq 72)

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 35 of 44 Version 1.2

    Open Loop Gain

    Fig. 17

    Open Loop Phase

    Fig. 18

    1 10 100 1 103 1 104 1 10550

    37

    24

    11

    2

    15

    28

    41

    54

    67

    80

    1 10 100 1 103 1 104 1 105180

    142

    104

    66

    28

    10

    Low-load

    Full-load

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 36 of 44 Version 1.2

    Continuous Conduction Mode (CCM)

    Fig. 19

    Transformer calculation:The transformer is calculated in such a way that

    DCM operation is just barely reached (A=0) at

    minimum output power POmin.

    Pomin = 2W

    Pomax = 10W

    Dmax = 0,6

    min

    max

    PoPo

    p =

    +

    =

    minmax

    maxmin

    dcVDPoPo

    Ipk

    ( )pfIpk

    DpPoLp

    += 2

    max2

    max *1

    52

    10==

    WWp

    AV

    WWIpk 25,08,01006,0

    102=

    +=

    ( ) mHkHz

    WLp 91,6510025,06,0*1510

    2

    2=

    +=

    Ipk

    A*IpkIprim Isec

    tON tOFF

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 37 of 44 Version 1.2

    Slope CompensationSlope compensation is necessary for stable regulator operation in Continuous Conduction Mode(CCM), up to and beyond a duty cycle of 0.5 (see also [4]).An simple method of slope compensation using the components R19, C17 and C18 is illustrated in the

    circuit diagram on page 3 .

    Fig. 20

    VonVR =s

    p

    nn

    n =

    p

    R

    p LV

    LVonm ==2

    p

    Rkorr L

    Vmm

    ==

    222

    For duty cycle = 0,5 applies:

    usV

    m FBkorrkorr 5= PWM

    p

    RFBkorr ZL

    usVV

    =

    25

    CComp (C17) is selected at 10nF.

    C18 is selected at 100nF.

    RComp (R19):

    CompFBkorr

    Comp

    CVCC

    VtR

    =

    1ln

    Tton

    -VFBkorrVFB

    Ipk

    IsecIprim

    mkorr = m2/2

    m2=n*Vo/Lpm1=Vi/Lp

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 38 of 44 Version 1.2

    Transformer ConstructionThe winding topology has a considerable influence on the performance and reliability of the transformer.

    In order to reduce leakage inductance and proximity to acceptable limits, the use of a sandwich construction is recommended.

    In order to meet international safety requirements a transformer for Off - Line power supply must have adequate insulation

    between primary and secondary windings.

    This can be achieved by using a margin-wound construction or by using triple insulated wire for the secondary winding.

    The creepage distance for the universal input voltage range is typically 8mm. This results in a minimum margin width (as a half

    of the creepage distance) of 4mm. Additionally the neccesary insulation between primary and secondary winding is provided

    using three layers of basic insulation tape.

    Example of winding topology for margin wound transformers:

    Fig. 21

    Example of winding topology with triple insulated wire for secondary winding:

    Fig. 22BW* : value from bobbin datasheet

    Primary second

    half

    Auxiliary

    Secondary

    margin margin

    Triple insulation

    Creepage

    distance

    BW*

    BWe

    Primary first

    half

    Primary second

    half

    BW*

    Primary first

    half

    Auxiliary

    SecondaryTriple Insulated

    Wire

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 39 of 44 Version 1.2

    Layout Recommendation:

    Fig. 23

    In order to avoid crosstalk on the board between power and signal path we have to use care regarding

    the track layout when designing the PCB.

    The power path (see Fig. 23) has to be as short as possible and needs to be separated from the VCC

    Path and the feedback path. All GND paths have to be connected together at pin 8 (star ground) of

    ICE2AXX.

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 40 of 44 Version 1.2

    CoolSET TableDevICE Package Current

    ARdson

    Pout @190Vacin

    Ta=75C / Tj = 125C

    Pout @85Vacin

    Ta=75C / Tj = 125C

    Heatsink FrequencyKHz

    VDS=650V

    ICE2A0565 DIP8 0.5 6.0 23 13 6 cm 100

    ICE2A0565Z DIP7 0.5 6.0 21 12 6 cm 100

    ICE2A165 DIP8 1.0 3.0 31 18 6 cm 100

    ICE2B165 DIP8 1.0 3.0 31 18 6 cm 67

    ICE2A265 DIP8 2.0 0.9 52 32 6 cm 100

    ICE2B265 DIP8 2.0 0.9 52 32 6 cm 67

    ICE2A365 DIP8 3.0 0.45 67 45 6 cm 100

    ICE2B365 DIP8 3.0 0.45 73 45 6 cm 67

    ICE2A765P TO220 7.0 0.5 240 130 2.7 k/W 100

    ICE2B765P TO220 7.0 0.5 240 130 2.7 k/W 67

    VDS=800V

    ICE2A180 DIP8 1.0 3.0 31 18 6 cm 100

    ICE2A180Z DIP7 1.0 3.0 29 17 6 cm 100

    ICE2A280 DIP8 2.0 0.8 54 34 6 cm 100

    ICE2A280Z DIP7 2.0 0.8 50 31 6 cm 100

    Output Power Notes:

    The output power was created using the equations of this application note (see Calculation of Losses

    on page 27). It shows the maximum practical continuous power @ Ta = 75 C and

    Tj = 125 C with the recommended heatsink as a copper area on PCB for DIP7 / 8 and PDSO14

    packages.

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 41 of 44 Version 1.2

    Summary of used NomenclatureBmax Magnetic InductanceBW Bobbin WidthBWe Effective Bobbin WidthCIN Capacitance of Bulk CapacitorCOUT Output CapacitanceCOSS Output Capacitance of CoolMOSCExtern Output Capacitance of external ComponentsCClamp Capacitance of Clamping CapacitorCVCC Capacitance of VCC CapacitorD Duty CycleDmax Maximum Duty Cyclef Operating Frequency of CoolSET (f = 100kHz)fAC Line Frequency (Germany FAC = 50Hz)fg Crossover FrequencyfCu Copper Space Factor (0,2 ... 0,4)fOH Frequency Open Loop (High)fOm Frequency Open Loop (middle)fOL Frequency Open Loop (Low)fZCOUT Zero Frequency of output CapacitorGC Optocoupler GainIFBmax Maximum Feedback CurrentIFBmin Minimum Feedback CurrentIFmax Maximum Current (Optocoupler)IKAmin Minimum Current (TL431)ILoadC VCC Capacitor Load CurrentILPK Peak Current through the primary InductanceIACRMS Root Mean Square Current through the primaryInductanceIACRMS Root Mean Square Current through the BridgeRectifierIPRI Primary Current @ time tISEC Secondary Current @ time tISPK Peak Current through the secondary diodeISRMS RMS Current through the secondary diodeIVCC1 Maximum quiescent Current of CoolSET (ControlIC)LOUT Inductance output FilterLP Primary InductanceLLK Leakage InductanceM Margin (of Transformer)nCP Number of Clock PeriodsnpCOUT Number of parallel output CapacitorsNP Number of primary TurnsNS Number of secondary TurnsNAux Number of auxiliary TurnsPCu Power losses of Copper ResistorPD Conduction lossesPDIN Power losses input DiodePDDIODE Power losses rectifier Diode (secondary side)PIN MAX Maximum Input PowerPOUT max Maximum Output PowerPOUT min Minimum Output PowerPPCu Power losses of Copper Resistor (primaryInductance)PSCu Power losses of Copper Resistor (secondaryInductance)PSOFF Switching losses of CoolMOS Transistor (Off Operation)

    PSON Switching losses of CoolMOS Transistor (On Operation)

    RCu Copper Resistor (Transformer)RDSON Resistance of switching CoolMOS Transistor (On Operation)RL Load ResistanceRLH Maximum LoadRLL Minimum Load (defined by Designer)RFB Internal Feedback Resistor (CoolSET )RPCu Copper Resistor of primary InductanceRSCu Copper Resistor of secondary InductanceRClamp Clamping ResistorRStart Start up ResistorT Time of one PeriodTD Discharging Time of Input Capacitor C3tON On Time (CoolMOS )tOFF Off Time (CoolMOS )tr Rising Time (Voltage)tStart Start up TimeVAC min Minimal AC Input VoltageVAC max Maximal AC Input VoltageVAux Auxiliary VoltageV(BR)DSS Drain Source Breakdown VoltageVCCon Turn On Threshold for CoolSET @ Vcc - PinVDC IN DC Input VoltageVDC IN max Maximum DC Input VoltageVDC IN min Minimum DC Input VoltageVDC max PK Maximum DC Input Voltage PeakVDC min PK Minimum DC Input Voltage PeakVDC min Minimum DC Input Voltage @ maximum loadVDDIODE Reverse Voltage rectifier Diode (secondary side)VFBmax Maximum Feedback Voltage (CoolSET )VFDIODE Output Diode Forward VoltageVFD Forward Diode Voltage (Optocoupler)VOUT Output Voltage (secondary Side)VOUT Ripple Output Ripple Voltage (secondary Side)VR Reflected Voltage (from secondary side to primaryside)VRDiode Reverse Voltage DiodeVRefint Internal Reference Voltage (CoolSET )VREF Reference Voltage TL431VRipple DC Ripple Voltage (on primary Side)VSEC Voltage on Sekondary InductorVClamp Maximum Voltage overshoot @ clamping networkWIN Discharging Energie Input CapacitorZPWM Transimpedanz

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 42 of 44 Version 1.2

    References

    [1] Keith Billings,Switch Mode Power Supply Handbook

    [2] Ralph E. Tarter,Solid-State Power Conversion Handbook

    [3] R. D. Middlebrook and Slobodan Cuk,Advances in Switched-Mode Power Conversion

    [4] Herfurth Michael,Ansteuerschaltungen fr getaktete Stromversorgungen mit Erstellung eines linearisierten

    Signalfluplans zur Dimensionierung der Regelung

    [5] Herfurth Michael,Topologie, bertragungsverhalten und Dimensionierung hufig eingesetzter

    Regelverstrker

    [6] Infineon Technologies, Datasheet, CoolSET-II

    Off Line SMPS Current Mode Controller with 650V/800V CoolMOS on Board,

    [7] Robert W. Erickson,Fundamentals of Power Electronics

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 43 of 44 Version 1.2

    Revision History

    Application Note AN-SMPS-ICE2xXXX-1Actual Release: V1.2 Date:05.02.2002 Previous Release: V1.0

    Page of

    actual

    Rel.

    Page of

    prev. Rel.

    Subjects changed since last release

    44 ---------- Second Issue

    40 ------------- CoolSET Table Update

    For questions on technology, delivery and prices please contact the Infineon Technologies Offices inGermany or the Infineon Technologies Companies and Representatives worldwide: see the addresslist on the last page or our webpage athttp://www.infineon.com

    CoolMOS and CoolSET are trademarks of Infineon Technologies AG.

    Edition 2001-03-01Published by Infineon Technologies AG,St.-Martin-Strasse 53,D-81541 Mnchen

    Infineon Technologies AG 2000.All Rights Reserved.

    Attention please!The information herein is given to describe certain components and shall not be considered as warranted characteristics.Terms of delivery and rights to technical change reserved.We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and chartsstated herein.Infineon Technologies is an approved CECC manufacturer.

    InformationFor further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office inGermany or our Infineon Technologies Representatives worldwide (see address list).

    WarningsDue to technical requirements components may contain dangerous substances. For information on the types in question please contact yournearest Infineon Technologies Office.Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of InfineonTechnologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect thesafety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to supportand/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may beendangered.

    We listen to Your CommentsAny information within this dokument that you feel is wrong, unclear or missing at all?

    Your feedback will help us to continously improve the quality of this dokument.

    Please send your proposal (including a reference to this dokument) to:[email protected]

  • ICE2xXXX for OFF Line Switch Mode Power Supplies

    AN-SMPS-ICE2xXXX-1 Page 44 of 44 Version 1.2

    Infineon Technologies AG sales offices worldwide partly represented by Siemens AGASiemens AG sterreichErdberger Lnde 26A-1031 WienT (+43)1-17 07-3 56 11Fax (+43)1-17 07-5 59 73AUSSiemens Ltd.885 Mountain HighwayBayswater,Victoria 3153T (+61)3-97 21 21 11Fax (+61)3-97 21 72 75BSiemens Electronic ComponentsBeneluxCharleroisesteenweg 116/Chausse de Charleroi 116B-1060 Brussel/BruxellesT (+32)2-5 36 69 05Fax (+32)2-5 36 28 57Email:[email protected] Ltda.SemiconductoresAvenida Mutinga,3800-Pirituba05110-901 So Paulo-SPT (+55)11-39 08 25 64Fax (+55)11-39 08 27 28CDNInfineon Technologies Corporation320 March Road,Suite 604Canada,Ontario K2K 2E2T (+1)6 13-5 91 63 86Fax (+1)6 13-5 91 63 89CHSiemens Schweiz AGBauelementeFreilagerstrasse 40CH-8047 ZrichT (+41)1-4 953065Fax (+41)1-4 955050DInfineon Technologies AGVlklinger Str.2D-40219 DsseldorfT (+49)2 11-3 99 29 30Fax (+49)2 11-3 99 14 81Infineon Technologies AGWerner-von-Siemens-Platz 1D-30880 Laatzen (Hannover)T (+49)5 11-8 77 22 22Fax (+49)5 11-8 77 15 20Infineon Technologies AGVon-der-Tann-Strae 30D-90439 NrnbergT (+49)9 11-6 54 76 99Fax (+49)9 11-6 54 76 24Infineon Technologies AGWeissacher Strae 11D-70499 StuttgartT (+49)7 11-1 37 33 14Fax (+49)7 11-1 37 24 48DInfineon Technologies AGHalbleiter DistributionRichard-Strauss-Strae 76D-81679 MnchenT (+49)89-92 21 40 86Fax (+49)89-92 21 20 71DKSiemens A/SBorupvang 3DK-2750 BallerupT (+45)44 77-44 77Fax (+45)44 77-40 17ESiemens S.A.Dpto.ComponentesRonda de Europa,5E-28760 Tres Cantos-MadridT (+34)91-5 14 71 51Fax (+34)91-5 14 70 13

    FInfineon Technologies France,39/47,Bd.OrnanoF-93527 Saint-Denis CEDEX2T (+33)1-49 22 31 00Fax (+33)1-49 22 28 01FINSiemens ComponentsScandinaviaP.O .Bo x 6 0FIN-02601 Espoo (Helsinki)T (+3 58)10-5 11 51 51Fax (+3 58)10-5 11 24 95Email:[email protected] TechnologiesSiemens HouseOldburyGB-Bracknell,BerkshireRG12 8FZT (+44)13 44-39 66 18Fax (+44)13 44-39 66 32HSimacomp Kft.Lajos u.103H-1036 BudapestT (+36)1-4 57 16 90Fax (+36)1-4 57 16 92HKInfineon TechnologiesHong Kong Ltd.Suite 302,Level 3,Festival Walk,80 Tat Chee Avenue,Yam Yat Tsuen,Kowloon TongHong KongT (+8 52)28 32 05 00Fax (+8 52)28 27 97 62ISiemens S..A.Semiconductor SalesVia Piero e Alberto Pirelli,10I-20126 MilanoT (+39)02-66 76 -1Fax (+39)02-66 76 43 95INDSiemens Ltd.Components DivisionNo.84 Keonics Electronic CityHosur RoadBangalore 561 229T (+91)80-8 52 11 22Fax (+91)80-8 52 11 80Siemens Ltd.CMP Div,5th Floor4A Ring Road,IP EstateNew Delhi 110 002T (+91)11-3 31 99 12Fax (+91)11-3 31 96 04Siemens Ltd.CMP Div,4th Floor130,Pandurang Budhkar Marg,WorliMumbai 400 018T (+91)22-4 96 21 99Fax (+91)22-4 96 22 01IRLSiemens Ltd.Electronic Components Division8,Raglan RoadIRL-Dublin 4T (+3 53)1-2 16 23 42Fax (+3 53)1-2 16 23 49ILNisko Ltd.2A,Habarzel St.P.O.Box 5815161580 Tel Aviv IsrealT (+9 72)3 -7 65 73 00Fax (+9 72)3 -7 65 73 33

    JSiemens Components K.K.Talanawa Park Tower 12F &17F3-20-14,Higashi-Gotanda,Shinagawa-kuTokyoT (+81)3-54 49 64 11Fax (+81)3 -54 49 64 01MALInfineon Technologies AGSdn BhdBayan Lepas Free Industrial Zone111900 PenangT (+60)4 -6 44 99 75Fax (+60)4 -6 41 48 72NSiemens ComponentsScandinaviastre Aker vei 24Postboks 10,VeitvetN-0518 OsloT (+47)22-63 30 00Fax (+47)22-68 49 13Email:[email protected] Electronic ComponentsBeneluxPostbus 16068NL-2500 BB Den HaagT (+31)70-3 33 20 65Fax (+31)70-3 33 28 15Email:[email protected] Auckland300 Great South RoadGreenlandAucklandT (+64)9-5 20 30 33Fax (+64)9-5 20 15 56PSiemens S.A.an Componentes ElectronicosR.Irmaos Siemens,1AlfragideP-2720-093 AmadoraT (+351)1-4 17 85 90Fax (+351)1-4 17 80 83PKSiemens Pakistan EngineeringCo.Ltd.PO Box 1129,Islamabad 4400023 West Jinnah AveIslamabadT (+92)51-21 22 00Fax (+92)51-21 16 10PLSiemens SP.z.o.o.ul.Zupnicza 11PL-03-821 WarszawaT (+48)22-8 70 91 50Fax (+48)22-8 70 91 59ROKSiemens Ltd.Asia Tower,10th Floor726 Yeoksam-dong,Kang-nam KuCPO Box 3001Seoul 135-080T (+82)2-5 27 77 00Fax (+82)2-5 27 77 79RUSINTECH electronicsul.Smolnaya,24/1203RUS-125 445 MoskvaT (+7)0 95 -4 51 97 37Fax (+7)0 95 -4 51 86 08SSiemens Components Scandinaviastergatan 1,Box 46S-164 93 KistaT (+46)8-7 03 35 00Fax (+46)8-7 03 35 01Email:[email protected]

    RCInfineon TechnologiesAsia Pacific Pte.Ltd.Taiwan Branch10F,No.136 Nan King East RoadSection 23,TaipeiT (+8 86)2-27 73 66 06Fax (+8 86)2-27 71 20 76SGPInfineon Technologies AsiaPacific,Pte.Ltd.168 Kallang WaySingapore 349 253T (+65)8 40 06 10Fax (+65)7 42 62 39USAInfineon Technologies Corporation1730 North First StreetSan Jose,CA 95112T (+1)4 08-5 01 60 00Fax (+1)4 08-5 01 24 24Siemens Components,Inc.Optoelectronics Division19000 Homestead RoadCupertino,CA 95014T (+1)4 08-2 57 79 10Fax (+1)4 08-7 25 34 39Siemens Components,Inc.Special Products Division186 Wood Avenue SouthIselin,NJ 08830-2770T (+1)7 32-9 06 43 00Fax (+1)7 32-6 32 28 30VRCInfineon TechnologiesHong Kong Ltd.Beijing OfficeRoom 2106,Building AVantone New World PlazaNo.2 Fu Cheng Men Wai Da JieJie100037 BeijingT (+86)10 -68 57 90 -06,-07Fax (+86)10 -68 57 90 08Infineon TechnologiesHong Kong Ltd.Chengdu OfficeRoom14J1,Jinyang Mansion58 Tidu StreetChengdu,Sichuan Province 610 016T (+86)28-6 61 54 46 /79 51Fax (+86)28 -6 61 01 59Infineon TechnologiesHong Kong Ltd.Shanghai OfficeRoom1101,Lucky Target SquareNo.500 Chengdu Road NorthShanghai 200003T (+86)21-63 6126 18 /19Fax (+86)21-63 61 11 67Infineon TechnologiesHong Kong Ltd.Shenzhen OfficeRoom 1502,Block ATian An International BuildingRenim South RoadShenzhen 518 005T (+86)7 55 -2 28 91 04Fax (+86)7 55-2 28 02 17ZASiemens Ltd.Components DivisionP.O.B.3438Halfway House 1685T (+27)11-6 52 -27 02Fax (+27)11-6 52 20 42