14
Linear Algebra and Differential Equations Sujin Khomrutai, Ph.D. Department of Math & Computer Science Chulalongkorn University Lecture 4 S. Khomrutai (CU) Lin & Diff Eqns. Lecture 4 1 / 14

Linear Algebra and Differential Equationspioneer.netserv.chula.ac.th/~ksujin/Slide(216)4.pdfLinear Algebra and Di erential Equations Sujin Khomrutai, Ph.D. Department of Math & Computer

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

  • Linear Algebra and Differential Equations

    Sujin Khomrutai, Ph.D.

    Department of Math & Computer ScienceChulalongkorn University

    Lecture 4

    S. Khomrutai (CU) Lin & Diff Eqns. Lecture 4 1 / 14

  • Table of Contents

    1 Cauchy-Euler Equations

    S. Khomrutai (CU) Lin & Diff Eqns. Lecture 4 2 / 14

  • Table of Contents

    1 Cauchy-Euler Equations

    S. Khomrutai (CU) Lin & Diff Eqns. Lecture 4 3 / 14

  • Nonconstant coefficients equations

    Now we study

    an(t)y(n) + an−1(t)y

    (n−1) + · · ·+ a0(t)y = 0

    where ai (t) are continuous functions and an(t) 6= 0.

    It can be extended to non-homogeneous equations.

    Definition

    If there are numbers αn, . . . , α1, α0 such that

    an(t) = αntn, . . . , a1(t) = αi t, a0(t) = α0

    the equation is called Cauchy-Euler equation.

    Some αi may be zero except, so the term αi tiy (i) disappear.

    S. Khomrutai (CU) Lin & Diff Eqns. Lecture 4 4 / 14

  • Nonconstant coefficients equations

    EX. Consider ODEs

    1 3t2y ′′ + 2ty ′ − 3y = 0 is a Cauchy-Euler equation.

    2 t3y ′′′ − 5ty ′ + 3y = 0 is a Cauchy-Euler equation.

    3 2t5y (5) − t4y (4) + t2y ′′ + 6y = 0 is a Cauchy-Euler equation.

    4 ty ′′ − y ′ + (1/t)y = 0 seems not be a C-E in the first place.

    Multiplying with t get

    t2y ′′ − ty ′ + y = 0,

    which is a Cauchy-Euler equation.

    5 y ′′ + 2ty ′ − t2y = 0 is not a Cauchy-Euler equation.

    S. Khomrutai (CU) Lin & Diff Eqns. Lecture 4 5 / 14

  • Cauchy-Euler Equations

    Theorem

    The transformationz = ln t, Y (z) = y(ez)

    changes the Cauchy-Euler

    at2y ′′ + bty ′ + cy = 0

    (a, b, c are constants) into the form

    aY ′′ + (b − a)Y ′ + cY = 0.

    Backward transform.

    t = ez , y(t) = Y (ln z).

    S. Khomrutai (CU) Lin & Diff Eqns. Lecture 4 6 / 14

  • Cauchy-Euler equations

    Proof. Since z = ln t we have

    dz

    dt= t−1 and

    dt

    dz= t.

    By the chain rule, we calculate

    y ′ =dy

    dt=

    dY

    dz

    dz

    dt= t−1

    dY

    dz⇒ ty ′ = dY

    dz.

    Diff. z the last identity and apply chain rule:

    dt

    dzy ′ + ty ′′t =

    d2Y

    dz2⇒ t2y ′′ = d

    2Y

    dz2− dY

    dz.

    Plugging into the given ODE we obtain

    a(Y ′′ − Y ′) + bY ′ + cY = 0 ⇒ aY ′′ + (b − a)Y ′ + cY = 0.

    S. Khomrutai (CU) Lin & Diff Eqns. Lecture 4 7 / 14

  • Cauchy-Euler equation

    EX. Solve the Cauchy-Euler equation

    t2y ′′ + ty ′ + 4y = 0.

    Sol. Let z = ln t and Y (z) = y(ez). By the theorem, the given ODE istransformed into

    Y ′′ + (1− 1)Y ′ + 4Y = 0 ⇒ Y ′′ + 4Y = 0.

    Solving the ODE we get

    Y (z) = C1 cos 2z + C2 sin 2z .

    Transform back: y(t) = Y (ln t) so

    y(t) = C1 cos(2 ln t) + C2 sin(2 ln t).

    S. Khomrutai (CU) Lin & Diff Eqns. Lecture 4 8 / 14

  • Cuachy-Euler equation

    EX. Solve the ODE2t2y ′′ + 3ty ′ − y = 0.

    Sol. Let z = ln t and Y (z) = y(ez). By the theorem, we get

    2Y ′′ + (3− 2)Y ′ − Y = 0 ⇒ 2Y ′′ + Y ′ − Y = 0.

    Characteristic equation: 2r2 + r − 1 = 0, r1 = −1, r2 = 1/2. So

    Y (z) = C1e−z + C2e

    z/2.

    Transform back: y(t) = Y (ln t)

    y(t) = C1t−1 + C2t

    1/2.

    S. Khomrutai (CU) Lin & Diff Eqns. Lecture 4 9 / 14

  • Cauchy-Euler equation

    EX. Solve the ODEt2y ′′ − 5ty ′ + 9y = 0.

    Sol. Let z = ln t and Y (z) = y(ez). Then the ODE becomes

    Y ′′ − 6Y ′ + 9Y = 0.

    Char. equation: r2 − 6r + 9 = 0, r1 = r2 = 3. So

    Y (z) = (C1 + C2z)e3z .

    Transform back: y(t) = Y (ln t) we get

    y(t) = (C1 + C2 ln t)t3.

    S. Khomrutai (CU) Lin & Diff Eqns. Lecture 4 10 / 14

  • Exercise

    EX. Solve the ODEt2y ′′ + 8ty ′ + 12y = 0.

    Sol. Let z = ln t and Y (z) = y(ez). The ODE becomes

    Y ′′ + 7Y ′ + 12Y = 0.

    Char. equation r2 + 7r + 12 = 0, r1 = −4, r2 = −3. SoY (z) = C1e

    −4z + C2e−3z

    Transform back: y(t) = Y (ln t) we get

    y(t) = C1t−4 + C2t

    −3.

    S. Khomrutai (CU) Lin & Diff Eqns. Lecture 4 11 / 14

  • Nonhomogeneous Cauchy-Euler

    We can employ the same transform

    z = ln t, Y (z) = y(ez)

    and the backward transform

    t = ez , y(t) = Y (ln t).

    to solve a nonhomogeneous Cauchy-Euler equation

    at2y ′′ + bty ′ + cy = f (t).

    Note the under the transform the ODE becomes

    aY ′′ + (b − a)Y ′ + cY = f (ez).

    S. Khomrutai (CU) Lin & Diff Eqns. Lecture 4 12 / 14

  • Nonhomogeneous Cauchy-Euler

    EX. Solve the ODEt2y ′′ − 3ty ′ + 4y = ln t4.

    Sol. Let z = ln t,Y (z) = y(ez). Then ODE becomes

    Y ′′ − 4Y ′ + 4Y = 4 ln(ez) = 4z .

    Complementary part. Y ′′ − 4Y ′ + 4Y = 0, get r1 = r2 = 2. So

    Yc(z) = (C1 + C2z)e2z .

    Particular sol. k = 0, non-resonance. So Yp(z) = Az + B, then getA = B = 1 hence Yp(z) = z + 1.

    General sol. Y (z) = Yc(z) + Yp(z) = (C1 + C2z)e2z + z + 1.

    Transform back: y(t) = Y (ln t)

    y(t) = (C1 + C2 ln t)t2 + ln t + 1.

    S. Khomrutai (CU) Lin & Diff Eqns. Lecture 4 13 / 14

  • Nonhomogeneous Cauchy-Euler

    EX. Solve the ODEt2y ′′ − 2y = 3t2 − 1.

    Sol. Let z = ln t,Y (z) = y(ez). Then ODE becomes

    Y ′′ − Y ′ − 2Y = 3e2z − 1.

    Complementary part. Y ′′ − Y ′ − 2Y = 0, get r1 = −1, r2 = 2. So

    Yc(z) = C1e−z + C2e

    2z .

    Particular sol. Mixed, 3e2z (resonance, s = 1) and −1 (non-resonance).MUC: Yp(z) = Aze

    2z + B, then get Yp(z) = ze2z + 12 .

    General Sol. Y (z) = Yc(z) + Yp(z) = C1e−z + C2e2z + ze2z +12 .

    Transform back: y(t) = Y (ln t)

    y(t) = C1(1/t) + C2t2 + (ln t)t2 +

    1

    2.

    S. Khomrutai (CU) Lin & Diff Eqns. Lecture 4 14 / 14

    Cauchy-Euler Equations